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ABSTRACT. We give a notion of equivalence for Fell bundles over groups,
not necessarily saturated nor separable. The equivalence between two Fell
bundles is implemented by a bundle of Hilbert bimodules with some extra
structure. Suitable cross-sectional spaces of such a bundle turn out to be im-
primitivity bimodules for the cross-sectional C∗-algebras of the involved Fell
bundles. We show that amenability is preserved under this equivalence.
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1. INTRODUCTION

Towards the end of the sixth decade of the past century, J.M.G. Fell intro-
duced the notion of Banach ∗-algebraic bundle over a group, to study and extend
the Mackey normal subgroup analysis (see [10] and the references therein). In
particular he defined C∗-algebraic bundles, today known as Fell bundles. A Fell
bundle can be thought of as the abstraction of a grading of a C∗-algebra over a
locally compact and Hausdorff (LCH) group, and its cross-sectional C∗-algebras
generalize crossed products by actions, even by twisted actions. The Fell bundles
that have received more attention are those called saturated, in which every fiber
Bt (over a group element t) is naturally a Be-Be-imprimitivity bimodule (e being
the unit of the group). The main reason for this is probably that such bundles
were enough to study most of the examples. That situation changed with the in-
troduction of partial crossed products in the nineties (see [8], [9] and [12]), since
partial crossed products give rise to non-saturated Fell bundles.

In the present work we introduce and study a notion of equivalence be-
tween arbitrary Fell bundles over groups, these understood as C∗-algebraic bun-
dles as in [10]. This notion is already present, implicitly, in [1] and [3] (see the
Examples 2.2.1 and 2.2.2 below), where it was used to prove Morita–Rieffel equiv-
alences between several crossed products by partial actions or their enveloping
actions (in this paper we use the expression Morita–Rieffel equivalence to mean



274 FERNANDO ABADIE AND DAMIÁN FERRARO

strong Morita equivalence, as defined by Rieffel). In those works, in general at
least one of the involved Fell bundles is not saturated, because it is the Fell bun-
dle associated to a partial action, which is saturated if and only if the action is
global. Still, both the reduced and the universal cross-sectional algebras of these
Fell bundles are shown to be Morita–Rieffel equivalent, due to a kind of Morita
equivalence between the bundles themselves. It is precisely this notion of equiv-
alence between Fell bundles that we study in this article.

Many authors have studied equivalence of Fell bundles over groupoids (see
[13], [15] and the references therein). In this setting the bundles considered are
such that each fiber Bγ over any element γ of the groupoid is an imprimitivity
bimodule that establishes a Morita–Rieffel equivalence between the fibers over
s(γ) and r(γ), the source and range of γ respectively. In case the groupoid is
actually a group, this means that the bundle is saturated, which is equivalent to
the fact that, for all elements r, s in the group, the linear span of BrBs is dense
in Brs. Therefore this theory does not apply to non-saturated Fell bundles over
groups, for instance those associated to partial actions.

An equivalence between groupoid based Fell bundles is possible even when
the base groupoids, say G and H, are not isomorphic groupoids, but there exists
a (G-H)-equivalence ([14], Definition 2.1) between them. In case G and H are
groups, the existence of a (G-H)-equivalence implies that G and H are isomorphic
as topological groups. Thus, when dealing with equivalence of Fell bundles over
groups, we may suppose that the bundles have the same group as a base space.

Another feature of Fell bundles over groupoids (in the sense of [15]) is that
the norm is supposed to be only upper semicontinuous instead of continuous, as
must be the case for C∗-algebraic bundles [10]. However, when the base space is a
group, an upper semicontinuous norm on the bundle is automatically continuous
(see Lemma 3.30 of [6]).

On the other hand the notion of Fell bundle over a groupoid includes some
separability conditions. The result is that, when the base space is actually a group,
the usual notion of Fell bundle over a groupoid amounts to a separable and satu-
rated C∗-algebraic bundle over a second countable group. Our aim is to remove
all these restrictions, especially that of saturation, and even so to develop a useful
notion of equivalence between Fell bundles.

The organization of our exposition is the following.
The next section is devoted to the introduction of equivalence bundles be-

tween Fell bundles, which can be thought of as the abstraction of a grading of
an imprimitivity bimodule over a group. At the beginning we fix notations and
review some aspects of the theory of Fell bundles, as well as some functors as-
sociated to them, especially the functors C∗ and C∗r , which to every Fell bundle
associate its full (also called universal) and reduced cross-sectional C∗-algebras
respectively. Then we present a couple of examples from [1] which have guided
us, not only to the definition of Hilbert B-bundles and equivalence bundles,
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but also to the proof that equivalent Fell bundles have Morita–Rieffel equiva-
lent cross-sectional C∗-algebras. After the proof of an important technical result,
Lemma 2.8, we define morphisms between equivalence bundles, thus obtaining
a category, and we prove that there exist two special functors from this category
into the category of Fell bundles.

The aim of the third section is to pave the way to the proof that equivalent
Fell bundles give rise to Morita–Rieffel equivalent cross-sectional C∗-algebras, to
be accomplished in Section 4. Namely, we proceed to the construction of the
“linking Fell bundle” associated to an equivalence bundle. In fact, as it is shown
later in the same section, it is possible to start just with a right Hilbert bundle X
over the Fell bundle B, because it is automatically a K(X )-B-equivalence bundle,
where K(X ) is a graded version of the usual C∗-algebra of generalized compact
operators of a Hilbert module. The assignment of a linking Fell bundle to each
equivalence bundle is itself a functor, which later will be shown, in Section 4, to
commute with the functor C∗, suitably extended from the category of Fell bun-
dles to the category of equivalence bundles. Essentially, what happens is the
following. If X is an equivalence bundle between the Fell bundles A and B,
then there exists a C∗(A)-C∗(B)-imprimitivity bimodule C∗(X ), which is a cer-
tain completion of Cc(X ), such that if L(X ) is the linking Fell bundle of X , then
C∗(L(X )) = L(C∗(X )) (see Theorem 4.5 and Corollary 4.10).

A more general situation can be considered, and this is done at the end of
Section 4, in which the functor C∗ is replaced by other type of functors from the
category of Fell bundles to the category of C∗-algebras, for instance the functor
C∗r . The functors we consider are a generalization of the crossed product functors
considered in [5].

The last section of the article is quite technical. Its main objective is to prove
that the equivalence of Fell bundles is transitive, thus an equivalence relation. To
this end internal tensor products of Hilbert bundles are defined, and it is shown
that their cross-sectional algebras are isomorphic to the internal tensor product of
the corresponding cross-sectional algebras of the Hilbert bundles.

2. EQUIVALENCE BUNDLES

2.1. SOME PRELIMINARIES AND NOTATIONS. In this paper we will be dealing
with Fell bundles over groups. Throughout the work G will always denote by
a fixed locally compact and Hausdorff group with unit element e. We also fix a
left invariant Haar measure, dt, of G and denote ∆ the modular function of G.
We understand by a Fell bundle a C∗-algebraic bundle in the sense of Fell [10].
If A and B are Fell bundles over G, a morphism π : A → B is a continuous,
multiplicative and ∗-preserving map, such that for each t ∈ G, π(At) ⊂ Bt and
π|At is linear. Fell bundles with these morphisms form a category F . Note that
every fiber of a Fell bundle is a C∗-ternary ring (in the sense of [18]) with the
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product (a, b, c) 7→ ab∗c, and the restriction of a morphism of Fell bundles to a
fiber is a homomorphism of C∗-ternary rings (see [2], [18]). See below for some
additional information about C∗-ternary rings and their homomorphisms.

There are several functors of interest to us defined on the category F . It
is the purpose of this section to review some of them, and to introduce some
notation along the way. The reader is referred to [1] for more details.

Recall that if B is a Fell bundle, then Cc(B) is a ∗-algebra. Besides, given a
morphism φ : A → B of Fell bundles, we have a homomorphism of ∗-algebras:
φc : Cc(A) → Cc(B), φc( f ) = φ ◦ f . This functor (φ 7→ φc) extends to a func-

tor from Fell bundles into Banach ∗-algebras: (A φ→ B) 7−→ (L1(A) φ1→ L1(B)),
where L1(A) and L1(B) are the Banach ∗-algebras obtained by completing re-
spectively the ∗-algebras Cc(A) and Cc(B) with respect to the norm ‖ f ‖1 =∫
G
‖ f (t)‖dt, and φ1 is the continuous extension of φc. Composing the latter functor

with the functor from the category of Banach ∗-algebras into the category of C∗-
algebras which consists of taking the enveloping C∗-algebra, we obtain another

functor C∗ : F → C : (A φ→ B) 7−→ (C∗(A) φ∗→ C∗(B)), from the category of Fell
bundles into the category C of C∗-algebras (with their usual homomorphisms).
We call C∗(A) the universal or full cross-sectional algebra of A.

The universal C∗-algebra of a Fell bundle has the property that its non-
degenerate representations are in a bijective correspondence with the nondegene-
rate representations of the bundle ([10], VIII 12.8).

Given a Fell bundle A, let L2(A) be the right Hilbert Ae-module obtained
by completing Cc(A) with respect to the inner product 〈 f , g〉 :=

∫
G

f (t)∗g(t)dt.

If A φ→ B is a morphism of Fell bundles, we have a map φ2 : L2(A) → L2(B),
which is the continuous extension of φc (note 〈φc( f ), φc(g)〉L2(B) = φ(〈 f , g〉L2(A)),
∀ f , g ∈ Cc(A)). The map φ2 is a morphism of C∗-ternary rings (see [1], [2]). Thus

(A φ→ B) 7−→ (L2(A) φ2−→ L2(B)) is a functor from the category of Fell bundles
into the category of C∗-ternary rings.

Among the representations of a Fell bundle A = (At)t∈G there is the so
called (left) regular representation, which we briefly recall now. If at ∈ At and
ξ ∈ Cc(A), we define Λat ξ ∈ Cc(B) by Λat ξ(s) := atξ(t−1s). Then Λat extends to
an adjointable map Λat ∈ B(L2(A)), where B(L2(A)) denotes the C∗-algebra of
adjointable maps of L2(A). Besides, the map Λ : A → B(L2(A)) is a representa-
tion of the bundle A, called the regular representation of A. The integrated form
of Λ, that is, its associated representation ΛA : C∗(A) → B(L2(A)) is also called
regular representation, and its image C∗r (A) is called the reduced cross-sectional al-
gebra of A. We say that A is amenable when ΛA : C∗(A) → C∗r (A) is an isomor-
phism. Since ΛA is injective on Cc(A), we will consider C∗r (A) as a completion
of Cc(A).
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If φ : A → B is a morphism, it is easily checked that, for all x ∈ C∗(A), φ2 in-
tertwines ΛB

φ∗(x) and ΛAx : ΛB
φ∗(x)φ2 = φ2ΛAx . In case φ is surjective, both φ2 and φ∗

are also surjective, because they have closed and dense ranges, since φc(Cc(A))
is uniformly dense in Cc(B) by 14.1 of [10]. So in this case φ∗(ker ΛA) ⊆ ker ΛB ,
and φ∗ induces a unique homomorphism φr : C∗r (A) → C∗r (B) such that the
following diagram commutes:

C∗(A)

φ∗

��

ΛA // C∗r (A)

φr

��
C∗(B)

ΛB
// C∗r (B).

(2.1)

In case φ is not surjective, let C be its image. Then C is a Fell subbundle of
B, and ψ : A → C such that ψ(a) := φ(a), ∀a ∈ A, is a surjective morphism,
and φ = ιψ, where ι : C → B is the natural inclusion. By Proposition 3.2 of
[1], C∗r (C) is isomorphic to the closure of Cc(C) in C∗r (B), so we have an injective
homomorphism ιr : C∗r (C) → C∗r (B) such that ιrΛC = ΛB ι∗. Then the map
φr := ιrψr : C∗r (A) → C∗r (B) also makes commutative the diagram above, so
again φ∗(ker ΛA) ⊆ ker ΛB . Therefore we have another functor C∗r : F → C ,

such that (A φ→ B) 7−→ (C∗r (A)
φr−→ C∗r (B)), and Λ : C∗ → C∗r is a natural

transformation.
A particular type of Fell bundle, which is a guiding example for us, is that

associated to a partial action α = ({Dt}t∈G, {αt}t∈G) of a group G on a C∗-algebra
A. This bundle, denoted Bα, has total space {(t, a) : a ∈ Dt} ⊆ G × A with
the topology inherited from the product topology on G × A. We set ‖(t, a)‖ :=
‖a‖. The operations on Bα are defined as follows: (t, a)∗ := (t−1, αt−1(a∗)), and
(r, a)(s, b) := (rs, αr(α−1

r (a)b)). If X is an A-B-imprimitivity bimodule (see [17])
between the C∗algebras A and B, we will say that A and B are Morita–Rieffel
equivalent (rather than strong Morita equivalent, the original terminology used
by Rieffel), and X will be referred just as an equivalence bimodule between A and
B. When convenient, Hilbert modules will be regarded as ternary C∗-rings (C∗-
trings for short) and often we will work with homomorphisms of C∗-trings as in
[1], [2], where the reader is referred to for more information. Here we just recall
the basic definitions and properties. A C∗-tring is a Banach space X with a ternary
product X × X × X → X that is linear in the odd variables and conjugate linear
in the second variable, satisfies a certain associativity property, and moroever
‖(x, y, z)‖ 6 ‖x‖ ‖y‖ ‖z‖ and ‖(x, x, x)‖ = ‖x‖3, ∀x, y, z ∈ X. For instance a right
Hilbert B-module X can be seen as a C∗-tring with the product (x, y, z) := x〈y, z〉.
As shown in [18], this is almost the general case: for every C∗-tring X there exist
a C∗-algebra Xr and a map 〈·, ·〉r : X × X → Xr such that X is a full right Hilbert
Xr-module (except that 〈x, x〉r does not need to be a positive element of Xr) that
satisfies: (x, y, z) = x〈y, z〉r, ∀x, y, z ∈ X. Besides the pair (〈·, ·〉r, Xr) is unique up
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to canonical isomorphisms. There also exists an essentially unique pair (〈·, ·〉l, Xl)
with similar properties, but now X is a left Xl-module, and (x, y, z) = 〈x, y〉lz,
∀x, y, z ∈ X. A homomorphism π : X → Y of C∗-trings is a linear map that pre-
serves the ternary products. Such a homomorphism π induces homomorphisms
of C∗-algebras πl : Xl → Yl and πr : Xr → Yr determined by the properties
πl(〈x, y〉l)π(z) = (π(x), π(y), π(z)) = π(y)πr(〈y, z〉l), ∀x, y, z ∈ X. In this way
we have two functors from the category of C∗-trings T into the category of C∗-

algebras C : the left functor (X π→ Y) 7−→ (Xl πl
→ Yl), and the right functor:

(X π→ Y) 7−→ (Xr πr
→ Yr). We especially want to call the attention of the reader

to the following facts: every homomorphism of C∗-trings is contractive; for such
maps, being injective is equivalent to being an isometry and, finally, the image of
a C∗-tring homomorphism is closed, and so a C∗-tring itself.

Finally we fix some more notation. Letters H and K will be used to denote
Hilbert spaces, while (right) Hilbert modules [17] will be denoted X, or XA if it is
necessary to indicate the involved algebra A. On the set of adjointable operators
from XA to YA, B(XA, YA), we consider the operator norm and we regard this
set as a ternary C∗-ring [18] with the operation (R, S, T) 7→ RS∗T. We denote by
K(XA, YA) the set of generalized compact operators, which is a Banach subspace
of B(XA, YA) (in fact an ideal of B(XA, YA) in the sense of [1], [2]).

The letters A,B, C and D will be used to represent Fell bundles over G and
X ,Y ,Z to denote Banach bundles over G (in the sense of [10]). The fiber over t of
A,B, . . . ,X , . . . will be denoted At, Bt, . . . , Xt, . . . respectively. The space of com-
pactly supported continuous sections of the Banach bundle X will be denoted
Cc(X ).

2.2. MOTIVATING EXAMPLES. In [1] (see also [3]) it was shown that Morita equiv-
alent partial actions give rise to Morita–Rieffel equivalent crossed products, and
also that the crossed product of a partial action is Morita–Rieffel equivalent to
the crossed product by its enveloping action (and even to the crossed product by
its Morita enveloping action). These results were obtained as particular cases of
more general results about cross-sectional algebras of Fell bundles. The involved
Fell bundles are related by a kind of equivalence bundles, whose properties in-
spired our Definition 2.2, and which we briefly review below.

2.2.1. ENVELOPING ACTIONS. Let β be a continuous action by automorphisms
of G on the C∗-algebra B and A an ideal of B, with B = span {βt(A) : t ∈ G}.
Now let α be the partial action obtained as the restriction of β to A [1], so that β
is an enveloping action for α.

We think of Bα and X := A× G as Banach subbundles of Bβ. Since BαX ⊂
X , XBβ ⊂ X and XX ∗ ⊂ Bα, we have the operations

Bα ×X → X (a, x) 7→ ax, Bα
〈·, ·〉 : X ×X → Bα (x, y) 7→ xy∗,(2.2)

X ×Bβ → X (x, b) 7→ xb, and 〈·, ·〉Bβ
: X ×X → Bβ (x, y) 7→ x∗y.(2.3)
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Note that, if Xr := {(a, r) : a ∈ A}, and Ar, Br are respectively the fibers of
Bα and Bβ at r, then we have that Bα

〈Xr, Xs〉 ⊆ Ars−1 , 〈Xr, Xs〉Bβ
⊆ Br−1s, ArXs ⊆

Xrs, XrBs ⊆ Xrs, At = span{Bα
〈Xts, Xs〉 : s ∈ G}, and Bt = span{〈Xr, Xrt〉Bβ

:
s ∈ G}, ∀t ∈ G. These are precisely the properties that inspire the definition of
equivalence between Fell bundles in (2.2).

It is shown in [1] that C∗r (Bα) is a full hereditary C∗-subalgebra of C∗r (Bβ).
Moreover, the canonical equivalence bimodule is the closure of Cc(X ) within
C∗r (Bβ). In terms of the operations described in (2.2) and (2.3), the bimodule struc-
ture is given by

u f (t) =
∫
G

u(tr) f (r−1)dr(2.4)

f v(t) =
∫
G

f (r)v(r−1t)dr(2.5)

Cc(Bα)〈 f , g〉(t) =
∫
G

Bα
〈 f (tr), g(r)〉∆(r)dr(2.6)

〈 f , g〉Cc(Bβ)
(t) =

∫
G

〈 f (r), g(rt)〉Bβ
dr(2.7)

for u ∈ Cc(Bα), f , g ∈ Cc(X ) and v ∈ Cc(Bβ). Note that Bβ is a saturated Fell
bundle (i.e.: spanBrBs is dense in Brs, ∀r, s ∈ G), while Bα is saturated only if α is
a global action, that is: A = B and α = β.

2.2.2. MORITA EQUIVALENCE OF PARTIAL ACTIONS. Assume now that α and
β are Morita equivalent partial actions of G on the C∗-algebras A and B, re-
spectively. Thus (using the notation of [1]) there exists a partial action γ =
({Xt}t∈G, {γt}t∈G) of G on the A-B-equivalence bimodule X with α = γl and
β = γr. If L(γ) is the linking partial action of γ, then Bα and Bβ are Fell sub-
bundles of BL(γ) and we may think of BL(γ) as a Banach subbundle of G×L(X).
Recall that in Exel’s notation the element (t, S) ∈ G×L(X) is represented by Sδt.
Consider

(2.8) Xγ :=
{(

0 x
0 0

)
δt : x ∈ Xt, t ∈ G

}
.

Then Xγ is a Banach subbundle of BL(γ).
In this situation it is possible to define the following operations:

Bα ×Xγ → Xγ : (a, x) 7→ ax, Bα
〈·, ·〉 : Xγ ×Xγ → Bα : (x, y) 7→ xy∗,(2.9)

Xγ×Bβ→Xγ : (x, b) 7→ xb, and 〈·, ·〉Bβ
: Xγ×Xγ→Bβ : (x, y) 7→ x∗y.(2.10)

Using the product and involution of Cc(BL(γ)) we can make Cc(Xγ) into a
pre Cc(Bα)-Cc(Bβ) Hilbert bimodule. More precisely, the operations are given by

u f := u ∗ f , f v := f ∗ v, Cc(Bα)〈 f , g〉 := f ∗ g∗ and 〈 f , g〉Cc(Bα) := f ∗ ∗ g,
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for u ∈ Cc(Bα), v ∈ Cc(Bβ) and f , g ∈ Cc(Xγ). It is easy to check that the opera-
tions above correspond to the expressions (2.4)–(2.7).

The techniques of Section 3 in [1] can be used to show that the completion
of Cc(Xγ) in C∗(BL(γ)), C∗(Xγ), is a C∗(Bα)-C∗(Bβ) Hilbert module. Moreover,
C∗(BL(γ)) is isomorphic to the linking algebra of C∗(Xγ) (see Theorem 1.1 of [3]
and Corollary 5.3 of [2] for details). This will turn out to be a particular case of a
general situation (Theorem 4.5).

2.3. EQUIVALENCE BUNDLES. A Fell bundle is an abstraction of a grading of a
C∗-algebra over a group. In the same way, a Hilbert B-bundle over a group, as
we define below, can be thought of as an abstraction of a graded Hilbert module.

Let A and B be Fell bundles over G. Considering our motivating examples
and the discussion in the Introduction we state the following definition.

DEFINITION 2.1. A right Hilbert B-bundle is a complex Banach bundle over
G, X := {Xt}t∈G, with continuous maps

X ×B → X , (x, b) 7→ xb, and 〈·, ·〉B : X ×X → B, (x, y) 7→ 〈x, y〉B
such that:

(1R) XrBs ⊂ Xrs and 〈Xr, Xs〉B ⊂ Br−1s, for all r, s ∈ G.
(2R) Xr × Bs → Xrs, (x, b) 7→ xb, is bilinear for all r, s ∈ G.
(3R) Xs → Br−1s, y 7→ 〈x, y〉B , is linear for all x ∈ Xr and s ∈ G.
(4R) 〈x, yb〉B = 〈x, y〉Bb and 〈x, y〉B∗ = 〈y, x〉B for all x, y ∈ X and b ∈ B.
(5R) 〈x, x〉B > 0, for all x ∈ X , and 〈x, x〉B = 0 implies x = 0. Besides, each fiber

Xt is complete with respect to the norm x 7→ ‖〈x, x〉B‖1/2.
(6R) For all x ∈ X , ‖x‖2 = ‖〈x, x〉B‖.
(7R) span {〈Xs, Xs〉B : s ∈ G} = Be.

Condition (6R) expresses the compatibility of the norm of the fibers of X
with the norm given by considering each one of the fibers as a right pre Hilbert
Be-module (with the action and inner product specified in the definition).

A word must be said about condition (7R). As mentioned before, we may
think of a Hilbert bundle as a grading of a Hilbert module. In this sense, condi-
tions (1R)–(6R) would be enough to define a Hilbert B-bundle. However, along
this work we are mainly interested in obtaining equivalence bimodules as com-
pletions of cross-sectional spaces of Hilbert bundles, so we consider just Hilbert
bundles analogous to full Hilbert modules, that is, Hilbert bundles satisfying
(7R). On the other hand, it is this crucial property that will allow to have, for in-
stance, an equivalence between a saturated Fell bundle with a non-saturated one.
Note that we are not requiring, unlike the usual notion in the Fell bundles over
groupoids context, that span 〈Xs, Xs〉B = Be, ∀s ∈ G, but only that the sum of all
these spaces is dense in Be. Note that this also implies Bt = span {〈Xr, Xrt〉B : r ∈
G}, ∀t ∈ G (a proof of this fact will be provided in (vi) of Lemma 2.7).

Left Hilbert bundles are defined similarly: properties (1R)–(7R) are changed to:
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(1L) ArXs ⊂ Xrs and A〈Xr, Xs〉 ⊂ Ars−1 , for all r, s ∈ G.
(2L) Ar × Xs → Xrs, (a, x) 7→ ax, is bilinear for all r, s ∈ G.
(3L) Xs → Asr−1 , y 7→ A〈y, x〉, is linear for all x ∈ Xr and s ∈ G.
(4L) A〈ax, y〉 = aA〈x, y〉 and A〈x, y〉∗ = A〈y, x〉 for all x, y ∈ X and a ∈ A.
(5L) A〈x, x〉 > 0, for all x ∈ X , and A〈x, x〉 = 0 implies x = 0. Besides, each

fiber Xt is complete with respect to the norm x 7→ ‖A〈x, x〉‖1/2.
(6L) For all x ∈ X , ‖x‖2 = ‖A〈x, x〉‖.
(7L) span {A〈Xs, Xs〉 : s ∈ G} = Ae.

DEFINITION 2.2. We say that X is an A-B-equivalence bundle if it is both a
left Hilbert A-bundle, a right Hilbert B-bundle and A〈x, y〉z = x〈y, z〉B , for all
x, y, z ∈ X . Besides, we say that A is equivalent to B if there exists an A-B-equi-
valence bundle.

EXAMPLE 2.3. In the context of Section 2.2.1, X is a Bα-Bβ-equivalence bun-
dle.

EXAMPLE 2.4. Suppose that γ is a partial action on the A-B Hilbert bimod-
ule X, as in Section 2.2.2. Then the bundle Xγ is a Bγl -Bγr -equivalence bundle.

EXAMPLE 2.5. If π : A → B is an isomorphism of Fell bundles, then the
bundle X = B is an A-B-equivalence bundle with the operations

A×X → X : (a, x) 7→ π(a)x, A〈·, ·〉 : X ×X → A : (x, y) 7→ π−1(xy∗),

X ×B → X : (x, b) 7→ xb, and 〈·, ·〉B : X ×X → B : (x, y) 7→ x∗y.

Then isomorphic Fell bundles are equivalent and every Fell bundle is equivalent
to itself.

There are two questions that can be immediately answered using our moti-
vating examples: Do equivalent Fell bundles have Morita–Rieffel equivalent unit
fibers? Can a non-saturated Fell bundle be equivalent to a saturated Fell bundle?

To answer both questions at once consider the action β of G = R on B =
C0(R) given by βt( f (·)) = f (·+ t) and let A be the C∗-ideal of B corresponding
to the open set (0, 1) ∪ (1, 2). Since β is the enveloping action of α, Bα and Bβ are
equivalent by Section 2.2.1. Now the unit fibers of Bα and Bβ are C0((0, 1)∪ (1, 2))
and C0(R), respectively, which are not Morita–Rieffel equivalent because they are
commutative and not isomorphic. Also note that Bβ is saturated but Bα is not.

An interesting fact to be proved later in Corollary 5.15, which will follow
from the main result of [1] and the transitivity of equivalence of Fell bundles,
is that every Fell bundle associated to a partial action is equivalent to the Fell
bundle associated to an action.

As a preparation for future sections we prove some basic facts about right
Hilbert bundles. Of course left Hilbert bundles will have similar properties. A
way of translating results from left to right and vice versa is to consider adjoint
bundles, which we introduce next.
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Assume that X is a left HilbertA-bundle over G, and let X̃ be the retraction
of X by the inversion map of G (according to II 13.3 of [10]), except that the

product by scalars is given by λx̃ = λ̃x, where λ ∈ C and x̃ is the element x ∈ X
seen as an element of X̃. Thus the fiber of X̃ over t ∈ G is X̃t−1 , where X̃t is the
complex-conjugate Banach space of Xt. Then the adjoint of X is the right Hilbert
A-bundle X̃ where the action X̃ ×A → X̃ is given by (x̃, a) 7→ ã∗x, and the inner
product X̃ × X̃ → A by (x̃, ỹ) 7→ A〈x, y〉.

REMARK 2.6. A similar construction can be performed on a right Hilbert
bundle to obtain a left Hilbert bundle. In case X is an A-B-equivalence bundle,

X̃ is a B-A-equivalence bundle. Also note that ˜̃X = X .

LEMMA 2.7. Given a right Hilbert B-bundle X , for all x, y ∈ X and b, c ∈ B, the
following relations hold:

(i) 〈xb, y〉B = b∗〈x, y〉B ;
(ii) ‖xb‖ 6 ‖x‖‖b‖;

(iii) ‖〈x, y〉B‖ 6 ‖x‖‖y‖;
(iv) (xb)c = x(bc);
(v) ‖b‖ = sup{‖zb‖ : z ∈ X , ‖z‖ 6 1};

(vi) Bt = span {〈Xr, Xrt〉B : r ∈ G}.
In case X is an A-B-equivalence bundle, the following equalities hold for all a ∈ A,
x, y ∈ X , and b ∈ B :

(vii) (ax)b = a(xb);
(viii) A〈xb, y〉 = A〈x, yb∗〉;

(ix) 〈ax, y〉B = 〈x, a∗y〉B .

Proof. The proof of (i) is left to the reader. Meanwhile (ii) holds because

(2.11) ‖xb‖2 = ‖〈xb, xb〉B‖ = ‖b∗〈x, x〉Bb‖ 6 ‖x‖2‖b‖2.

Note that x〈x, y〉B and y belong to the same fiber of X , say Xt. Regarding Xt
as a right Hilbert Be-module we have:

‖〈x, y〉B‖2 = ‖〈x〈x, y〉B , y〉B‖ 6 ‖x〈x, y〉B‖‖y‖ 6 ‖〈x, y〉B‖‖x‖‖y‖,

so (iii) follows. To prove (iv) note that, since (xb)c and x(bc) belong to the
same fiber, say Xt, the identity (xb)c = x(bc) holds if and only if 〈z, (xb)c〉B =
〈z, x(bc)〉B , for all z ∈ Xt, and the latter equality holds, because

〈z, (xb)c〉B = 〈z, xb〉Bc = 〈z, x〉Bbc = 〈z, x(bc)〉B , ∀z ∈ Xt.

To prove (v) set τ(b) := sup{‖xb‖ : x ∈ X , ‖x‖ 6 1}. From (ii) follows
that τ(b) 6 ‖b‖. Consider each fiber Xt as a left K(Xt) Hilbert module, and let
Bop

e be the opposite C∗-algebra of Be. Then we have a representation φt : Bop
e →

BK(Xt)(Xt), φt(c)u = uc. Note that

(2.12) ‖φt(c)‖2=sup{‖K(Xt)〈xc, xc〉‖ : ‖x‖ 6 1}=sup{‖〈xc, xc〉B‖ : ‖x‖ 6 1}.
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Since condition (7R) together with φt(c) = 0 for all t ∈ G implies Bec = 0, thus
c = 0, the direct sum φ =

⊕
t∈G

φt is injective, and therefore isometric. This implies

‖b‖ = τ(b) because by (2.12) we have

‖b‖ = sup
t∈G
‖φt(b)‖ = sup

t∈G
sup{‖xb‖ : x ∈ Xt, ‖x‖ 6 1} = τ(b).

Finally, if b is any element of B, we have ‖b‖2 = τ(bb∗) 6 τ(b)‖b‖, which shows
that ‖b‖ 6 τ(b).

As for (vi), from VIII 16.3 of [10] and (7R) it follows that

Bt = span {〈Xr, Xr〉BBt : r ∈ G} = span {〈Xr, Xrt〉B : r ∈ G} ⊂ Bt.

For the rest of the proof we assume that X is an A-B-equivalence bundle.
Using the conclusion of the last paragraph together with continuity arguments,
we see that it suffices to show (vii)–(ix) for elements a and b of the form a =

A〈u, v〉 and b = 〈z, w〉B . The proof finishes after we observe that

a(xb) = A〈u, v〉(x〈z, w〉B) = A〈A〈u, v〉x, z〉w = (A〈u, v〉x)〈z, w〉B = (ax)b;

A〈xb, y〉 = A〈x〈z, w〉B , y〉 = A〈x, z〉A〈w, y〉 = A〈x, y〈w, 〉B〉 = A〈x, yb∗〉;
〈ax, y〉B = 〈u〈v, x〉B , y〉B = 〈x, v〉B〈u, y〉B = 〈x,A〈v, u〉y〉B = 〈x, a∗y〉B .

Approximate units of Fell bundles are a powerful tool. In what follows we
construct a special kind of approximate units, which will prove to be extremely
useful.

The expression Mn(X) stands for the n× n matrices with entries in the set
X. The (i, j) entry of M ∈Mn(X) will be denoted Mi,j.

LEMMA 2.8 (cf. Lemma 5.1 of [2]). Let X be an A-B-equivalence bundle. Then
(i) A and B have approximate units, {ai}i∈I and {bj}j∈J , such that for all i ∈ I and

j ∈ J there exist x1, . . . , xni , y1, . . . , ynj ∈ X such that

ai =
ni

∑
k=1
A〈xk, xk〉 and bj =

nj

∑
k=1
〈yk, yk〉B .

(ii) For all t = (t1, . . . , tn) ∈ Gn, the set

Mt(B) := {M ∈Mn(B) : Mi,j ∈ Bti
−1tj
∀ i, j = 1, . . . , n}

is a C∗-algebra with entrywise vector space operations, matrix multiplication as product
and ∗-transpose (M∗ i,j = Mj,i

∗) as involution. Moreover, its C∗-norm is equivalent to
the supremum norm ‖M‖∞ := max

i,j
‖Mi,j‖.

(iii) For all t, ri ∈ G, xi ∈ Xri and yi ∈ Xrit (i = 1, . . . , n):

(2.13)
∥∥∥ n

∑
i=1
〈xi, yi〉B

∥∥∥2
6
∥∥∥ n

∑
i=1
〈xi, xi〉B

∥∥∥∥∥∥ n

∑
i=1
〈yi, yi〉B

∥∥∥.
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Proof. Let Λ be the set{
b ∈ Be : ‖b‖ < 1, ∃ y1, . . . , yn ∈ X such that b =

n

∑
j=1
〈yk, yk〉B

}
.

To show that Λ is a directed set take b1, b2 ∈ Λ, with bj =
n
∑

k=1
〈xj

k, xj
k〉B . Each

fiber Xt is a Hilbert Be-module, so we may think of Xt as a Hilbert module over
the unitization of Be. Set

c′ := b1(1− b1)
−1 + b2(1− b2)

−1 =
2

∑
j=1

n

∑
k=1
〈xj

k(1− bj)
−1/2, xj

k(1− bj)
−1/2〉B .

Then c′ > 0 and, using functional calculus, we see that c := c′(1 + c′)−1 equals

2

∑
j=1

n

∑
k=1
〈xj

k(1− bj)
−1/2(1 + c′)−1/2, xj

k(1− bj)
−1/2(1 + c′)−1/2〉B ,

and belongs to Λ. Moreover, it can be shown that b1, b2 6 c (see page 78 of [16]).
To show that {λ}λ∈Λ is an approximate unit of Be (and so also of B) it suf-

fices to show that ‖b− bλ‖ → 0, for all b ∈ B+
e with ‖b‖ < 1. From the proof of

Theorem 3.1.1 of [16] we know λ 7→ ‖b− bλ‖ is decreasing, so it suffices to show
that, given ε > 0, there is λ ∈ Λ such that ‖b − bλ‖ < ε. To this end, fix ε > 0
and consider the right Hilbert Be-module obtained as the direct sum of all the
right Be-Hilbert modules Xt, M :=

⊕
t∈G

Xt, which is full by (7R). From Lemma 7.2

of [11] we know there exist ξ1, . . . , ξn ∈ M such that
∥∥∥b− b

n
∑

k=1
〈ξk, ξk〉

∥∥∥ < ε and∥∥∥ n
∑

k=1
〈ξk, ξk〉

∥∥∥ < 1. Since
n
∑

k=1
〈ξk, ξk〉 lies in the closure of Λ, there exists λ ∈ Λ such

that ‖b− bλ‖ < ε.
As for the ∗-algebra structure of Mt(B), note that the product and involu-

tion are defined, because given M, N ∈ Mt(B) we have Mi,k Nk,j ∈ Btitj
−1 and

Mi,j
∗ ∈ Btitj

−1
∗ = Btjti

−1 . The routine algebraic verifications needed to see that

Mt(B) is a ∗-algebra are left to the reader.
In order to define a C∗-norm on Mt(B), take a representation T : B → B(H)

such that T|Be is faithful (and so an isometry). Then the restriction of T to each
fiber is an isometry and we have a ∗-representation Tt : Mt(B) → Mn(B(H)) ∼=
B(Hn), given by Tt(M)i,j = TMi,j . Observe that Mt(B) is ‖ · ‖∞-complete and
that Tt is an isometry when we consider on its domain and range the supremum
norm. Thus Tt(Mt(B)) is a C∗-subalgebra of Mn(B(H)) and its C∗-norm is equiv-
alent to ‖ · ‖∞. Hence Mt(B) is a C∗-algebra and its C∗-norm is equivalent to the
supremum norm.
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To prove claim (iii) we start by noticing that∥∥∥ n

∑
i=1
〈xi, yi〉B

∥∥∥2
=
∥∥∥ n

∑
i,j=1
〈xi〈xj, yj〉B , yi〉B

∥∥∥ =
∥∥∥ n

∑
i,j=1
〈A〈xi, xj〉yj, yi〉B

∥∥∥
and that the last term looks like the norm of a matrix multiplication. Given r :=
(r1, . . . , rn) ∈ Gn, consider the sum of right Hilbert Be-modules Xr := Xr1 ⊕
· · · ⊕ Xrn . Writing the elements of Xr as column matrices, matrix multiplication
gives an action of Mr−1(A) on Xr by adjointable operators. Moreover, the formula
Mr−1 (A)〈η, ζ〉 := (A〈ηi, ζ j〉)n

i,j=1 defines a Mr−1(A)-valued inner product making
Xr a Mr−1(A)-Be Hilbert bimodule (not full in general). We should warn the
reader that we gave no justification of the positivity of the left inner product of
Xr. This actually follows from the positivity of the right inner product because,
according to [2], this implies Xr is a positive C∗-tring, so the left inner product
must also be positive. Despite the previous comment, we give next a direct proof
of this fact, for the convenience of the reader. Note that I := span{Mr−1 (A)〈η, ζ〉 :
η, ζ ∈ Xr−1} is a ∗-ideal of Mr−1(A) and that VI 19.11 of [10] implies it has a
unique C∗-norm (see also Corollary 3.8 of [2] for a complete argumentation). If φ :
Mr−1(A)→ B(Xr) is the homomorphism corresponding to the action of Mr−1(A)
on Xr by adjointable operators, its restriction φ|I : I → K(Xr) is injective, because
for every a ∈ I the condition φ(a)ξ = 0, ∀ ξ ∈ Xr, implies aa∗ = 0. Then the
closure of I in Mr−1(A) is isomorphic, as a C∗-algebra, to the closure of φ(I)
in K(Xr). Finally note that φ(Mr−1 (A)〈η, η〉) is the generalized compact operator
ζ 7→ η〈η, ζ〉Be , which is positive. So Mr−1 (A)〈η, η〉 is positive in Mr−1(A).

The discussion above implies that

(2.14) ‖(A〈xi, xj〉)n
i,j=1‖ = ‖(x1, . . . , xn)

t‖2 =
∥∥∥ n

∑
i=1
〈xi, xi〉B

∥∥∥.

On the other hand, if rt := (r1t, . . . , rnt), so Xrt = Xr1t ⊕ · · · ⊕ Xrnt, ma-
trix multiplication gives a representation ϕ : Mr−1(A) → B(Xrt) and, if x =
(x1, . . . , xn)t ∈ Xr and y = (y1, . . . , yn)t ∈ Xrt:

(2.15)
∥∥∥ n

∑
i=1
〈xi, yi〉B

∥∥∥2
= ‖〈ϕ(Mr−1 (A)〈x, x〉)y, y〉Be‖ 6 ‖y‖2‖(A〈xi, xj〉)n

i,j=1‖.

Finally, since ‖y‖2 =
∥∥∥ ∑

i=1
〈yi, yi〉B

∥∥∥, (2.13) follows from (2.14) and (2.15).

REMARK 2.9. Given a Fell bundle B over G, consider the complex vector
space kc(B) formed by all the functions k : G × G → B with compact support
and such that k(r, s) ∈ Brs−1 , ∀r, s ∈ G. The product and involution we consider
on kc(B) are k1 ∗ k2(r, s) :=

∫
G

k1(r, t)k2(t, s)dt and k∗(r, s) := k(s, r)∗. As shown

in [1], kc(B) is a ∗-algebra, and has a C∗-completion k(B) (which in fact is equal
to C∗r (B) oδ G, where δ is the dual coaction of G on C∗r (B)). Note that, given
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t = (t1, . . . , tn) ∈ Gn, we can think of every element of Mt as a function M :
G× G → B supported in {t1, . . . , tn}2 and such that M(r−1s) ∈ Br−1s, ∀r, s ∈ G.
Then we have a natural inclusion of ∗-algebras Mt ↪→ kc(B), given by M 7→ kM,
where kM(r, s) := M(r−1, s−1), ∀r, s ∈ G. This is an alternative way of proving
that Mt has a C∗-algebra structure. Besides it follows that, when G is discrete, we
have C∗r (B)oδ G = lim−→

t
Mt.

2.4. MORPHISMS OF EQUIVALENCE BUNDLES. In order to define a map between
the equivalence bundles X and Y that takes into account the equivalence bundle
structure, it is convenient to think of X and Y as bundles of C∗-trings. Suppose
X and Y are an A-B and a C-D-equivalence bundle, respectively (all of them
bundles over G).

DEFINITION 2.10. We say that ρ : X → Y is a morphism of equivalence bundles
if it is a continuous map such that:

(i) ρ(Xt) ⊂ Yt, and the restriction of ρ to Xt is linear, for all t ∈ G;
(ii) ρ(x〈y, z〉B) = ρ(x)〈ρ(y), ρ(z)〉D , for all x, y, z ∈ X .

It is easy to check that equivalence bundles and their morphisms form a
category. We denote this category by E .

We have a “bundle version” of Proposition 3.1 in [1].

THEOREM 2.11. Let X and Y beA-B and C-D-equivalence bundles, respectively.
Assume ρ : X → Y is a morphism of equivalence bundles. Then

(i) ‖ρ(x)‖ 6 ‖x‖, for all x ∈ X .
(ii) There are unique morphisms of Fell bundles over G, denoted ρl : A → C and

ρr : B → D, such that for all x, y ∈ X we have:

ρl(A〈x, y〉) = C〈ρ(x), ρ(y)〉 and ρr(〈x, y〉B) = 〈ρ(x), ρ(y)〉D .

(iii) ρl(a)ρ(x) = ρ(ax) and ρ(xb) = ρ(x)ρr(b), for all a ∈ A, x ∈ X , and b ∈ B.
(iv) In case ρ is bijective, it is an isomorphism of equivalence bundles over G, ρr and

ρl are isomorphisms, (ρr)−1 = (ρ−1)r and (ρl)−1 = (ρ−1)l.

Proof. Take t ∈ G and consider Xt as a C∗-tring with the ternary operation
(x, y, z) = x〈y, z〉B . Then µt : Xt → Yt such that x 7→ ρ(x), is a homomorphism
of C∗-trings and Proposition 3.1 of [1] implies ‖ρ(x)‖ 6 ‖x‖. Moreover, if It :=
span 〈Xt, Xt〉B and Jt := span 〈Xt, Xt〉D , the above cited proposition implies there
exists a unique ∗-homomorphism µr

t : It → Jt sending 〈x, y〉B to 〈ρ(x), ρ(y)〉D .
Set B0

t := span{〈Xr, Xrt〉B : r ∈ G}. We claim that there exists a unique
linear contraction νt : B0

t → Dt such that νt(〈x, y〉B) = 〈ρ(x), ρ(y)〉D . Take b =
n
∑

j=1
〈xj, yj〉B ∈ B0

t and set d :=
n
∑

j=1
〈ρ(xj), ρ(yj)〉D . It suffices to show that ‖d‖ 6
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‖b‖, which follows from

‖d‖2 = ‖〈d, d〉D‖ =
∥∥∥ n

∑
j,k=1
〈ρ(xk〈xj, yj〉B), ρ(yk)〉D

∥∥∥ = ‖µr
t(b
∗b)‖ 6 ‖b‖2.

Then νt has a unique extension to a linear contraction ρr
t : Bt → Dt. Let

ρ : B → D be such that ρ|Bt = ρr
t . It is readily checked that, given b ∈ B0

s
and c ∈ B0

t , we have ρr(bc) = νst(bc) = νs(b)νt(c) = ρr(b)ρr(c) and ρr(b∗) =
νs−1(b∗) = νs(b)∗ = ρr(b)∗, from where it follows that ρr is multiplicative and
∗-preserving.

We use II 13.16 of [10] to show that ρr is continuous. Given f , g ∈ Cc(X )
and t ∈ G, let [ f , g, t] : G → B be defined as [ f , g, t](r) = 〈 f (t), g(tr)〉B . Then
ΓXB := {[ f , g, t] : f , g ∈ Cc(X ), t ∈ G} satisfies:

(i) Bs = span {u(s) : u ∈ ΓB} for all s ∈ G (by Lemma 2.7);
(ii) ρr ◦ f ∈ ΓYD , for all f ∈ ΓXB .

Hence ρr is continuous.
From the last two paragraphs it follows that ρr is a morphism of Fell bundles

over G. In order to prove the existence of ρl define ρ̃ : X̃ → Ỹ as ρ̃ = ρ (recall
that, as topological spaces, X̃ = X ). Then ρl is nothing but ρ̃ r. We leave to the
reader the routine verification of the claims in (iii).

Regarding (iv), if ρ is injective then each ρ|Xt is an injective homomorphism
of C∗-trings and thus an isometry. Hence, by II 13.17 of [10], ρ−1 is continuous.
The rest of the proof, which follows from the remark below, is left to the reader.

REMARK 2.12. As a result of the second part of Theorem 2.11 we get two

functors E → F : the left functor, given by (X ρ→ Y) 7−→ (A ρl

→ C), and the right

functor, given by (X ρ→ Y) 7−→ (B ρr

→ D).

3. FELL BUNDLES ASSOCIATED TO HILBERT BUNDLES

3.1. THE LINKING BUNDLE. Each of the equivalence bundles presented in our
motivating examples was constructed inside an ambient Fell bundle. Although
this will turn out to be the general situation, a priori we do not have a Fell bundle
that contains a given equivalence bundle. The first purpose of this section is
precisely to show that any equivalence bundle can be included in a certain Fell
bundle, the so called linking Fell bundle, provided by Theorem 3.2 below. To this
end we follow the idea used in Proposition 4.5 of [1] to define the linking partial
action of two Morita equivalent partial actions (see Example 2.2.2).

The next result will help us to prove the continuity of the operations to be
defined along the construction of the linking bundle.

PROPOSITION 3.1. Let U , V andW be (real or complex) Banach bundles over the
LCH spaces X, Y and Z, respectively. Assume Φ : U × V → W is a function for which
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there exist a continuous map f : X × Y → Z, a constant k > 0 and sets of sections
ΓQ ⊂ C(Q) for Q ∈ {U ,V ,W} such that:

(i) Φ(Ux×Vy) ⊂W f (x,y) and Ux×Vy →W f (x,y), (u, v) 7→ Φ(u, v), isR-bilinear,
for all (x, y) ∈ X×Y;

(ii) ‖Φ(u, v)‖ 6 k‖u‖‖v‖, for all u ∈ U and v ∈ V ;
(iii) for all x ∈ X, {ξ(x) : ξ ∈ ΓU} is dense in Ux and analogous conditions hold for
V andW ;

(iv) for all ξ ∈ ΓU , η ∈ ΓV and ζ ∈ ΓW the function

X×Y → R, (x, y) 7→ ‖Φ(ξ(x), η(y))− ζ( f (x, y))‖,

is continuous.
Then Φ is continuous.

Proof. We start by observing that the inequality

(3.1) ‖Φ(u1, v1)−Φ(u2, v2)‖ 6 k(‖u1‖+ ‖v2‖)(‖u1 − u2‖+ ‖v1 − v2‖)

holds for all u1, u2 ∈ Ux, v1, v2 ∈ Vy, x ∈ X and y ∈ Y.
Let us show that given a converging net in U × V , (uλ, vλ) → (u, v), it fol-

lows that Φ(uλ, vλ) → Φ(u, v). Suppose uλ ∈ Uxλ
, vλ ∈ Uyλ

, u ∈ Ux and v ∈ Vy.
Obviously, Φ(uλ, vλ) ∈ Vf (xλ ,yλ)

and f (xλ, yλ) → f (x, y). Given ε > 0, choose
δ ∈ (0, ε) such that k(‖u‖+ ‖v‖+ 2δ)2δ < ε. Then use condition (iii) to find ξ ∈
ΓU and η ∈ ΓV such that ‖u− ξ(x)‖ < δ and ‖v− η(y)‖ < δ. Then equation (3.1)
implies ‖Φ(ξ(x), η(y))−Φ(u, v)‖ < ε. A direct continuity argument implies that
there exists λ0 ∈ Λ such that ‖uλ − ξ(xλ)‖ < δ and ‖vλ − ξ(yλ)‖ < δ, for all
λ > λ0. Using inequality (3.1) again we get ‖Φ(ξ(xλ), η(yλ))− Φ(uλ, vλ)‖ < ε,
for all λ > λ0. In case Φ(ξ(xλ), η(yλ)) → Φ(ξ(x), η(y)), II 13.12 of [10] implies
that Φ(uλ, vλ)→ Φ(u, v).

Now we show Φ(ξ(xλ), η(yλ)) → Φ(ξ(x), η(y)). Fix ε > 0, condition (iii)
implies the existence of ζ ∈ ΓW such that ‖Φ(ξ(x), η(y))− ζ( f (x, y))‖ < ε. Then
there exists λ0 such that ‖Φ(ξ(xλ), η(yλ))− ζ( f (xλ, yλ))‖ < ε for all λ > λ0. It is
clear that ζ( f (xλ, yλ))→ ζ( f (x, y)), thus II 13.12 of [10] implies Φ(ξ(xλ), η(yλ))→
Φ(ξ(x), η(y)).

THEOREM 3.2. Given an A-B-equivalence bundle, X , there is a unique Fell bun-
dle L(X ) = {Lt}t∈G such that:

(i) for all t ∈ G, Lt =

(
At Xt

X̃t−1 Bt

)
with entrywise vector space operations;

(ii) product and involution are given by

(
a x
ỹ b

)(
c u
ṽ d

)
=

(
ac + A〈x, v〉 au + xd

c̃∗y + ṽb∗ 〈y, u〉B + bd

)
and

(
a x
ỹ b

)∗
=

(
a∗ y
x̃ b∗

)
;
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(iii) given ξ ∈ Cc(A), η ∈ Cc(B) and f , g ∈ Cc(X ) the function(
ξ f
g̃ η

)
: G → L(X ), t 7→

(
ξ(t) f (t)

g̃(t−1) η(t)

)
is a continuous section.

Proof. All the necessary algebraic verifications follow from Lemma 2.7, and
will be ommited. To define a C∗-norm on L(X ) and to (automatically) show
u∗u > 0 in Le, for all u ∈ L(X ), we will provide a representation of L(X ). We
proceed as follows. First consider the Hilbert Be-module direct sums:

`2(B) :=
⊕
t∈G

Bt and `2(X ) :=
⊕
t∈G

Xt.

Given xr ∈ Xr and a section ξ ∈ `2(B), define the section Ωxr ξ : G → X by
Ωxr ξ(s) := xrξ(r−1s). Note that xrξ(r−1s) ∈ XrBr−1s ⊆ Xs, as needed. Besides,

〈Ωxr ξ, Ωxr ξ〉`2(X ) = ∑
s
〈Ωxr ξ(s), Ωxr ξ(s)〉B = ∑

s
〈xrξ(r−1s), xrξ(r−1s)〉B

= ∑
s

ξ(r−1s)∗〈xr, xr〉Bξ(r−1s) 6 ‖xr‖2 〈ξ, ξ〉`2(B).

Therefore there exists a unique bounded operator Ωxr : `2(B) → `2(X ), ξ 7→
Ωxr ξ, which is easily seen to be adjointable with adjoint given by:

Ω∗xr η(t) = 〈xr, η(rt)〉B , ∀η ∈ `2(X ), t ∈ G.

In the particular case X = B, for each br ∈ B we have an adjointable map
Λbr ∈ B(`2(B)), such that Λbr ξ(s) = brξ(r−1s), ∀ξ ∈ `2(B), s ∈ G (note that
Λ so defined is nothing but the left regular representation of B as a Fell bun-
dle over the group G with the discrete topology). Similarly, we also have a map
Λ′ : A → B(`2(X )), such that Λ′ar η(s) = arη(r−1s). Now it is easy to check that
the following relations hold:

Ωax = Λ′aΩx, and Ωxb = ΩxΛb;

Ω∗xΩy = Λ〈x,y〉B ∈ B(`2(B)), ∀x, y ∈ X ;

ΩxΩ∗y = Λ′
A〈x,y〉 ∈ B(`2(X )), ∀x, y ∈ X .

Define φ : L(X )→ C :=
(

B(`2(X )) B(`2(B), `2(X ))
B(`2(X ), `2(B)) B(`2(B))

)
by

φ

(
a x
ỹ b

)
=

(
Λ′a Ωx
Ω∗y Λb

)
.

Then φ is multiplicative, preserves adjoints and is linear in each fiber of
L(X ). Moreover, φ|Le is a faithful homomorphism into the C∗-algebra C. Thus if
we define ‖`‖ := ‖φ(`)‖C, we get a C∗-norm on L(X ). Of course this C∗-norm
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is equivalent to the norm ‖ · ‖∞, defined as ‖`‖∞ := max{‖a‖, ‖x‖, ‖ỹ‖, ‖b‖} for

` =

(
a x
ỹ b

)
.

To endow L(X ) with a bundle topology, note that

Γ :=
{(ξ f

g̃ η

)
: f , g ∈ Cc(X ), ξ ∈ Cc(A), η ∈ Cc(B)

}
is a subspace of sections such that {u(t) : u ∈ Γ} = Lt, for all t ∈ G (recall the

definition of
(

ξ f
g̃ η

)
made in part (iii) of the statement of the theorem). More-

over, for every u ∈ Γ the entries of t 7→ u(t)∗u(t) ∈ Le are continuous functions.
Then t 7→ ‖u(t)‖ = ‖u(t)∗u(t)‖1/2 is continuous, so there is a unique Banach
bundle structure on L(X ) such that Γ ⊂ Cc(L(X )).

Using similar arguments it can be shown that, for u, v, w ∈ Γ, the functions
G × G → R : (r, s) 7→ ‖u(r)v(s)− w(rs)‖ and G × G → R : (r, s) 7→ ‖u(s)∗ −
v(s−1)‖ are continuous. For example, note that

(r, s) 7→ (u(r)v(s)− w(rs))∗(u(r)v(s)− w(rs))

has continuous entries. Then Proposition 3.1 implies the involution and multipli-
cation of L(X ) are continuous.

It can be shown that the continuous sections described in condition (iii) of
the previous theorem are all the continuous sections of compact support of L(X ).

REMARK 3.3. We can construct the direct sum A ⊕ X as the Banach sub-
bundle {(a x

0 0

)
: a ∈ At, x ∈ Xt, t ∈ G

}
⊂ L(X ).

Then A⊕X becomes an A-L(X )-equivalence bundle. Moreover, in a simi-
lar way we can define X ⊕B and make it into a L(X )-B-equivalence bundle.

As we expected, linking partial actions give rise to linking bundles.

PROPOSITION 3.4. Let X be an equivalence A-B-bimodule and γ a partial action
on X (see Section 2.2.2). If Xγ is the Fell bundle associated to γ, then L(Xγ) is isomor-
phic to BL(γ).

Proof. Define β := γr as in Section 2.2.2, and let Y := Xγ ⊕Bβ and

Z :=
{(0 x

0 b

)
δt : x ∈ Xt, b ∈ Bt, t ∈ G

}
⊂ BL(γ).

Then Y is a L(Xγ)-Bβ-equivalence bundle and Z a BL(γ)-Bβ-equivalence bundle.
Since the map

ρ : Y → Z given by ρ

(
0 xδt
0 bδt

)
=

(
0 x
0 b

)
δt
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satisfies the hypotheses of Theorem 2.11(iv), ρl : L(X ) → BL(γ) is an isomor-
phism of Fell bundles.

THEOREM 3.5. Let ρ : X → Y be a morphism from the A-B-equivalence bundle
X to the C-D-equivalence bundle Y . Let L(ρ) : L(X ) → L(Y) be the map given by
(recall ρl and ρr were defined in (2.11)):

L(ρ)
(

a x
ỹ b

)
:=

(
ρl(a) ρ(x)
ρ̃(y) ρr(b)

)
, ∀

(
a x
ỹ b

)
∈ L(X ).

Then L(ρ) is a morphism of Fell bundles, and (X ρ→ Y) 7−→ (L(X )
L(ρ)−→ L(Y)) is a

functor from the category E of equivalence bundles to the category F of Fell bundles.

Proof. We just need to verify that the map L(ρ) defined in the statement is
a morphism of Fell bundles over G. The routine algebraic verifications are left to
the reader. Now note that the map L(X )e → L(Y)e, S 7→ L(ρ)S, is contractive
because it is a homomorphism of C∗-algebras. Then, for all S ∈ L(X ), we have

‖L(ρ)S‖ = ‖L(ρ)[S∗S]‖1/2 6 ‖S∗S‖1/2 = ‖S‖.

Now observe that given
(

ξ f
g̃ η

)
∈ Cc(L(X )) as in Theorem 3.2, we have

(3.2) L(ρ) ◦
(

ξ f
g̃ η

)
=

(
ρl ◦ ξ ρ ◦ f
ρ̃ ◦ g ρr ◦ η

)
∈ Cc(L(Y)).

Using II 13.16 of [10] we conclude L(ρ) is continuous, so it is a morphism of Fell
bundles over G.

3.2. THE BUNDLE OF GENERALIZED COMPACT OPERATORS. Assume X is a right
Hilbert B-bundle. We will construct a Fell bundle K(X ) in such a way that X
is a K(X )-B-equivalence bundle. In view of Theorem 2.11, this Fell bundle is
uniquely determined by the right Hilbert bundle structure of X .

DEFINITION 3.6. An adjointable operator of order t ∈ G of X is a continu-
ous map S : X → X with the following properties:

(i) there exists c ∈ R such that ‖Sx‖ 6 c‖x‖, for all x ∈ X ;
(ii) S(Xr) ⊂ Xtr, for all r ∈ G;

(iii) there exists S∗ : X → X such that 〈Sx, y〉B = 〈x, S∗y〉B , ∀x, y ∈ X .
The set of adjointable operators of order t will be denoted Bt(X ).

If S1, S2 ∈ Bt(X ) and α ∈ C, is clear that αS1 + S2 is also an adjointable
operator of order t. We define a norm on Bt(X ) by ‖S‖ := sup{‖Sx‖ : ‖x‖ 6 1}.
Then we have an isometric map Bt(X ) → ⊕

r∈G
B(Xr, Xtr), given by S 7→ (Sr)r∈G,

where Sr : Xr → Xtr is such that Sr(x) = S(x), ∀x ∈ Xr. Since for all x ∈ Xr
and y ∈ Xtr we have 〈Sx, y〉B = 〈Srx, y〉B = 〈x, S∗r y〉B , we see that the map
S∗ is determined by S, and (S∗)r = (Sr)∗, ∀r ∈ G. We call S∗ the adjoint of S.
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Note that, using Proposition 3.1 and Definition 3.6, it can be shown that S∗ is
continuous. Then S∗ is an adjointable map of order t−1. Conversely, for every
(Tr) ∈

⊕
r∈G

B(Xr, Xtr) there exists a unique S : X → X such that Sr = Tr, ∀r ∈ G.

However, this S does not need to be a continuous map. Despite this fact we have
the following lemma.

LEMMA 3.7. Bt(X ) is a Banach space.

Proof. Let (S(n)) be a Cauchy sequence in Bt(X ). Then (S(n)
r )r∈G is a Cauchy

sequence in the complete space
⊕

r∈G
B(Xr, Xtr), so it has a limit (Sr) ∈ B(Xr, Xtr).

Let S : X → X be given by Sx := Srx, ∀x ∈ Xr, r ∈ G. It is enough to show
that S is continuous, what we do next. Take a net {xλ}λ∈Λ ⊂ X converging to
x0 ∈ X . Suppose xλ ∈ Xrλ

and x0 ∈ Xr0 and fix ε > 0. We can find n ∈ N
such that ‖Sx − Snx‖ < ε, for all x ∈ X with ‖x‖ 6 1. Since S(n) is continuous,
S(n)xλ →λ S(n)x0. Hence II 13.12 of [10] implies Sxλ → Sx0.

COROLLARY 3.8. Let Gd be the group G endowed with the discrete topology, and
let B(X ) := (Bt(X ))t∈Gd . Then B(X ) is a Fell bundle over Gd, with the product given
by the composition of maps.

Proof. Observe that if S1 is of order t1 and S2 is of order t2, then S1S2 is of
order t1t2. On the other hand, if S ∈ Bt(X ) corresponds to (Sr) ∈

⊕
r∈G

B(Xr, Xtr),

then S∗S corresponds to (S∗r Sr) ∈
⊕

r∈G
B(Xr). Since S∗r Sr is a positive element of

B(Xr), we have S∗r Sr = T∗r Tr, for some Tr ∈ B(Xr), ∀r ∈ G. Thus S∗S = T∗T,
where T ∈ Be(X ) corresponds to the element (Tr) ∈

⊕
r∈G

B(Xr). Therefore S∗S

is a positive element of the C∗-algebra Be(X ). The remaining verifications are
routine and we ommit them.

THEOREM 3.9. Let B be a Fell bundle over the group G. Given a right Hilbert
B-bundle X there exists a unique Fell bundle over G, which we denote by K(X ), such
that:

(i) for all t ∈ G the fiber K(X )t is, as a Banach space, the closure in Bt(X ) of

span{[x, y] : x ∈ Xts, y ∈ Xs, s ∈ G}

where [x, y] : X → X is defined to be [x, y]z := x〈y, z〉B ;
(ii) given f , g ∈ Cc(X ) and s ∈ G, the function [ f , g, s] : G → K(X ) given by

[ f , g, s](t) = [ f (ts), g(s)], is a continuous section of K(X ).

Proof. Note first that, if x ∈ Xts and y ∈ Xs, then [x, y]Xr = x〈y, Xr〉B ⊆
XtsBs−1r ⊆ Xtr, so [x, y] ∈ Bt(X ). Since [x, y][z, w] = [x〈y, z〉B , w] and [x, y]∗ =
[y, x], K(X ) is closed under multiplication and involution. We want to define
a topology on K(X ) such that K(X ) is a Banach bundle with it, and the space
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Γ := span{[ f , g, s] : f , g ∈ Cc(X ), s ∈ G} is contained in the subspace of contin-
uous sections of that bundle. By II13.18 of [10] there exists at most one such topol-
ogy and, to prove its existence we must show that given n∈N, f1, g1, . . . , fn, gn∈
Cc(X ), and s1, . . . , sn∈G, the function h : G→R, given by h(t)=

∥∥∥ n
∑

j=1
[ f j, gj, sj](t)

∥∥∥,

is continuous. Now if k(t) :=
n
∑

j=1
[ f j, gj, sj](t), we have h(t) = ‖k(t)k(t)∗‖1/2, so it

suffices to show that the map G → Be(X ) t 7→ k(t)k(t)∗, is continuous. In fact we
just need to show that t 7→ [k(t)(gj(sj)), f j(tsj)] is continuous (for all j = 1, . . . , n)
because

k(t)k(t)∗ =
n

∑
j=1

[k(t)(gj(sj)), f j(tsj)].

Fix j = 1, . . . , n and let u, v : G→X be defined as u(t) := k(t)(gj(sj)) and v(t) :=
f j(tsj). Then u and v are continuous and, for all z∈X with ‖z‖61, we have

‖u(t)〈v(t), z〉B − u(r)〈v(r), z〉B‖2

= ‖〈u(t)〈v(t), z〉B − u(r)〈v(r), z〉B , u(t)〈v(t), z〉B − u(r)〈v(r), z〉B〉B‖
6 ‖〈z, v(t)〉B〈v(t)〈u(t), u(t)〉B − v(r)〈u(r), u(t)〉B , z〉B‖

+ ‖〈z, v(r)〉B〈v(t)〈u(t), u(r)〉B − v(r)〈u(r), u(r)〉B〉B‖
6 ‖v(t)‖‖v(t)〈u(t), u(t)〉B − v(r)〈u(r), u(t)〉B‖

+ ‖v(r)‖‖v(t)〈u(t), u(r)〉B − v(r)〈u(r), u(r)〉B‖.

The right member of the above inequality is the sum of two terms that do not
depend on z and have limit 0 when r → t. Hence t 7→ [k(t)(g(sj)), f j(tsj)] is
continuous.

We still have to show that multiplication and involution are continuous,
for which we use Proposition 3.1. As for the multiplication we need to show
that, given u, v, w ∈ Γ, the function G× G → R, (r, s) 7→ ‖u(r)v(s)− w(rs)‖, is
continuous. It is enough to prove that (r, s) 7→ (u(r)v(s) − w(rs))∗(u(r)v(s) −
w(rs)) is a continuous function from G × G to K(X )e, and this can be done by
using the same arguments we have used in the previous paragraphs.

To prove that involution is continuous, let V be the Banach bundle over {e}
with fiber C, and define Φ : K(X ) × V → K(X ) such that Φ(b, λ) = λb∗. The
map Φ is continuous because of Proposition 3.1. Then the involution K(X ) →
K(X ), b 7→ Φ(b, 1), also is continuous.

COROLLARY 3.10. Every right Hilbert B-bundle, X , is a K(X )-B-equivalence
bundle with the action K(X ) × X → X given by (b, x) 7→ b(x), and the left inner
product X ×X → K(X ) given by (x, y) 7→ [x, y].

The proof is a straightforward consequence of Theorem 3.9.
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COROLLARY 3.11. If X is an A-B-equivalence bundle, then there exists a unique
isomorphism of Fell bundles π : A → K(X ) such that π(A〈x, y〉) = [x, y].

Proof. Let Y be the bundle X considered as a K(X )-B-equivalence bimod-
ule and let id : X → Y be the identity. Then, by Theorem 2.11, π := idl : K(X )→
A is the isomorphism we are looking for.

REMARK 3.12. With the notation of the previous Corollary, K(X ⊕ B) is
isomorphic to L(X ) because X ⊕B is a L(X )-B-equivalence bundle.

4. MORITA–RIEFFEL EQUIVALENCE OF CROSS-SECTIONAL C∗-ALGEBRAS

It is well known (see [7]) that equivalent actions on C∗-algebras have Morita–
Rieffel equivalent crossed products (full and reduced), and the same can be said
about equivalent partial actions ([1] and [3]). We will show in this section that,
more generally, anyA-B-equivalence bundle X gives rise to a C∗(A)-C∗(B)- and
also a C∗r (A)-C∗r (B)-equivalence bimodule. We consider first the case of the full
C∗-algebras, for which we will construct an equivalence bimodule contained in
C∗(L(X )). We will make use of the fact that A and B are hereditary in L(X ) in
the following sense.

DEFINITION 4.1. Given a Fell bundle C and a Fell subbundleA ⊂ C, we say
A is hereditary (in C) if ACA ⊂ A.

The condition AeCAe ⊂ Amay look weaker thanACA ⊂ A, but in fact they
are equivalent. Indeed, suppose the former condition holds and take a, c ∈ A
and b ∈ C. Let {dλ}λ∈Λ ⊂ Ae be an approximate unit of Ae and assume abc ∈ Ct.
Then the net {adλbdλc}λ∈Λ converges to abc and is contained in At. This implies
abc ∈ A because At is closed in Ct.

We may obtain hereditary subbundles by considering partial actions and
restriction of them to ideals.

PROPOSITION 4.2. Let β = ({Bt}t∈G, {βt}t∈G) be a partial action of the group
G on the C∗-algebra B. Then for every ideal A of B there exists a unique partial action
of G on A, β|A := ({At}t∈G, {αt}t∈G), such that: At−1 = A ∩ βt−1(Bt ∩ A) and
αt(b) = βt(b), for all t ∈ G and b ∈ At−1 . Moreover, Bβ|A is hereditary in Bβ.

Proof. Note that βt(At−1) = βt(Bt−1 ∩ A ∩ βt−1(Bt ∩ A)) = βt(Bt−1 ∩ A) ∩
A = At, so there exists a unique isomorphism of C∗-algebras αt : At−1 → At such
that αt(a) = βt(a). Clearly, αe is the identity on A. If a ∈ At−1 and αt(a) ∈ As−1 ,
then

a ∈ βt−1(Bt ∩ βs−1(Bs ∩ A)) ⊂ βt−1(Bt ∩ Bs−1) ⊂ Bt−1 ∩ Bt−1s−1 .

This implies βst(a) = βs(βt(a)) = βs(αt(a)) ∈ βs(βs−1(Bs ∩ A)) ⊂ A. Putting all
this together we conclude that a ∈ A ∩ βt−1s−1(Bst ∩ A) = At−1s−1 and αst(a) =
βst(a) = βs(βt(a)) = αs(αt(a)). Thus β|A is a set theoretic partial action.
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To show that β|A is a continuous partial action on A, it suffices to prove that
{At}t∈G is a continuous family. To see this fix t ∈ G and b ∈ At. It suffices to
find g ∈ C(G, A) such that g(t) = b and g(r) ∈ Ar, for all r ∈ G. The Cohen–
Hewitt theorem provides x, y ∈ A and z ∈ Bt−1 such that b = xβt(yz). Now pick
f ∈ C(G, B) such that f (r) ∈ Br (for all r ∈ G) and f (t−1) = z, what we can do
because {Br}r∈G is a continuous family. Then the function g : G → A defined as
g(r) = xβr(y f (r−1)) is continuous, g(t) = b and g(r) ∈ Ar for all r ∈ G.

To show Bβ|A is hereditary in Bβ fix a, c ∈ Ae and b ∈ Br and observe that

aδebδrcδe = aδe(bδrcδe) = aβr(βr−1(b)c)δr.

Clearly, aβr(βr−1(b)c) ∈ A ∩ βr(Br−1 ∩ A) = Ar, so aδebδrcδe ∈ Bβ|A .

THEOREM 4.3. If A is an hereditary Fell subbundle of B, then C∗(A) is the clo-
sure of L1(A) in C∗(B), and it is an hereditary subalgebra of C∗(B).

Proof. Let X be the Banach subbundle of B such that, for each t ∈ G, Xt =
span {ab : a ∈ Ar, b ∈ Br−1t, r ∈ G}. Now let C be the Banach subbundle of B
such that, for each t ∈ G, Ct = span {x∗y : x ∈ Xr, y ∈ Xrt, r ∈ G}. In fact C is
a Fell subbundle of B and CB ∪ BC ⊂ C; in other words C is an ideal of B. Then
we can think of L1(A) as a ∗-Banach subalgebra of L1(C) and of L1(C) as a closed
∗-ideal of L1(B).

Using Theorem 1.1 of [3] and Corollary 5.3 of [2] with E = X , we conclude
that C∗(A) is the closure of L1(A) in C∗(C). Let π : C∗(C)→ C∗(B) be the unique
∗-homomorphism extending the natural inclusion of L1(C) in L1(B). To show that
π is injective take a non-degenerate faithful representation ρ : C∗(C) → B(H).
In this situation we know from VI 19.11 of [10] that ρ|L1(C) can be extended in a
unique way to a representation defined on all of L1(B). Then there exists a unique
representation ρ : C∗(B) → B(H) such that ρ ◦ π( f ) = ρ( f ), for all f ∈ L1(C).
This implies that π is injective because ρ = ρ ◦ π. Putting all this together we
conclude that the maximal C∗-norm of L1(A) is the restriction of the maximal
C∗-norm of L1(B). The last assertion of the statement is clear.

COROLLARY 4.4. If X is an A-B-equivalence bundle, then C∗(A) and C∗(B)
are the closure of L1(A) and of L1(B) in C∗(L(X )), respectively.

For the proof just note that AeL(X )Ae ⊂ A and BeL(X )Be ⊂ B.
From now on we will think of the cross-sectional C∗-algebras C∗(A) and

C∗(B) as C∗-subalgebras of C∗(L(X )).

THEOREM 4.5. For every A-B-equivalence bundle, X , the closure of Cc(X ) in
C∗(L(X )), C∗(X ), is a C∗(A)-C∗(B)-equivalence bimodule with the bimodule struc-
ture inherited from C∗(L(X )).

Proof. Given f ∈ Cc(X ) and g ∈ Cc(B) we have f ∗ u ∈ Cc(X ) because
f ∗ u ∈ Cc(L(X )), f ∗ u(t) =

∫
G

f (r)u(r−1t)dr and u(r) f (r−1t) ∈ Xt, for all
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r, t ∈ G. Using the continuity of the product we see that C∗(X )C∗(B) ⊂ C∗(X ).
In a similar way we can show that C∗(X )∗C∗(X ) ⊂ C∗(B), so the right inner
product C∗(X ) × C∗(X ) → C∗(B), ( f , g) 7→ f ∗ ∗ g, is defined. Moreover, this
inner product is positive because f ∗ ∗ f is positive in C∗(L(X )).

To prove that C∗(X ) is a full Hilbert C∗(B)-module it suffices to prove that
every element of the form f ∗ ∗ g ( f , g ∈ Cc(B)) can be approximated, in the in-
ductive limit topology, by a sum of (right) inner products. Given b ∈ Be define
bg ∈ Cc(B) as [bg](r) := bg(r). Let {bλ}λ∈Λ be an approximate unit of Be as
the one given in Lemma 2.8. Then bλg → g and f ∗ ∗ (bλg) → f ∗ ∗ g in the
inductive limit topology. For every λ ∈ Λ, the function f ∗ ∗ (bλg) is a sum of
elements of the form f ∗ ∗ (〈x, x〉Bg), which we will prove are inner products.
Given x ∈ Xs, consider x f ∈ Cc(X ) given by (x f )(r) := x f (s−1r), and note that
f ∗ ∗ (〈x, x〉Bg) = 〈x f , xg〉C∗(B) because, for all t ∈ G,

f ∗ ∗ (〈x, x〉Bg)(t) =
∫
G

∆(r)−1〈x f (r−1), xg(r−1t)〉B dr

=
∫
G

〈x f (s−1r), xg(s−1rt)〉B dr = 〈x f , xg〉C∗(B)(t).

By symmetry all the claims concerning the C∗(A)-valued inner product
hold. Finally, the compatibility of the operations is immediate because all the
computations are performed within C∗(L(X )).

The construction of a C∗-algebra from a Fell bundle [10] motivates the fol-
lowing definition.

DEFINITION 4.6. The (full) cross-sectional Hilbert bimodule of the A-B-equi-
valence bundle X is the C∗(A)-C∗(B)-equivalence bimodule C∗(X ) of Theo-
rem 4.5.

It is important to recall that C∗(X ) is the closure of Cc(X ) in C∗(L(X )) and
that we regard C∗(A) and C∗(B) as C∗-subalgebras of C∗(L(X )). These repre-
sentations will be used without explicit mention in the rest of the text.

REMARK 4.7. The inductive limit topology of Cc(X ), τXilt , contains the topol-

ogy relative to τ
L(X )
ilt (see the universal property described in II 14.3 of [10]). Be-

sides, the topology of Cc(X ) relative to the norm topology of C∗(X ), τX∗ , is the
one relative to τ

L(X )
∗ . Since τ

L(X )
∗ ⊂ τ

L(X )
ilt , we have τX∗ ⊂ τXilt .

COROLLARY 4.8. If X is a right Hilbert B-bundle and we construct C∗(X ) con-
sidering X as a K(X )-B-equivalence bundle, then K(C∗(X )) is isomorphic to
C∗(K(X )).

Proof. By [17], if AXB is an A-B-equivalence bimodule then A is isomorphic
to K(XB). To get the desired result consider the bimodule C∗(K(X ))C∗(X )C∗(B).



EQUIVALENCE OF FELL BUNDLES OVER GROUPS 297

The notation adopted for the cross-sectional equivalence bimodule is justi-
fied by the following corollary of Theorem 4.5.

COROLLARY 4.9. If the Fell bundle B is regarded as a B-B-equivalence bundle
(Example 2.5) then the cross-sectional equivalence bimodule of B is the cross-sectional
C∗-algebra of B (regarded as an equivalence bimodule).

Proof. Suppose A := B, and denote by X the bundle B when regarding it
as anA-B-equivalence bimodule. Then C∗(B) is the cross-sectional C∗-algebra of
B and C∗(X ) is the cross-sectional equivalence bimodule of X = B.

We claim that the identity id : Cc(X ) → Cc(B) has a unique extension to
a unitary U : C∗(X ) → C∗(B). It suffices to show that, for all f , g ∈ Cc(B), the
element f ∗ ∗ g computed in C∗(L(X )) agrees with f ∗ ∗ g computed in C∗(B).
Recall that we may think of B and X as Banach subbundles of L(X ). To avoid
complicated notation we make the following identifications, for all b ∈ B and
x ∈ X ,

b =

(
0 0
0 b

)
∈ L(X ) and x =

(
0 x
0 0

)
∈ L(X ).

If we compute f ∗ ∗ g in C∗(L(X )) we obtain, for all t ∈ G,

f ∗ ∗ g(t) =
∫
G

∆(s)−1

(
0 0

f̃ (s−1) 0

)(
0 g(s−1t)
0 0

)
ds

=
∫
G

(
0 0
0 f (s)∗g(st)

)
ds =

∫
G

f (s)∗g(st)ds.

On the other hand, computing f ∗ ∗ g in C∗(B) we obtain

f ∗ ∗ g(t) =
∫
G

∆(s)−1 f (s−1)∗g(s−1t)ds =
∫
G

f (s)∗g(st)ds.

Hence the claim follows.

COROLLARY 4.10. If X is an A-B-equivalence bundle, then L(C∗(X )) is iso-
morphic to C∗(L(X )).

Proof. Let C∗(X ) ⊕ C∗(B) be considered as a Hilbert C∗(B)-module with
the inner product 〈x⊕ y, u⊕ v〉 = 〈x, u〉C∗(B) + y∗ ∗ v. We identify Cc(X )⊕Cc(B)
with Cc(X ⊕ B) in the natural way, and represent by M the closure of Cc(X ⊕
B) in C∗(L(X )). Let U : C∗(X ) ⊕ C∗(B) → M be the unitary extending the
identification Cc(X )⊕ Cc(B) = Cc(X ⊕B).

We claim that, as a Hilbert module, M is C∗(X ⊕ B). In fact, if we take
f ∈ Cc(X ⊕B) and compute f ∗ ∗ f using the product and involution of C∗(L(X ))
and of C∗(L(X ⊕ B)), we obtain the same element of C∗(B). Moreover, at the
level of Cc(X ⊕ B) and Cc(B), it does not matter whether we use C∗(L(X )) or
C∗(L(X ⊕ B)) to compute the right inner products and the action. Then M is
unitary equivalent, as a right Hilbert module, to C∗(X ⊕B).
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Finally, recall that X ⊕B is an L(X )-B-equivalence bimodule, thus we may
think of C∗(L(X )) as the algebra of generalized compact operators of C∗(X )⊕
C∗(B). Thus (up to canonical isomorphisms)

L(C∗(X )) = K(C∗(X )⊕ C∗(B)) = K(C∗(X ⊕B)) = C∗(L(X )).

REMARK 4.11. In the proof above we showed that C∗(X ⊕ B) can be re-
garded as the completion of Cc(X ⊕B) in C∗(L(X )). This representation of C∗(X
⊕B) will be used instead of the representation in C∗(L(X ⊕ B)). Similar consid-
erations apply for C∗(A⊕B).

4.1. INDUCTION OF IDEALS THROUGH CROSS-SECTIONAL HILBERT BIMODULES.
All the constructions we have carried out can be performed using reduced cross-
sectional C∗-algebras. In fact we can use other quotients of the full cross-sectional
C∗-algebra, as the ones defined in [4]. In fact we will give an alternative (and
equivalent) way of extending exotic crossed products to the realm of Fell bundles.

Suppose µ : F → C is a functor, from the category of Fell bundles to the
category of C∗-algebras, that associates to each Fell bundle B a quotient C∗µ(B)
of C∗(B), such that C∗r (B) is in turn a quotient of C∗µ(B), in such a way that the
collections of the corresponding quotient maps

qBµ : C∗(B)→ C∗µ(B) and pBµ : C∗µ(B)→ C∗r (B)

are natural transformations C∗
qµ→ µ

pµ→ C∗r satisfying pq = Λ, where Λ is the
regular representation. In other words, for every morphism φ : A → B the
following diagram is commutative:

(4.1) C∗(A)

ΛA

&&qAµ //

φ∗

��

C∗µ(A)
pAµ //

φµ

��

C∗r (A)

φr

��
C∗(B)

ΛB

88qBµ

// C∗µ(B)
pBµ

// C∗r (B).

For instance, the functors C∗ and C∗r given by taking the universal and the re-
duced cross-sectional algebras respectively, satisfy the property above. Following
[5], we call any such functor µ a crossed product functor, and we refer to C∗µ(B) as
the µ-crossed product of B. When only the functors C∗ and µ are involved, as well
as the natural transformation q, and the left square is commutative in the above
diagram, we say that µ a pseudo crossed product functor, and we refer to C∗µ(B) as
the µ-pseudo crossed product of B. Also following [5], µ is said to be an exotic
crossed product functor when it is neither the full crossed product functor C∗ nor
the reduced crossed product functor C∗r .
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If we define IBµ to be the kernel of qBµ , the assignment B 7→ IBµ is another
functor F → C , because the diagram above implies φ∗(IAµ ) ⊆ IBµ . Observe that
if A is a Fell subbundle of B such that C∗(A) ⊆ C∗(B) (e.g. A is an hereditary
subbundle of B, according to Theorem 4.3), then C∗µ(A) is a C∗-subalgebra of
C∗µ(B) if and only if IAµ = C∗(A) ∩ IBµ . We are interested in those functors which
satisfy the above properties for any hereditary subbundle A of B.

DEFINITION 4.12. A pseudo crossed product functor µ is said to have the
hereditary subbundle property if for every Fell bundle B and every hereditary
Fell subbundle A of B, it follows that IAµ = C∗(A) ∩ IBµ .

Of course the functor C∗ has the hereditary subbundle property. Since, ac-
cording to Proposition 3.2 of [1], C∗r (A) ⊆ C∗r (B) for every Fell subbundle A
of B, also the reduced crossed product functor C∗r has the hereditary subbundle
property.

PROPOSITION 4.13. Let µ be a pseudo crossed product functor with the hereditary
subbundle property, andX anA-B-equivalence bundle. Then C∗µ(X ) := qL(X )

µ (C∗(X ))

is a C∗µ(A)-C∗µ(B)-equivalence bimodule.

Proof. Recall from Section 2.1 that the image of a homomorphism of C∗-
trings is a C∗-tring. Then C∗µ(X ) is a C∗-subtring of C∗µ(L(X )). Besides, Theo-

rem 4.5 implies C∗µ(X ) is a qL(X )
µ (C∗(A))-qL(X )

µ (C∗(B))-equivalence bimodule.
Finally, since A and B are hereditary Fell subbundles of L(X ),

qL(X )
µ (C∗(A)) = C∗µ(A) and qL(X )

µ (C∗(B)) = C∗µ(B),

which ends the proof.

Crossed product functors give rise to new cross-sectional Hilbert modules.

DEFINITION 4.14. In the conditions and notation of Proposition 4.13, we say
that C∗µ(X ) is the µ-cross-sectional Hilbert bimodule ofX ; the map qXµ : C∗(X )→
C∗µ(X ) is the restriction of qL(X )

µ to C∗(X ), and the ideal IXµ (of C∗(X ) regarded
as a C∗-tring) is defined to be ker(qXµ ).

PROPOSITION 4.15. Let µ be a pseudo crossed product functor with the heredi-
tary subbundle property, and suppose X is an A-B-equivalence bundle. Then C∗(X )
induces IBµ to IAµ . Moreover, the submodule of C∗(X ) corresponding to these ideals ([17],
Theorem 3.22) is IXµ .

Proof. It suffices to show that IXµ = IAµ C∗(X ) = C∗(X )IBµ . We prove IXµ =

C∗(X )IBµ and leave the remaining identity to the reader.
We regard C∗(B) as a C∗-subalgebra of C∗(L(X )) (as we are allowed by

Theorem 4.3). Since IBµ =C∗(B)∩ IL(X )
µ , we have C∗(X )IBµ ⊂ IXµ and 〈IXµ , IXµ 〉C∗(B)
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is contained in IBµ . Since IXµ is closed we have

IXµ = IXµ span 〈IXµ , IXµ 〉C∗µ(B) ⊂ C∗(X )IBµ ⊂ IXµ .

One can guess that the µ-cross-sectional C∗-algebra of a Fell bundle, con-
sidered as a bimodule over itself, is the same as its µ-cross-sectional equivalence
bundle. This is precisely the case.

COROLLARY 4.16. Let B be a Fell bundle, and denote it X when regarded as a
B-B-equivalence bundle. If we identify C∗(X ) with C∗(B) as in Corollary 4.9, then
IBµ = IXµ , for every pseudo crossed product functor µ with the hereditary subbundle
property. In particular, C∗µ(X ) is C∗µ(B) regarded as an equivalence bimodule.

Proof. By Proposition 4.15, C∗(X )IBµ = IXµ . Then, considering C∗(X ) =

C∗(B), we get IXµ = C∗(B)IBµ = IBµ .

DEFINITION 4.17. Let X and Y be an A-B- and a C-D-equivalence bundles
respectively. We say that X is an equivalence subbundle of Y if:

(i) X is a Banach subbundle of Y , A is a Fell subbundle of C and B a Fell
subbundle of D;

(ii) the equivalence bundle structure of X agrees with that inherited from the
equivalence bundle structure of Y .
Besides, we say X is hereditary in Y if X 〈Y ,X 〉D ⊂ X (note this is equivalent to
the condition C〈X ,Y〉X ⊆ X ).

PROPOSITION 4.18. Let X and Y be an A-B- and a C-D-equivalence bundle,
respectively, such that X is an equivalence subbundle of Y . Then the following are equiv-
alent:

(i) X is hereditary in Y ;
(ii) L(X ) is an hereditary Fell subbundle of L(Y).

Besides, if µ is a pseudo crossed product functor with the hereditary subbundle property
and the conditions above are satisfied, then C∗(X ) is (isomorphic to) the closure of Cc(X )
in C∗(Y) and IXµ = C∗(X ) ∩ IYµ . In particular, C∗µ(X ) is isomorphic (as a C∗-tring) to
qYµ (C∗(X )).

Proof. Assume X is hereditary in Y . We can regard L(X ) as a Banach sub-
bundle of L(Y) because every continuous section of X (A,B) is a continuous
section of Y (C,D, respectively). Besides, the product and involution of L(X ) are
the ones inherited from L(Y) because they are defined in terms of the equivalence
bundle structure of X , which is inherited from Y . Then L(X ) is a Fell subbundle
of L(Y).

Now fix x ∈ L(X )L(Y)L(X ). Then

x1,1 ∈ ACA+ C〈X ,Y〉A+AC〈Y ,X 〉+ C〈XD,X 〉.
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Firstly, we claim that ACA ⊂ A. By Lemma 2.7, it suffices to prove that
C〈X ,X 〉CC〈X ,X 〉 ⊂ A, which is true because

C〈X ,X 〉CC〈X ,X 〉 = C〈X , CX 〉C〈X ,X 〉 ⊂ C〈C〈X ,Y〉X ,X 〉
= C〈X 〈Y ,X 〉D ,X 〉 ⊂ C〈X ,X 〉 ⊂ A.

Secondly, since the computations above also imply that C〈X ,Y〉C〈X ,X 〉 ⊂ A, an-
other invocation of Lemma 2.7 shows that C〈X ,Y〉A ⊂ A and that AC〈Y ,X 〉 ⊂
A. Finally, we can use again Lemma 2.7, which together with the identity X =
XA allows us to deduce that CX 〈XD,X 〉 ⊂ A, because XD〈X ,X 〉D ⊂ X .

Putting all together we conclude that x1,1 ∈ A. Using similar arguments it
can be shown that x1,2 ∈ X , x2,1 ∈ X̃ and x2,2 ∈ B. Thus L(X ) is hereditary in
L(Y).

Conversely, every continuous section of X (A,B) is a continuous section
of L(X ) and so one of L(Y). This implies that X (A,B) is a Banach subbundle
of Y (C,D, respectively). Also, observe that the equivalence bundle structure of
X is the one inherited from Y because it is defined in terms of the product and
involution of L(X ), whose operations are inherited from L(Y). Furthermore, X
is hereditary in Y because

X 〈Y ,X 〉D ⊂ [L(X )L(Y)L(X )] ∩ Y ⊂ X .

If L(X ) is an hereditary Fell subbundle of L(Y), then we can regard
C∗(L(X )) as a C∗-subalgebra of C∗(L(Y)). Considering the canonical representa-
tion of C∗(X ) and C∗(Y) in C∗(L(X )) and C∗(L(Y)), respectively, we conclude
that C∗(X ) is a C∗-subtring of C∗(Y). Thus qYµ (C∗(X )) is a C∗-subtring of C∗µ(Y).
Besides,

IXµ = C∗(X ) ∩ IL(X )
µ = C∗(X ) ∩ C∗(L(X )) ∩ IL(Y)µ

= C∗(X ) ∩ IL(Y)µ = C∗(X ) ∩ IYµ .

Hence ker(qYµ |C∗(X )) = IXµ and there exists a unique isomorphism of C∗-trings

C∗µ(X )→ qYµ (C
∗(X )), x + IXµ 7→ qYµ (x).

DEFINITION 4.19. Given a pseudo crossed product functor µ, with the
hereditary subbundle property, and an equivalence bundle X , we say that X is
µ-amenable if IXµ = {0}. Similarly, a Fell bundle B will be called µ-amenable if
IBµ = {0}.

COROLLARY 4.20. Let X be an A-B-equivalence bundle and µ a pseudo crossed
product functor with the hereditary property. Then the following are equivalent:

(i) X is µ-amenable;
(ii) A is µ-amenable;

(iii) B is µ-amenable;
(iv) L(X ) is µ-amenable;
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(v) K(X ) is µ-amenable.
In particular, µ-amenability is preserved by equivalence of Fell bundles.

Proof. By Proposition 4.15 and the correspondence of ideals via equivalence
bimodules, IAµ = {0} ⇔ IBµ = {0} ⇔ IXµ = {0}. Then (i), (ii) and (iii) are equiv-
alent. Besides, that equivalence together with Remark 4.11 and Corollary 3.10
implies the last four claims are equivalent to each other.

4.2. EXTENSION OF PSEUDO CROSSED PRODUCT FUNCTORS. Every Fell bundle
B can be considered as a B-B-equivalence bundle, and every C∗-algebra can be
considered as a C∗-tring. Then the following result says that the crossed product
functor C∗ : F → C can be extended to a functor C∗ : E → T from the category
E of equivalence bundles to the category T of C∗-trings.

THEOREM 4.21. Assume X and Y are A-B- and C-D-equivalence bundles over
G, respectively. Then for every morphism of equivalence bundles, ρ : X → Y , there exists
a unique homomorphism of C∗-trings, ρ∗ : C∗(X ) → C∗(Y), such that ρ∗( f ) = ρ ◦ f ,
for all f ∈ Cc(X ). This homomorphism satisfies:

(i) (ρ∗)r = (ρr)∗ and (ρ∗)l = (ρl)∗;
(ii) L(ρ)∗ = L(ρ∗), under the isomorphism provided by Corollary 4.10;

(iii) if µ is a pseudo crossed product functor then ρ∗(IXµ ) ⊂ IYµ .

Proof. Uniqueness is clear because Cc(X ) is dense in C∗(X ) and every ho-
momorphism of C∗-trings is contractive. To prove existence let L(ρ) : L(X ) →
L(Y) be the morphism given by Theorem 3.5. If we think of C∗(X ) as a C∗-
subtring of C∗(L(X )), then it follows that ρ ◦ f = L(ρ) ◦ f , for all f ∈ Cc(X ).
This implies

L(ρ)∗(C∗(X )) = L(ρ)∗(Cc(X )) ⊂ Cc(Y) = C∗(Y),

so it is enough to define ρ∗ := L(ρ)∗|C∗(X ).
Note that (i) follows from the fact that, for all f , g ∈ Cc(X ):

(ρ∗)r( f ∗ ∗ g) = (ρ ◦ f )∗ ∗ (ρ ◦ g) = L(ρ)∗( f ∗ ∗ g) = (ρr)∗( f ∗ ∗ g).

Similarly (ρ∗)l( f ∗ g∗) = (ρl)∗( f ∗ g∗).

To prove the second statement, note first that if
(

ξ f
g̃ η

)
∈ Cc(L(X )), then

L(ρ)∗
(

ξ f
g̃ η

)
= L(ρ) ◦

(
ξ f
g̃ η

)
=

(
ρl ◦ ξ ρ ◦ f
ρ̃ ◦ g ρr ◦ η

)
=

(
(ρl)∗(ξ) ρ∗( f )

ρ̃∗(g) (ρr)∗(η)

)
,

and therefore by (i) we have:

L(ρ)∗
(

ξ f
g̃ η

)
=

(
(ρ∗)l(ξ) ρ∗( f )

ρ̃∗(g) (ρ∗)r(η)

)
= L(ρ∗)

(
ξ f
g̃ η

)
.

Then L(ρ)∗ = L(ρ∗) on a dense subset, so they agree.
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As for the last statement, we have:

ρ∗(IXµ ) = L(ρ)∗(C∗(X ) ∩ IL(X )
µ ) ⊂ C∗(Y) ∩ IL(Y)µ = IYµ .

COROLLARY 4.22. Let µ : F → C be a pseudo crossed product functor with the
hereditary subbundle property. Then µ can be extended to a functor µ : E → T , from
the category of equivalence bundles to the category of C∗-trings.

Proof. Given an A-B-equivalence bundle X , we have C∗µ(X ) = C∗(X )/IXµ ,
where IXµ = IAµ C∗(X ) = C∗(X )IBµ (recall Definition 4.14 and the proof of Propo-
sition 4.15).

Now if ρ : X → Y is a morphism of equivalence bundles, we have ρ∗(IXµ ) ⊆
IYµ by the third statement of Theorem 4.21, so ρ∗ induces a unique homomor-
phism of C∗-trings ρµ : C∗µ(X )→ C∗µ(Y). It is easy to check that

(X ρ→ Y) 7−→ (C∗µ(X )
ρµ→ C∗µ(Y))

is a functor that extends µ.

REMARK 4.23. Note that the extended functor also has the hereditary sub-
bundle property, in the sense that ifX is hereditary in Y , then C∗µ(X ) is hereditary
in C∗µ(Y) (recall Definition 4.17, and also note that any positive C∗-tring can be
thought of as an equivalence bundle over the trivial group).

REMARK 4.24. After Corollary 4.22 a natural question arises: given the ex-
tension of a crossed product functor with the hereditary subbundle property, µ,
do we obtain commutative diagrams like (4.1) (see diagram (4.3) below) if we
consider morphisms of equivalence bundles instead of morphism of Fell bun-
dles? To answer this question affirmatively we need to choose the map pXµ :
C∗µ(X )→ C∗r (X ), for every equivalence bundle X .

Given a morphism of equivalence bundles, φ : X → Y , the commutative
diagram associated to L(φ) : L(X )→ L(Y) is

(4.2) C∗(L(X ))

qL(X )
r =ΛL(X )

((qL(X )
µ //

L(φ)∗

��

C∗µ(L(X ))
pL(X )

µ //

L(φ)µ

��

C∗r (L(X ))

L(φ)r

��
C∗(L(Y))

qL(Y)r =ΛL(Y)

66qL(Y)µ

// C∗µ(L(Y))
pL(Y)µ

// C∗r (L(Y)).

Since C∗•(X ) = qX• (C∗(X )), for • = r, µ, we have

pL(X )
µ (C∗µ(X )) = pL(X )

µ ◦ qL(X )
µ (C∗(X )) = qL(X )

r (C∗(X )) = C∗r (X ).
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Then it is natural to define pXµ : C∗µ(X ) → C∗r (X ) to be the restriction of pL(X )
r

to C∗µ(X ). Adding to the commutative diagram (4.2) the fact that φ• : C∗•(X ) →
C∗•(Y) is the corresponding restriction of L(φ)• (for • = r, µ) we obtain the com-
mutative diagram

(4.3) C∗(X )

qXr

&&qXµ //

φ∗

��

C∗µ(X )
pXµ //

φµ

��

C∗r (X )

φr

��
C∗(Y)

qYr

88qYµ

// C∗µ(Y)
pYµ

// C∗r (Y),

which is the diagram mentioned in our question.

5. INTERNAL TENSOR PRODUCTS AND TRANSITIVITY

This last section is devoted to proving that equivalence of Fell bundles is an
equivalence relation. To this end we will define internal tensor products of Fell
bundles.

Suppose we are given an A-B-equivalence bundle, X , and a B-C-equiva-
lence bundle, Y . Then we can form the internal tensor product C∗(X ) ⊗C∗(B)
C∗(Y), which establishes a Morita–Rieffel equivalence between C∗(A) and C∗(C).
One could expect this equivalence to come from an A-C-equivalence bundle Z
in such a way that C∗(Z) is isomorphic to C∗(X )⊗C∗(B) C∗(Y). This bundle Z
should then be denoted X ⊗B Y , for then we would have

C∗(X ⊗B Y) = C∗(X )⊗C∗(B) C∗(Y).

In what follows we will construct such a bundle Z . The construction is a bit
complicated, and will be done along several steps. The final part of the process
will consist in obtaining an equivalence bundle from a kind of a pre equivalence
bundle. The following two results will serve to this purpose.

PROPOSITION 5.1. Let B be a Fell bundle over G. Assume there is a bundle of
normed vector spaces X := {Xt}t∈G, sets of sections ΓX and ΓB (of X and B respec-
tively) and maps

(5.1) X ×B → X : (x, b) 7→ xb, and X ×X → B : (x, y) 7→ 〈x, y〉B ,

with the following properties:
(i) conditions (1R)–(7R) from Definition 2.1 hold;

(ii) ΓX is a complex vector space with pointwise operations and ΓB ⊂ Cc(B);
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(iii) for all t ∈ G and F ∈ {B,X}, {u(t) : u ∈ ΓF} is dense in Ft, where the norm
considered on Xt is ‖x‖ = ‖〈x, x〉B‖1/2;

(iv) for all u, v ∈ ΓX and f , g ∈ ΓB the maps

G× G → R, (r, s) 7→ ‖〈u(r), v(s)〉B − f (r−1s)‖,
G× G → Be, (r, s) 7→ 〈u(r) f (s)− g(rs), u(r) f (s)− g(rs)〉B ,

and G → Be, r 7→ 〈u(r), u(r)〉B , are continuous.
Then there exists a unique right Hilbert B-bundle X = {Xt}t∈G such that:

(a) for all t ∈ G, Xt is the completion of Xt;
(b) ΓX is a set of continuous sections of X ;
(c) the inner product and action of X extend those of X .

Proof. First note that each fiber Xt is a right pre Hilbert Be-module with
positive definite inner product (x, y) 7→ 〈x, y〉B .

Given t ∈ G, let Xt be the completion of Xt, and consider X = {Xt}t∈G as
an untopologized bundle over G. It follows from II 13.18 of [10] and condition
(iv) that there exists a unique Banach bundle structure on X such that ΓX is a set
of continuous X sections.

Using linearity and continuity arguments we can easily prove that the action
of B on X , as well as the inner product, can be extended in a unique way to
an action and an inner product on X . The same sort of arguments can be used
to prove these new operations satisfy conditions (1R)–(7R) from Definition 2.1.
Finally, by Proposition 3.1 and condition (iv), the inner product and the action
are continuous.

We also have a bilateral version of the previous result: we just need to show
that the norms coming from the left and right structures agree.

PROPOSITION 5.2. Let A and B be a Fell bundles over G. Assume there is a
bundle of complex vector spaces X := {Xt}t∈G, sets of sections ΓF for F ∈ {A,B,X}
and maps

A×X → X , (a, x) 7→ ax, X ×X → A, (x, y) 7→ A〈x, y〉,(5.2)

X ×B → X , (x, b) 7→ xb, X ×X → B, (x, y) 7→ 〈x, y〉B ,(5.3)

with the following properties:
(i) conditions (1R)–(5R), (1L)–(5L), (7R) and (7L) of Definitions 2.1 hold and, for all

x, y, z ∈ X , A〈x, y〉z = x〈y, z〉B ;
(ii) ΓX is a complex vector space with pointwise operations and ΓF ⊂ Cc(F ), for

F ∈ {A,B};
(iii) for all t ∈ G and F ∈ {A,B,X}, {u(t) : u ∈ ΓF} is dense in Ft, where the

norm considered on Xt is ‖x‖B = ‖〈x, x〉B‖1/2;
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(iv) condition (iv) of Proposition 5.1 holds and, analogously, for all u, v ∈ ΓX and
f , g ∈ ΓA the maps

G× G → R, (r, s) 7→ ‖A〈u(r), v(s)〉 − f (r−1s)‖,

G× G → Ae, (r, s) 7→ A〈u(r) f (s)− g(r−1s), u(r) f (s)− g(r−1s)〉,

and G → Ae, r 7→ A〈u(r), u(r)〉, are continuous.
Then there exists a unique A-B-equivalence bundle X = {Xt}t∈G such that:

(a) for all t ∈ G, Xt is the completion of Xt;
(b) ΓX is a set of continuous sections of X ;
(c) the inner products and actions of X extend those of X .

Proof. Forgetting the left structure, and defining ‖x‖B = ‖〈x, x〉B‖1/2, ∀x ∈
X , we are in the hypotheses of Proposition 5.1. LetX be the right HilbertB-bundle
given by Proposition 5.1. We will show that this bundle can be made into an
A-B-equivalence bundle preserving the right structure.

Given t ∈ G define It := spanA〈Xt, Xt〉 ⊆ Ae. Note that conditions
(1L)–(5L) imply It is an algebraic ∗-ideal of Ae. The compatibility of the left and
right structure on X ensures that given a ∈ It there exists a unique operator
ρt(a) ∈ K(Xt) such that ρt(a)x = ax, for all x ∈ Xt. Then there exists a unique
∗-homomorphism φt : It → K(Xt), a 7→ ρt(a). According to VI 19.11 of [10]
the homomorphism φt is norm continuous, so it has a unique extension to a ∗-
representation of the C∗-ideal It. As this last representation is contractive, for all
x ∈ Xt we have

‖〈x, x〉B‖ = ‖K(Xt)
〈x, x〉‖ = ‖ρt(A〈x, x〉)‖ 6 ‖A〈x, x〉‖.

Now reverse the arguments: take the bundle of complex conjugate normed
spaces X̃ = {X̃t−1}t∈G with the natural action ofA on the right and theA-valued
inner product, letting B act on the left. Then we conclude that for all x ∈ X :

‖A〈x, x〉‖ = ‖〈x̃, x̃〉A‖ 6 ‖B〈x̃, x̃〉‖ = ‖〈x, x〉B‖.

Moreover the adjoint bundle of X̃ is equal to X (as a Banach bundle). Then
X is, at the same time, a left Hilbert A-bundle and a right Hilbert B-bundle.
We also know that A〈x, y〉z = x〈y, z〉B holds for all x, y, z ∈ X , and a simple
continuity argument implies the same identity also holds for all x, y, z ∈ X .

5.1. A TENSOR PRODUCT OF EQUIVALENCE BUNDLES. Fix, for the rest of this sec-
tion, three Fell bundles A,B and C over G, an A-B-equivalence bundle, X , and a
B-C-equivalence bundle, Y . From these data we want to construct an A-C-equi-
valence bundle.

There are three bundles we will use in our construction of the A-C-equi-
valence bundle. First we define a bundle Z over G× G, whose fibers are tensor
products of the form Xr ⊗Be Ys. Then we construct a bundle U over G by defining
Ut as the set of continuous sections of compact support of the reduction of Z to
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{(r, s) ∈ G× G : rs = t}. Finally, the fibers of the bundle [U ] will be quotients of
the fibers of U . The desired A-C-equivalence bundle will then be obtained from
[U ] using Proposition 5.2.

The Banach bundle Z . Given (r, s) ∈ G×G let Z(r,s) be the Hilbert Ce-module
Xr⊗Be Ys and consider the bundleZ := {Zw}w∈G×G. We want to endowZ with a
Banach bundle structure such that every function of the form f � g : G×G → Z ,
f � g(r, s) = f (r)⊗ g(s) ( f ∈ Cc(X ), g ∈ Cc(Y)), is a continuous section of Z . To
this end we use II 13.18 of [10]. Let ΓZ := span{ f � g : f ∈ Cc(X ), g ∈ Cc(Y)}.
It is clear that for each (r, s) ∈ G× G the set {ξ(s, t) : ξ ∈ ΓZ} is dense in Xr ⊗Ys.

For ξ =
n
∑

j=1
f j � gj ∈ ΓZ , the map (r, s) 7→ ‖ξ(r, s)‖ is continuous because so is

the map

G× G → Ce, (r, s) 7→ 〈ξ(r, s), ξ(r, s)〉Ce =
n

∑
j,k=1
〈gj(s), 〈 f j(r), fk(s)〉Bgk(s)〉C .

Then, by II 13.18 of [10], there exists a unique topology on Z making it a Banach
bundle such that every f � g is a continuous section of Z .

The bundle U . To construct U , for each t ∈ G let Z t be the reduction ([10],
II 13.3) of Z to Ht := {(r, s) ∈ G× G : rs = t} and set Ut := Cc(Z t). Let U be the
(untopologized) bundle {Ut}t∈G. Every section ξ ∈ Cc(Z) defines a section of U ,
ξ|t : G → U , given by t 7→ ξ|t, where ξ|t is the restriction of ξ to Ht.

LEMMA 5.3. For each t ∈ G and u ∈ Ut, there exists a compact set K ⊂ G such
that: for all ε > 0 there exists ξ ∈ ΓZ with ‖u− ξ|t‖∞ < ε and supp(ξ) ⊂ K× K. In
particular, {ξ|t : ξ ∈ ΓZ} is dense in Ut in the inductive limit topology of Cc(Z t).

Proof. From Tietze’s extension theorem for Banach bundles ([10], II 14.8) we
know that there exists η ∈ Cc(Z) such that η|t = u. Since Cc(G)⊗Cc(G)ΓZ ⊂ ΓZ ,
we can use Lemma 5.1 of [1] to deduce that ΓZ is dense in Cc(Z) in the induc-
tive limit topology. Thus there exists a net {ξ j}j∈J ⊂ ΓZ converging to η in the
inductive limit topology, and so uniformly on compact sets. Take a compact set
K ⊂ G such that K×K contains the support of η in its interior, and take φ ∈ Cc(G)
with: 0 6 φ 6 1, φ⊗ φ|supp η ≡ 1 and φ|G\K ≡ 0. Then {φ⊗ φξ j}j∈J ⊂ ΓZ , and
{(φ ⊗ φξ j)|t}j∈J converges uniformly to η|t = u. Then there exists j0 ∈ J such
that ‖(φ⊗ φξ j0)|t − u‖ < ε. Finally, note that supp(φ⊗ φξ j0) ⊂ K× K.

The C-valued inner product of U , and so the seminorm of U , will be de-
scribed as the integral of a kind of inner product defined on Z , which we now
construct. Recall that a map between vector bundles is said to be quasi-linear if
it is linear when restricted to each fiber ([10], page 790). Quasi-bilinear maps are
defined analogously.

LEMMA 5.4. There exist unique continuous maps

Z ×Z → C : (u, v) 7→ u . v and Z ×Z → A : (u, v) 7→ u / v,



308 FERNANDO ABADIE AND DAMIÁN FERRARO

such that:
(i) . (/) is quasi-linear in the second (first) variable and conjugate quasi-linear in the

first (second) variable;
(ii) Z(r,s) . Z(p,q) ⊂ C(rs)−1 pq and Z(r,s) / Z(p,q) ⊂ Ars(pq)−1 , for all r, s, p, q ∈ G;

(iii) ‖u . v‖ 6 ‖u‖‖v‖ and ‖u / v‖ = ‖u‖‖v‖, for all u, v ∈ Z ;
(iv) (x ⊗ y) . (z⊗ w) = 〈y, 〈x, z〉Bw〉C and (x ⊗ y) / (z⊗ w) = A〈xB〈y, w〉, z〉,

for all x⊗ y, z⊗ w ∈ Z .

Proof. Take u =
n
∑

i=1
xi ⊗ yi ∈ Z(r,s) and v =

n
∑

j=1
zj ⊗ wj ∈ Z(p,q). To satisfy

(i) and (iv), u . v must be given by: u . v :=
n
∑

j,k=1
〈yj, 〈xj, zk〉Bwk〉C . In order to see

that this is really a definition, it suffices to show that∥∥∥ n

∑
j,k=1
〈yj, 〈xj, zk〉Bwk〉C

∥∥∥ 6 ‖u‖ ‖v‖.
Now if {aλ}λ∈λ is an approximate unit of Ae as the one given by Lemma 2.8, then

(5.4)
∥∥∥ n

∑
j,k=1
〈yj, 〈xj, zk〉Bwk〉C

∥∥∥ = lim
λ

∥∥∥ n

∑
j,k=1
〈yj, 〈aλxj, zk〉Bwk〉C

∥∥∥
where aλ =

nλ

∑
l=1
A〈ξλ

l , ξλ
l 〉, for some ξλ

l ∈ Xtλ
l

(l = 1, . . . , nλ).

From Lemma 2.7 it follows that

(5.5) 〈yj, 〈aλxj, zk〉Bwk〉C =
nλ

∑
l=1
〈〈ξλ

l , xj〉Byj, 〈ξλ
l , zk〉Bwk〉C .

Given l = 1, . . . , nλ, for all j = 1, . . . , n we have 〈ξλ
l , xj〉Byj ∈ Y(tλ

l )
−1rs and

〈ξλ
l , zj〉Bwj ∈ Y(tλ

l )
−1 pq. Define

ηλ
l :=

n

∑
j=1
〈ξλ

l , xj〉Byj, ζλ
l :=

n

∑
j=1
〈ξλ

l , zj〉Bwj.

From (5.5) and (5.4) we obtain

(5.6)
∥∥∥ n

∑
j,k=1
〈yj, 〈xj, zk〉Bwk〉C

∥∥∥ = lim
λ

∥∥∥ n

∑
k=1
〈ηλ

k , ζλ
k 〉C
∥∥∥.

When v = u we get

‖u‖2 =
∥∥∥ n

∑
j,k=1
〈yj, 〈xj, xk〉Byk〉C

∥∥∥ = lim
λ

∥∥∥ n

∑
k=1
〈ηλ

k , ηλ
k 〉C
∥∥∥
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and, analogously, we obtain ‖v‖2 = lim
λ

∥∥∥ n
∑

k=1
〈ζλ

k , ζλ
k 〉C
∥∥∥. Therefore the inequality∥∥∥ n

∑
j,k=1
〈yj, 〈xj, zk〉Bwk〉C

∥∥∥ 6 ‖u‖‖v‖ follows from the inequality

∥∥∥ nλ

∑
k=1
〈ηλ

k , ζλ
k 〉C
∥∥∥ 6 ∥∥∥ nλ

∑
k=1
〈ηλ

k , ηλ
k 〉C
∥∥∥∥∥∥ nλ

∑
k=1
〈ζλ

k , ζλ
k 〉C
∥∥∥,

which holds (for all λ) by Lemma 2.8.
To show . is continuous we use Proposition 3.1. Take ξ, η ∈ ΓZ and f ∈

Cc(C). It suffices to show that (r, s, p, q) 7→ ‖ξ(r, s) . η(p, q) − f ((rs)−1 pq)‖ is
continuous. But, since (r, s, p, q)) 7→ f ((rs)−1 pq) is continuous, it suffices to show
that (r, s, p, q) 7→ ξ(r, s) . η(p, q) is continuous. It is enough to consider ξ = f � g
and η = h� k. In this case we have ξ(r, s) . η(p, q) = 〈g(s), 〈 f (r), h(p)〉Bk(q)〉C ,
which is clearly a continuous function of (r, s, p, q).

The existence of the operator / can be inferred from the previous arguments
applied to the adjoint bundles of X and Y .

Now we define two maps we will use to construct the actions ofA and C on
the (still not precisely defined) bundle [U ].

LEMMA 5.5. There are unique quasi-bilinear and continuous maps

A×Z → Z , (a, z) 7→ az, and Z × C → Z , (z, c)→ zc,

such that:
(i) ArZ(s,t) ⊂ Z(rs,t) and Z(s,t)Cr ⊂ Z(s,tr), for all r, s, t ∈ G;

(ii) ‖az‖ 6 ‖a‖‖z‖ and ‖zc‖ 6 ‖z‖‖c‖, for all a ∈ A, z ∈ Z and c ∈ C;
(iii) a(x⊗ y) = (ax)⊗ y and (x⊗ y)c = x⊗ (yc), for all a ∈ A, x ∈ X , y ∈ Y and

c ∈ C.

Proof. Take u =
n
∑

i=1
xi ⊗ yi ∈ Z(r,s) and a ∈ A. Recall that there exists a

natural representation of Ae, ψ : Ae → B(Z(r,s)), such that ψ(b)(x⊗ y) = (bx)⊗ y.
Now observe that∥∥∥ n

∑
i=1

(axi)⊗ yi

∥∥∥2
=
∥∥∥ n

∑
i,j=1
〈yi, 〈axi, axj〉Byj〉C

∥∥∥ =
∥∥∥ n

∑
i,j=1
〈yi, 〈xi, a∗axj〉Byj〉C

∥∥∥
= ‖〈ψ(a∗a)u, u〉Ce‖ 6 ‖a‖

2‖u‖2.

On the other hand, for every c ∈ C we have∥∥∥ n

∑
i=1

xi ⊗ (yic)
∥∥∥2

=
∥∥∥ n

∑
i,j=1
〈yic, 〈xi, xj〉Byjc〉C

∥∥∥ =
∥∥∥c∗

n

∑
i,j=1
〈yi, 〈xi, xj〉Byj〉Cc

∥∥∥
6 ‖c‖2‖〈u, u〉Ce‖ = ‖c‖

2‖u‖2.

With these inequalities we can define the left action ofA and the right action
of C on Z on each product of fibers (Ar × Z(s,t) and Z(s,t) × Cr). To prove that
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the resulting map is continuous it suffices to use Proposition 3.1 (adapting the
arguments we gave during the construction of . and /).

The identities we prove in the following lemma will be used to show the
compatibility of the left and right Hilbert bundle structures of our A-C-equiva-
lence bundle.

LEMMA 5.6. For all z1, z2, z3, z4 ∈ Z , a ∈ A and c ∈ C we have:
(i) a(z1 / z2) = (az1) / z2 and (z1 . z2)c = z1 . (z2c);

(ii) (z1 / z2)
∗ = z2 / z1 and (z1 . z2)

∗ = z2 . z1;
(iii) ((z1 / z2)z3) . z4 = (z1(z2 . z3)) . z4.

Proof. By linearity it suffices to consider elementary tensors zi. Assume zi =
xi ⊗ yi, for i = 1, 2, 3, 4. Then

a(z1 / z2) = aA〈x1B〈y1, y2〉, x2〉 = A〈ax1B〈y1, y2〉, x2〉 = (az1) / z2.

The second identity in (i) and the two of (ii) are left to the reader. Besides, (iii)
follows from

((z1 / z2)z3) . z4 = (A〈x1B〈y1, y2〉, x2〉x3 ⊗ y3) . z4

= 〈y3, 〈A〈x1B〈y1, y2〉, x2〉x3, x4〉By4〉C
= 〈y3, 〈x1B〈y1, y2〉〈x2, x3〉B , x4〉By4〉C
= 〈B〈y1, y2〉〈x2, x3〉By3, 〈x1, x4〉By4〉C
= 〈y1〈y2, 〈x2, x3〉By3〉C , 〈x1, x4〉By4〉C
= (z1〈y2, 〈x2, x3〉By3〉C) . z4 = (z1(z2 . z3)) . z4.

To define the pre-inner products and actions on U take u ∈ Ur, v ∈ Us,
a ∈ At and c ∈ Ct. Note that G × G → Cr−1s : (p, q) 7→ u(p, p−1r) / v(q, q−1s),
and G× G → Ars−1 : (p, q) 7→ u(p, p−1r) . v(q, q−1s) are continuous maps. Then
we can define

U
A〈u, v〉 :=

∫∫
G×G

u(p, p−1r) / v(q, q−1s)dpdq,(5.7)

〈u, v〉UC :=
∫∫

G×G

u(p, p−1r) . v(q, q−1s)dpdq,(5.8)

au ∈ Utr by the formula (au)(p, p−1tr) := au(t−1 p, p−1tr), and(5.9)

uc ∈ Urt by the formula (uc)(p, p−1rt) := u(p, p−1r)c.(5.10)

REMARK 5.7. Some straightforward arguments together with Lemma 5.6
imply UA〈·, ·〉 behaves like a left pre-inner product, that is: it is quasi-linear in the
first variable, UA〈au, v〉 = aUA〈u, v〉 and UA〈u, v〉∗ = UA〈v, u〉. Also 〈·, ·〉UC behaves like
a right pre-inner product with respect to C.
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REMARK 5.8. For every compact set K ⊂ G and u, v ∈ U supported in
K× K, we have ‖〈u, v〉UC ‖ 6 M2‖u‖∞‖v‖∞, where M is the measure of K.

LEMMA 5.9. For all u, v, w, x ∈ U and a ∈ A we have

〈UA〈u, v〉w, x〉UC = 〈u〈v, w〉UC , x〉UC ,(5.11)

0 6 〈u, u〉UC ,(5.12)

〈au, au〉UC 6 ‖a‖2〈u, u〉UC .(5.13)

Proof. To prove the first identity assume u ∈ Ur, v ∈ Us, w ∈ Ut and x ∈ Uq.
Then, by Lemma 5.6,

〈UA〈u, v〉w, x〉UC =
∫

G2

[UA〈u, v〉w](p1, p1
−1rs−1t) . x(p2, p2

−1q)d(p1, p2)

=
∫

G2

[UA〈u, v〉w(sr−1 p1, p1
−1rs−1t)] . x(p2, p2

−1q)d(p1, p2)

=
∫

G4

[(u(p3, p3
−1r) / v(p4, p4

−1s))w(sr−1 p1, p1
−1rs−1t)].

x(p2, p2
−1q)d(p1, p2, p3, p4)

=
∫

G4

[u(p3, p3
−1r)(v(p4, p4

−1s) . w(sr−1 p1, p1
−1rs−1t))].

x(p2, p2
−1q)d(p1, p2, p3, p4)

=
∫

G4

[u(p3, p3
−1r)(v(p4, p4

−1s) . w(p1, p1
−1t))].

x(p2, p2
−1q)d(p1, p2, p3, p4)

=
∫

G2

[u(p3, p3
−1r)〈v, w〉UC ] . x(p2, p2

−1q)d(p2, p3)

=
∫

G2

[u〈v, w〉UC ](p3, p3
−1rs−1t) . x(p2, p2

−1q)d(p2, p3)

= 〈u〈v, w〉UC , x〉UC .

From Remarks 5.8 and 5.3 we conclude that it suffices to show (5.12) and

(5.13) hold for u = ξ|r, with ξ ∈ ΓZ . Assume ξ =
n
∑

i=1
fi � gi. Then 〈u, u〉UC and

〈au, au〉UC are respectively the integrals in G×G of the functions η, θ : G×G → Ce
given by

η(p, q) =
n

∑
i,j=1
〈gi(p−1r), 〈 fi(p), f j(q)〉Bgj(q−1r)〉C ,
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θ(p, q) =
n

∑
i,j=1
〈gi(p−1r), 〈a fi(t−1 p), a f j(t−1q)〉Bgj(q−1r)〉C .

Take a compact set K ⊂ G such that supp(η) ∪ supp(θ) ⊂ K × K. Given a
compact neighborhood W of e ∈ G, take pW

1 , . . . , pW
nW
∈ G such that K is contained

in the interior of pW
1 W ∪ · · · ∪ pW

nW
W. Now let {φW

1 , . . . , φW
nW
} ⊂ Cc(G)+ be a

partition of the unit of K subordinated to the covering {pW
1 W, . . . , pW

nW
W}. Define

ηW(p, q) :=
nW

∑
j,k=1

η(pW
j , pW

k )φW
j (p)φW

k (q),

θW(p, q) :=
nW

∑
j,k=1

θ(pW
j , pW

k )φW
j (p)φW

k (q).

We order the family N of compact neighborhoods of e by decreasing inclusion.
Then we have nets {ηW}W∈N and {θW}W∈N that can be shown to converge to η

and θ, respectively, in the inductive limit topology. The inequalities 0 6 〈u, u〉UC
and 〈au, au〉UC 6 ‖a‖2〈u, u〉UC follow by taking limit in W after we show that

0 6
∫
G

∫
G

ηW(p, q)dpdq,(5.14)

∫
G

∫
G

θW(p, q)dpdq 6 ‖a‖2
∫
G

∫
G

ηW(p, q)dpdq.(5.15)

Consider W fixed and put m := nλ, λj :=
∫
G

φW
j (p)dp and pk := pW

k . Then

∫
G

∫
G

θW(p, q)dpdq=
m

∑
k,l=1

θ(pk, pl)λkλl

=
m

∑
k,l=1

n

∑
i,j=1
〈λkgi(pk

−1r), 〈a fi(t−1 pk), a f j(t−1 pl)〉Bλl gj(pl
−1r)〉C .

The key is to interpret the latter sum as an inner product, which we do next.
Let Mp(B) be the C∗-algebra provided by Lemma 2.8 for p = (p1, . . . , pm) ∈

Gm, and let X′p = Xp1 ⊕ · · · ⊕ Xpm , where the direct sum is as left Hilbert Ae-mo-
dules. The left Hilbert Ae-module X′p can be given an Ae-Mp(B) Hilbert bimod-
ule structure in the following way. Write the elements of X′p as row matrices and
define the right action by matrix multiplication; the right inner product is defined
to be

〈(x1, . . . , xm), (y1, . . . , ym)〉Mp(B) = (〈xi, yj〉B)m
i,j=1.

(the positivity of this inner product is shown in the same way as done in the proof
of Lemma 2.8 for the inner product Mr−1 (A)〈·, ·〉).

Now let Yp−1t be the direct sum Yp1
−1t ⊕ · · · ⊕ Ypm−1t, considered as a right

Hilbert Ce-module. Writing the elements of Yp−1t as column matrices, the matrix
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multiplication by elements of Mp(B) defines a ∗-homomorphism of Mp(B) into
B(Yp−1t).

Now, if we define

fi := ( fi(t−1 p1), . . . , fi(t−1 pm)) ∈ X′t−1p,

gj := (λ1gj(p1
−1r), . . . , λmgj(pm

−1r)) ∈ Yp−1r,

then we have ∫
G

∫
G

θW(p, q)dpdq =
n

∑
i,j=1
〈gi, 〈afi, afj〉Mp(B)gj〉Ce .

We shall interpret the latter double sum as an inner product. Consider Xn
t−1p

as a Mn(Ae)-Mn(Mp(B)) Hilbert bimodule in the usual way. Considering Yn
p−1r

as a Hilbert Ce-module, and thinking of its elements as column matrices, matrix
multiplication provides us with a representation Mn(Mp(B))→ B(Yn

p−1r).
If f = (f1, . . . , fn), g = (g1, . . . , gn) and Da∗a ∈ Mn(Ae) is the diagonal

matrix with value a∗a in the diagonal, then∫
G

∫
G

θW(p, q)dpdq = 〈g, 〈Da∗af, f〉Mn(Mp(B))g〉Ce 6 ‖a‖
2〈g, 〈f, f〉Mn(Mp(B))g〉Ce .

Using the interpretation of the double integral of ηW as an inner product we
conclude that

0 6 〈g, 〈f, f〉Mn(Mp(B))g〉Ce =
∫
G

∫
G

ηW(p, q)dpdq.

Putting the last two inequalities together we get (5.14) and (5.15).

LEMMA 5.10. For every ξ, η ∈ ΓZ the following maps are continuous:
(i) G× G → C, (p, q) 7→ 〈ξ|p, η|q〉UC ;

(ii) G× G → Ce, (p, q) 7→ 〈g(p)ξ|q − η|pq, g(p)ξ|q − η|pq〉UC .

Proof. Let θ be the map in (i). It suffices to consider the case ξ = f � g and
η = h� k. Then

θ(p, q) =
∫∫

G×G

〈g(r−1 p), 〈 f (r), h(s)〉Bk(s−1q)〉C drds.

Fix (p0, q0) ∈ G× G and take a compact neighborhood V of e ∈ G. We show θ is
continuous in W := p0V × q0V.

Let V be the retraction of C by W → G, (p, q) 7→ p−1q, and define η :
G×G → C(V) as η(r, s)(p, q) = 〈g(r−1 p), 〈 f (r), h(s)〉Bk(s−1q)〉C . Note that η has
compact support and C(V) is a Banach space with the supremum norm because
W is compact. Moreover, if {(ri, si, pi, qi)}i∈I ⊂ G× G×W is a net converging to
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(r, s, p, q), then η(ri, si)(pi, qi) → η(r, s)(p, q). This implies η is continuous. Then
θ is continuous because θ =

∫∫
G×G

η(r, s)drds.

We just give an indication of how to prove the map defined in (ii) is contin-
uous. The trick here is to think of that map as the integral of a continuous map
from G× G to the space of continuous sections of the trivial Banach bundle over
W with constant fiber Ce.

REMARK 5.11. The last two lemmas and their proofs can be carried out with
〈·, ·〉UC replaced by UA〈·, ·〉 and the actions of A and C on U interchanged.

Now we enter the final phase of our construction of a tensor product bundle.
Each fiber Ut is a pre Hilbert Ce-module with the inner product 〈·, ·〉UC , so ‖u‖C :=
‖〈u, u〉UC ‖1/2 defines a seminorm on Ut. We also know that A‖u‖ := ‖UA〈u, u〉‖1/2

is a seminorm on Ut. If in (5.13) we put a = U
A〈u, u〉, then use Remark 5.7, the

relations (5.12)–(5.13) and, finally, take norms in C, we get

‖u‖C6 = ‖〈u, u〉UC
3‖ 6 A‖u‖4‖〈u, u〉UC ‖ = A‖u‖4‖u‖C2.

Then ‖u‖C 6 A‖u‖ and, by symmetry, it must be ‖u‖C = A‖u‖.
Let U0

t := {u ∈ Ut : ‖u‖C = 0} and [U]t := Ut/U0
t . We denote u 7→ [u] the

quotient map of all fibers. Then form a bundle [U ] := {[U]t}t∈G and consider the
set of sections

(5.16) Γ[U ] := {[ξ] : ξ ∈ ΓZ}, where [ξ](t) := [ξ|t], ∀ ξ ∈ ΓZ , t ∈ G.

The action of C on the left is

[U ]× C → [U ], ([u], c) 7→ [uc],

which is defined because for all u ∈ U and c ∈ C

‖uc‖C2 = ‖c∗UA〈u, u〉c‖ 6 ‖c‖2‖u‖C2.

The C-valued inner product is

[U ]× [U ]→ C, ([u], [v]) 7→ 〈u, v〉UC .

To show this operation is defined note that for u ∈ Ur and v ∈ Us we have
v, u〈u, v〉UC ∈ Us. So it follows that

‖〈u, v〉UC ‖2 = ‖〈u〈u, v〉UC , v〉UC ‖ 6 ‖u‖C‖〈u, v〉UC ‖‖v‖C ,

which in turn implies ‖〈u, v〉UC ‖ 6 ‖u‖C‖v‖C .
The left hand side operations are

A× [U ]→ [U ], (a, [u]) 7→ [au] and [U ]× [U ]→ A, ([u], [v]) 7→ U
A〈u, v〉.

Now we use Proposition 5.2 to construct an A-C-equivalence bundle from
[U ]. We already have the operations and inner products. Take ΓA = Cc(A), ΓC =
Cc(C) as sets of sections, and Γ[U ] as we have defined in (5.16) above.



EQUIVALENCE OF FELL BUNDLES OVER GROUPS 315

Conditions (1R)–(5R) and (1L)–(5L) follow by construction, Remark 5.7 and
symmetry. Now we show (7R), and by symmetry we will have (7L). Take x1, x2 ∈
Xr, y1, y2 ∈ Ys and ε > 0. It suffices to find u, v ∈ U such that

‖〈y1, 〈x1, x2〉By2〉C − 〈u, v〉UC ‖ < ε.

Choose fi ∈ Cc(X ) and gi ∈ Cc(Y) such that fi(r) = x1 and gi(s) = yi
(i = 1, 2). Now choose a compact neighborhood of e ∈ G, W, and φW ∈ Cc(G)+

with
∫
G

φW(t)φW(s−1t−1s)dt = 1. Let ξW
i ∈ ΓZ be defined as

ξW
i (p, q) := (φW(r−1 p) fi(p))� (φW(s−1q)gi(q)).

Then

〈ξW
1 |rs, ξW

2 |rs〉UC =
∫∫

G×G

φW(r−1 p)φW(s−1 p−1rs)φW(r−1q)φW(s−1q−1rs)

〈g1(p−1rs), 〈 f1(p), f2(p)〉Bg2(q−1rs)〉C dpdq.

The function inside the integral is zero outside rW × sW. With W small
enough we can arrange the expression in the bottom of the equation (without
dpdq) to be at most at distance ε/2 from c := 〈g1(s), 〈 f1(r), f2(r)〉Bg2(s)〉C =
〈y1, 〈x1, x2〉By2〉C , for all (p, q) ∈W. Using the identity∫∫

G×G

φW(r−1 p)φW(s−1 p−1rs)φW(r−1q)φW(s−1q−1rs)c dpdq = c,

it follows that ‖〈ξW
1 |rs, ξW

2 |rs〉UC − c‖ < ε.
Once we have verified (1R)–(5R), (7R), (1L)–(5L), and (7L), we deal with the

compatibility of the left and right operations. We have
U
A〈[u], [u]〉[w] = [u]〈[v], [w]〉UC

because, if x := UA〈[u], [u]〉[w]− [u]〈[v], [w]〉UC , then Lemma 5.9 implies

〈x, x〉UC = 〈UA〈[u], [u]〉[w], x〉UC − 〈[u]〈[v], [w]〉UC , x〉UC = 0.

Thus x = 0.
Note that hypothesis (ii) of Proposition 5.2 is immediate in the present sit-

uation. Besides, hypothesis (iii) follows immediately from Remark 5.8 and Lem-
ma 5.3. Finally (iv) follows from Lemma 5.10 and symmetry.

DEFINITION 5.12. The internal tensor product of the equivalence bundles
X and Y is the equivalence bundle given by Proposition 5.2 for [U ]. This tensor
product bundle is denoted X ⊗B Y .

The existence of X ⊗B Y proves the transitivity of the relation of equiva-
lence of Fell bundles. So we get the following theorem.

THEOREM 5.13. Equivalence of Fell bundles is an equivalence relation.
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Proof. From Example 2.5 and Remark 2.6 we know that equivalence of Fell
bundles is reflexive and symmetric. It is also transitive because of the above con-
struction: if X is an A-B-equivalence bundle and Y is a B-C-equivalence bundle,
then X ⊗B Y is an A-C-equivalence bundle.

COROLLARY 5.14. If X is an A-B-equivalence bundle, then A, B, K(X ) and
L(X ) are equivalent Fell bundles.

Proof. Since equivalence of Fell bundles is an equivalence relation, it suffices
to note that K(X ) is isomorphic to A, A⊕ X is an A-L(X )-equivalence bundle
and that X ⊕B is a L(X )-B-equivalence bundle.

COROLLARY 5.15. Every Fell bundle associated to a partial action is equivalent
to a Fell bundle associated to a global action, thus to a saturated Fell bundle.

Proof. By Theorem 6.1 of [1], every partial action α has a Morita enveloping
action β, that is, the partial action α is equivalent to a partial action α′ that has an
enveloping action β. The equivalence between α and α′ provides a Bα-Bα′ -equi-
valence bundle X (see Examples 2.2.2 and 2.4), and the enveloping action β of α′

provides a Bα′ -Bβ-equivalence bundle Y (see Examples 2.2.1 and 2.3). Therefore
X ⊗Bα′

Y is a Bα-Bβ-equivalence bundle.

5.2. TENSOR PRODUCTS AND CROSS-SECTIONAL HILBERT BIMODULES.

THEOREM 5.16. Assume X is an A-B-equivalence bundle and Y a B-C-equi-
valence bundle. Let X ⊗B Y be the equivalence bundle of Definition 5.12 (see also the
construction in Section 5.1). Then there exists a unique unitary

U : C∗(X )⊗C∗(B) C∗(Y)→ C∗(X ⊗B Y)

such that U( f ⊗ g) = [ f � g], for all f ∈ Cc(X ) and g ∈ Cc(Y).
Proof. To prove the existence of the linear isometry U it is enough to show

that, for all f , f ′ ∈ Cc(X ) and g, g′ ∈ Cc(Y), we have:

〈 f ⊗ g, f ′ ⊗ g′〉C∗(C) = 〈[ f � g], [ f ′ � g′]〉C∗(C),
where the inner product in the left member of the equality above corresponds
to C∗(X ) ⊗C∗(B) C∗(Y), while the inner product in the right member is that of
C∗(X ⊗B Y). On the one hand we have, for r ∈ G× G:

〈 f ⊗ g, f ′ ⊗ g′〉C∗(C)(r) =
∫∫∫
G3

〈g(s), 〈 f (p), f ′(psrt)〉Bg′(t−1)〉C dpdtds.

On the other hand

〈[ f � g], [ f ′ � g′]〉C∗(C)(r) =
∫∫∫
G3

〈g(p−1s), 〈 f (p), f ′(t)〉Bg′(t−1sr)〉C dpdtds.

These triple integrals agree because the second one is obtained form the first one
with the following substitutions (consecutively): s = p−1s′ and t′ = s′rt.
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A procedure analogous to the preceding one allows us to see that U also
preserves the left inner product.

Let us show that U is surjective by proving that

S := span{[ f � g] : f ∈ Cc(X ), g ∈ Cc(Y)}

is dense in the inductive limit topology in Cc(X ⊗B Y) (see Remark 4.7). Let S
be the closure of S in the inductive limit topology. We already know that {u(t) :
u ∈ S} is dense in (X ⊗B Y)t, for all t ∈ G (Lemma 5.3). Then from [10] we
conclude it suffices to show that Cc(G)S ⊂ S or, equivalently, that φ[ f � g] ∈ S
for all φ ∈ Cc(G), f ∈ Cc(X ) and g ∈ Cc(Y).

Choose compact sets K1, K2 ⊂ G such that K1 is contained in the interior
of K2 and K1 contains the supports of f and g in its interior. Then take ψ ∈
Cc(G) such that ψ f = f , ψg = g and supp ψ ⊂ K1. The function Φ : G × G →
C, (p, q) 7→ ψ(p)ψ(q)φ(pq), is continuous, has compact support and vanishes
outside K1 × K1. Then for every ε > 0 there exist ϕh,ε

j ∈ Cc(G) (h = f , g and

j = 1, . . . , nε) such that
∥∥∥Φ −

nε

∑
j=1

ϕ
f ,ε
j ⊗ ϕ

g,ε
j

∥∥∥
∞

< ε. Moreover, we may assume

supp(ϕh,ε
j ) ⊂ K2, for all h, j, ε. Now set ξε :=

nϕ

∑
j=1

(ϕ
f ,ε
j f )� (ϕ

g,ε
j g).

Note that [ξε] ∈ S and supp(ξε) ⊂ K2 × K2, for all ε > 0. Also supp(φ[ f �
g]) ⊂ K2 × K2. Besides, if M2 is the measure of K2, then Remark 5.8 implies that
for all t ∈ G we have

‖φ(t)[ f � g](t)− [ξε](t)‖X⊗BY 6 M2‖φ(t) f � g|Ht − ξε|Ht‖∞.

For all r ∈ G we have

φ(t) f � g|Ht(r, r−1t) = φ(t) f (r)� g(r−1t) = Φ(r, r−1t) f (r)⊗ g(r−1t).

Then

‖φ(t) f (r)� g(r−1t)− ξε(r, r−1t)‖ 6
∥∥∥Φ−

nε

∑
j=1

ϕ
f ,ε
j ⊗ ϕ

g,ε
j

∥∥∥
∞
‖ f ‖∞‖g‖∞

6 ε‖ f ‖∞‖g‖∞.

Putting all together we conclude that ‖φ[ f � g]− [ξε]‖∞ 6 M2ε‖ f ‖∞‖g‖∞. Thus
we have that φ[ f � g] ∈ S.

COROLLARY 5.17. In the hypotheses of Theorem 5.16 and for every pseudo crossed
product µ with the hereditary subbundle property, there exists a unique unitary

Uµ : C∗µ(X )⊗C∗µ(B) C∗µ(Y)→ C∗µ(X ⊗B Y)

such that Uµ(qXµ ( f )⊗ qYµ (g)) = qX⊗BYµ [ f � g], for all f ∈ Cc(X ) and g ∈ Cc(Y).
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Proof. Uniqueness is clear, we deal with existence. Let I be the submodule
of C∗(X ) ⊗C∗(B) C∗(Y) corresponding to ICµ . Then I = C∗(X ) ⊗C∗(B) C∗(Y)ICµ
and, by Proposition 4.15,

U(I) = C∗(X ⊗B Y)ICµ = IX⊗BYµ .

Then there exists a unique unitary

V : C∗(X )⊗C∗(B) C∗(Y)/I → C∗µ(X ⊗B Y), ξ + I 7→ qX⊗BYµ ◦U(ξ),

where we have identified C∗µ(X ⊗B Y) with the quotient of C∗(X ⊗B Y) by IX⊗BYµ .
To prove the existence of a unitary

W : C∗(X )⊗C∗(B) C∗(Y)/I → C∗µ(X )⊗C∗µ(B) C∗µ(Y)

such that W( f ⊗ g + I) = qXµ ( f )⊗ qYµ (g), it suffices to prove that∥∥∥ n

∑
i=1

qXµ ( fi)⊗ qYµ (gi)
∥∥∥ =

∥∥∥ n

∑
i=1

fi ⊗ gi + I
∥∥∥

for all f1, . . . , fn ∈ Cc(X ), g1, . . . , gn ∈ Cc(Y) and n ∈ N. But, thinking of C∗µ(Z)
as C∗(Z)/IZµ for Z = X ,Y , C, we obtain∥∥∥ n

∑
i=1

qXµ ( fi)⊗ qYµ (gi)
∥∥∥2

=
∥∥∥ n

∑
i,j=1
〈qYµ (gi), 〈qXµ ( fi), qXµ ( f j)〉C∗µ(B)q

Y
µ (gj)〉C∗µ(C)

∥∥∥
=
∥∥∥ n

∑
i,j=1
〈qYµ (gi), (〈 fi, f j〉C∗(B) + IBµ )q

Y
µ (gj)〉C∗µ(C)

∥∥∥
=
∥∥∥ n

∑
i,j=1
〈qYµ (gi), qYµ (〈 fi, f j〉C∗(B)gj)〉C∗µ(C)

∥∥∥
=
∥∥∥ n

∑
i,j=1
〈gi, 〈 fi, f j〉C∗(B)gj〉C∗(C) + ICµ

∥∥∥=∥∥∥ n

∑
i=1

fi ⊗ gi + I
∥∥∥2

.

Then the unitary Uµ we are looking for is V ◦W∗ because, for all f ∈ Cc(X )
and g ∈ Cc(Y),

V ◦W∗(qXµ ( f )⊗ qYµ (g)) = V( f ⊗ g + I) = qX⊗BYµ ◦U( f ⊗ g) = qX⊗BYµ [ f � g].
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