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ABSTRACT. Given a locally compact abelian group G, we give an explicit for-
mula for the Dixmier–Douady invariant of the C∗-algebra of the groupoid ex-
tension associated to a Čech 2-cocycle in the sheaf of germs of continuous
G-valued functions. We then exploit the blow-up construction for groupoids
to extend this to some more general central extensions of étale equivalence
relations.
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1. INTRODUCTION

This article provides explicit formulas for the Dixmier–Douady invariants
of a large class of continuous-trace C∗-algebras arising from groupoid extensions.
Continuous-trace C∗-algebras are amongst the best understood and most inten-
sively studied classes of Type I C∗-algebras. A C∗-algebra A is a continuous-
trace C∗-algebra if it has Hausdorff spectrum and is locally Morita equivalent
to a commutative C∗-algebra. Alternatively, A is of continuous trace if it has
Hausdorff spectrum and every irreducible representation of A admits a neigh-
bourhood U and an element a of A such that the image of a under any ele-
ment of U is a rank-one projection. The celebrated Dixmier–Douady theorem
[3] associates to each continuous-trace C∗-algebra A with spectrum X an element
δ(A) of H3(X,Z) such that A is Morita equivalent to an abelian C∗-algebra if
and only if δ(A) = 0. Indeed, the collection of Morita-equivalence classes of
continuous-trace C∗-algebras with spectrum X forms a group under a balanced
tensor-product operation, and A 7→ δ(A) induces a group isomorphism of this
group with H3(X,Z); see Theorem 6.3 of [25].

As a result, there has been a great deal of work characterizing when C∗-
algebras associated to dynamical systems have continuous trace. For example,
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[4], [6], [16], [22], [24], and [30] investigate when a transformation group C∗-
algebra is continuous-trace; the epic [5] deals with general crossed product C∗-
algebras; and [15], [17], [18], [19], and [20] study when groupoid C∗-algebras have
continuous trace.

However, there are few results that provide tools for calculating the Dix-
mier–Douady invariant of a given continuous-trace C∗-algebra; and the results
that do address this question are not entirely satisfactory. For example, in the
examples appearing in [6] and [17], the Dixmier–Douady class is always triv-
ial. And the formula developed in [24] is somewhat unwieldy. There are, on
the other hand, some intriguing formulas in [22], and an explicit computation in
Example 4.6 in [8] based on one of these.

There is a simple reason for the dearth of results that compute δ(A): the
Dixmier–Douady invariant is difficult to compute except on an ad hoc basis. In
this note, we take some steps towards addressing this lack of computable exam-
ples, by developing usable formulas for the Dixmier–Douady class of significant
classes of groupoid C∗-algebras. Starting with a locally compact abelian group G
and a space X, we first consider groupoids constructed directly from a Čech co-
cycle on X taking values in the sheaf of germs of continuous G-valued functions
on X. We then extend this to central groupoid extensions of equivalence rela-
tions constructed from local homeomorphisms between locally compact Haus-
dorff spaces. Not surprisingly, our most elegant results are obtained under more
restrictive hypotheses; but even in the more general situation our computation
is fairly concrete. In any case, the subject of operator algebras, and the study of
C∗-algebras associated to dynamical systems in particular, is short on concrete
examples, so we think that extra hypotheses are worth it.

The main results of the paper are as follows. Consider a second-countable
locally compact Hausdorff space X and a second-countable locally compact abe-
lian group G. Take a Čech 2-cocycle c on X, relative to a locally finite open cover
U = {Ui : i ∈ I} of X, taking values in the sheaf G of germs of continuous G-
valued functions on X. The associated Raeburn–Taylor groupoid ΓU consists of
triples (i, x, j) such that x ∈ Uij ⊆ X. The cocycle c determines a natural central
extension Σc of ΓU by G: as a set Σc is just a copy of ΓU ×G, but the composition
in the second coordinate is twisted by the cocycle c as in equation (3.1). Our first
main result, Theorem 3.4, says that C∗(Σc) is a continuous-trace algebra with
spectrum Ĝ × X, and computes its Dixmier–Douady invariant as follows: write
S for the sheaf of germs of continuous T-valued functions on Ĝ × X, and let
V be the cover { Ĝ ×Ui }i∈I of Ĝ × X. Then the cocycle c determines a cocycle
νc ∈ Z2(Ĝ× X, S ) relative to V such that νc

ijk(τ, x) = τ(cijk(x)) for all i, j, k ∈ I,

x ∈ Uijk and τ ∈ Ĝ. The assignment c 7→ νc descends to a homomorphism

m∗ : H2(X, G )→ H2(Ĝ× X, S ),
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and Theorem 3.4 shows that, under the canonical isomorphism of H3(Ĝ× X,Z)
with H2(Ĝ× X, S ), the Dixmier–Douady class of C∗(Σc) is carried to the coho-
mology class [νc]. The set-up and proof of this theorem occupy Sections 3–5.

We then build upon Theorem 3.4 in Section 6 to describe a method for com-
puting the Dixmier–Douady invariants of more general central extensions. We
start with a local homeomorphism ψ : Y → X of second-countable locally com-
pact Hausdorff spaces, and form the equivalence relation R(ψ) on Y consisting of
pairs with identical image under ψ. We consider a central extension Σ of R(ψ) by
G×Y. We assume that X is locally G-trivial in the sense that every open cover of
X admits a refinement such that, on double overlaps, every principal G-bundle
is trivial. This hypothesis ensures that a suitable blow-up Σ′ of the extension Σ
admits a continuous section for the surjection onto the corresponding blow-up
R′ of R(ψ). It follows that Σ′ is determined by a continuous G-valued groupoid
2-cocycle on R′. A little more work puts us back in the situation of Theorem 3.4,
and we can use this to compute the Dixmier–Douady invariant of C∗(Σ′). The
blow-up operation determines an equivalence of extensions, and hence a Morita
equivalence of their C∗-algebras, yielding a computation of δ(C∗(Σ)).

For the reader’s convenience we include an appendix with background on
central extensions of groupoids by locally compact abelian groups and, in partic-
ular, those that arise from continuous 2-cocycles (see Appendix A).

2. CENTRAL ISOTROPY

In the sequel, Σ will always be a second-countable locally compact Haus-
dorff groupoid with a Haar system {λu}u∈Σ(0) . The isotropy groupoid of Σ is the
closed subgroupoid

I(Σ) = { γ ∈ Σ : s(γ) = r(γ) }.

Note that I(Σ) is a group bundle over Σ(0) and that I(Σ) admits a Haar system
if and only if the isotropy map

u 7→ Σ(u) = { γ ∈ I(Σ) : s(γ) = u = r(γ) }

is continuous from Σ(0) into the locally compact Hausdorff space C(Σ) of closed
subgroups of Σ ([27], Lemma 1.3). In the sequel we need to assume not only that
each Σ(u) is abelian, but that the isotropy is central in the following sense.

DEFINITION 2.1. Let Σ be a groupoid, I(Σ) its isotropy subgroupoid, and
q : Σ(0) → Σ\Σ(0) the quotient map. We say that Σ has central isotropy if Σ\Σ(0)

is Hausdorff and there is an abelian group bundleA over Σ\Σ(0) and a groupoid
isomorphism ι : q∗A → I(Σ) such that ι|Σ(0) = id and such that

ι(r(γ), a)γ = γι(s(γ), a) for all a ∈ A([r(γ)]).
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The use of the word “central” is partially justified by the following example.

EXAMPLE 2.2. Let (G, X) be a transformation group with G\X Hausdorff
and such that each stability group Gx = { h ∈ G : h · x = x } is central in G. Let
Σ = G× X be the corresponding transformation groupoid. Note that Gh·x = Gx
for all h ∈ G and x ∈ X. Then

A = { (G · x, h) ∈ G\X× G : h ∈ Gx }
is a group bundle over G\X. If q : X → G\X is the orbit map, then Σ has central
isotropy with respect to the isomorphism ι(x, G · x, h) = (h, x).

An important class of examples comes from T-groupoids or twists as in-
troduced by the second author ([11], [12]). Recall that a T-groupoid Σ over a
groupoidR is a unit-space-preserving groupoid extension

(2.1)
Σ(0) ×T Σ R

Σ(0)

ι π

such that

ι(r(γ), z)γ = γι(s(γ), z) for all γ ∈ Σ and z ∈ T.

Given a T-groupoid Σ overR, there is a free and proper T-action on Σ such
that z · γ = ι(s(γ), z)γ. We can identify R with the orbit space T\Σ and π with
the orbit map; see Section 3 of [19]. See Appendix A for more background on
extensions of groupoids by locally compact abelian groups.

EXAMPLE 2.3. Recall that a groupoidR is principal if the isotropy groupoid
I(R) is just R(0). Let Σ be a T-groupoid over a principal groupoid R. Then
ι(Σ(0) ×T) = I(Σ), and if Σ\Σ(0) is Hausdorff, then Σ has central isotropy.

REMARK 2.4. In previous studies of T-groupoids, the emphasis was on the
quotient C∗-algebra C∗(R; Σ). Here we focus on C∗(Σ).

A central player in much of the work on the Effros–Hahn theory for group-
oids, as in [10] and [27], is the equivalence relation R associated to Σ. By definition,
thisR is the image of the map π : Σ→ Σ(0) × Σ(0) given by π(γ) = (r(γ), s(γ)).
Since the relative product topology on R is unlikely to be useful in general, it
is common to equip R with the quotient topology, which is finer (often strictly
finer) than the relative product topology. Even then, R need not be a tractable
topological space. However, the isotropy groupoid I(Σ) acts on the right and
left of Σ, and with respect to the quotient topologies

R ∼= I(Σ)\Σ = Σ/I(Σ).

As observed above, I(Σ) has a Haar system precisely when u 7→ Σ(u) is contin-
uous. In this case, the orbit map k : Σ→ I(Σ)\Σ is open (see Lemma 2.1 in [19]),
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and then R is locally compact and Hausdorff. The subtlety here is that the orbit
map for an action by a groupoid Γ is open provided the range map of Γ is open;
this is automatic if Γ has a Haar system.

If R is locally compact, then we can ask for R to act properly on its unit
space, which we identify with Σ(0). In that case, Lemma 2.1 in [17] shows that we
can identifyR with π(Σ) under the relative topology inherited from Σ(0) × Σ(0).

Hence we work under three key assumptions:

(A1) Σ has central isotropy;
(A2) the isotropy map u 7→ Σ(u) is continuous;
(A3) the action ofR on Σ(0) is proper.

If Σ has central isotropy and C∗(Σ) has continuous trace, then (A2) and (A3) are
automatically satisfied ([15], Theorem 1.1).

In any event, we have a unit-preserving short exact sequence of groupoids

q∗A Σ R

Σ(0)

ι π

similar to (2.1). We study special cases of these sorts of groupoids in the next four
sections.

REMARK 2.5 (Irreducible representations induced from characters). In our
main results, we will make considerable use of irreducible representations of
C∗(Σ) induced from characters on an abelian stability group as described in Sec-
tion 2 of [9]. If τ is a character on the stability group Σ(u), then we will write
IndΣ(u, τ), or simply Ind(u, τ) when there is no ambiguity about Σ, for the in-
duced represenation IndΣ

Σ(u)(τ). Then Ind(u, τ) is irreducible by Theorem 5 in
[9]. If {λu}u∈Σ(0) , is a Haar system on Σ and µ is a Haar measure on Σ(u), then
Ind(u, τ) acts by convolution on the completion of Cc(Σu) with respect to to the
pre-inner product

(2.2) ( f1 | f2) =
∫

Σ(u)

∫
Σ

f2(σ−1) f1(σ
−1g)dλu(σ)τ(g)dµ(g).

If, as will always be the case here, the orbits [u] = Σ · u are closed, then every
irreducible representation of C∗(Σ) factors through a restriction Σ([u]) = Σ

[u]
[u].

Since the latter is equivalent as a groupoid to the isotropy group Σ(u), it is easy
to see directly that Ind(u, τ) is irreducible. If all the isotropy groups are abelian,
then it is also clear that every irreducible representation of C∗(Σ) is of this form
for some u ∈ Σ(0) and τ ∈ Σ(u)∧. Furthermore, if [u] = [v] and σ ∈ Σv

u then
Ind(u, τ) is easily seen to be equivalent to Ind(v, σ · τ) where σ · τ(g) = τ(σ−1gσ).
If we have central isotropy, so that we can identify Σ(u) and Σ(σ · u), then the
spectrum of C∗(Σ) is parameterized by { ([u], τ) : u ∈ Σ(0) and τ ∈ Σ(u)∧ }.
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3. A CLASS OF EXAMPLES

Let X be a second-countable locally compact Hausdorff space and G a sec-
ond-countable locally compact abelian group. Let G be the sheaf of germs of
G-valued functions on X (see Section 4.1 of [25]). Let a be an element in the
sheaf cohomology group H2(X, G ). Then a is represented by a two cocycle c ∈
Z2(U , G ) for some locally finite cover U = {Ui }i∈I of X by precompact open sets.
We say that c is normalized if ciii(x) = 0 for all i and all x ∈ Ui. It is easy to see
that every 2-cocycle is cohomologous to a normalized one and we will assume all
our cocycles are normalized. We record some elementary facts about normalized
cocycles for reference.

LEMMA 3.1. Let c ∈ Z2(U , G ) be normalized. Then for all i, j, k ∈ I,
(i) ciij(x) = cijj(x) = 0;

(ii) ciji(x) = cjij(x);
(iii) cijk(x) = −cjik(x) + ciji(x);
(iv) cijk(x) = −cikj(x) + cjkj(x);
(v) ciji(x) + cjki(x) = −cikj(x) + ciki(x) + cjkj(x).

Proof. These are all straightforward consequences of the cocycle identity.
For example, (i) follows from computations like

0 = δ(c)iiji(x) = ciji(x)− ciji(x) + ciii(x)− ciij(x).

For (ii), consider δ(c)ijij(x) and use (i). For (iii), consider δ(c)ijik(x) and (iv) fol-
lows from δ(c)ijkj(x). We get (v) using (iii) and (iv):

cikj(x) = −cijk(x) + cjkj(x) = cjik(x)− ciji(x) + cjkj(x)

= −cjki(x) + ciki(x)− ciji(x) + cjkj(x).

Given U , we can form the blow-up groupoid (the terms “pull-back” and
“ampliation” are also used; blow-ups are defined and discussed in Section 3.3 of
[31]) ΓU with respect to the natural map of ä Ui onto X:

ΓU = { (i, x, j) : x ∈ Uij := Ui ∩Uj }

with (i, x, j)(j, x, k) = (i, x, k) and (i, x, j)−1 = (j, x, i). In particular, ΓU is a prin-
cipal groupoid with unit space Γ

(0)
U = ä Ui, and is equivalent to the space X (see

[7] and [23]).
Let Σc be the groupoid extension equal as a topological space to G × ΓU

endowed with the operations

(3.1) (g, (i, x, j))(h, (j, x, k)) = (g + h + cijk(x), (i, x, k))

and

(g, (i, x, j))−1 = (−g− ciji(x), (j, x, i)).
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Since

(g, (i, x, j))(g, (i, x, j))−1 = (g, (i, x, j))(−g− ciji(x), (j, x, i)) = (0, (i, x, i)),

and similarly

(g, (i, x, j))−1(g, (i, x, j)) = (0, (j, x, j)),

we can identify the unit space of Σc with ä Ui. Let µ be a Haar measure on G. We
equip Σc with the Haar system λ = {λ(i,x)} given by

λ(i,x)( f ) = ∑
j

∫
G

f (g, (i, x, j))dµ(g).

Then using Lemma 3.1,

f ∗ f ′(g, (i, x, j)) = ∑
k

∫
G

f (h, (i, x, k)) f ′(g− h− ciki(x) + ckij(x), (k, x, j))dµ(h)

= ∑
k

∫
G

f (h, (i, x, k)) f ′(g− h− cikj(x), (k, x, j))dµ(h)(3.2)

while

f ∗(g, (i, x, j)) = f (−g− ciji(x), (j, x, i)).

If we define ι : G×ä Ui → Σc by

ι(g, (i, x)) = (g, (i, x, i)),

and π : Σc → ΓU by

π(g, (i, x, j)) = (i, x, j),

then we obtain a groupoid extension

(3.3)
G×ä Ui Σc ΓU .

ä Ui

ι π

We think of Σc as a generalized twist in which T has been replaced by G. As
in Remark 2.5, we can identify the spectrum of C∗(Σc) as a set with Ĝ × X via
(τ, x) 7→ [Ind((i, x), τ)] for any i such that x ∈ Ui.

LEMMA 3.2. Let Σc be as above. Let I(x) = { j ∈ I : x ∈ Uj }. Then
Ind((i, x), τ) is equivalent to the representation L on `2(I(x)) where L( f ) is given by
multiplication by the matrix A = (ajk) with

ajk = τ(cijk(x))
∫
G

f (g, (j, x, k))τ(g)dµ(g).
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Proof. We have (Σc)(i,x) = { (g, (j, x, i) : j ∈ I(x) }. Then Ind((i, x), τ) acts
by convolution on the completion of Cc((Σc)(i,x)) with respect to the inner prod-
uct given in (2.2):

( f1 | f2)=∑
j

∫
G

∫
G

f2(−h−ciji(x), (j, x, i)) f1(−h−ciji(x)+g, (j, x, i))τ(g)dµ(h)dµ(g)

=∑
j

U( f1)(j)U( f2)(j),

where

U( f )(j) =
∫
G

f (g− ciji(x), (j, x, i))τ(g)dµ(g).

Hence U is a unitary from the space of Ind((i, x), τ) onto `2(I(x)). But

U( f1 ∗ f2)(j)

=
∫
G

f1 ∗ f2(g− ciji(x), (j, x, i))τ(g)dµ(g)

= ∑
k

∫
G

∫
G

f1(h, (j, x, k)) f2(−h + g− ciji(x)− cjki(x), (k, x, i))τ(g)dµ(h)dµ(g)

which, since ciji(x) + cjki(x) = cijk(x) + ciki(x), is

= ∑
k

∫
G

∫
G

f1(h, (j, x, k)) f2(−h + g− cijk(x)− ciki(x), (k, x, i))τ(g)dµ(h)dµ(g)

= ∑
k

τ(cijk(x))
∫
G

f1(h, (j, x, k))τ(h)dµ(h)U( f2)(k) = ∑
k

ajkU( f2)(k).

Thus U intertwines Ind((i, x), τ) with multiplication by A = (ajk) as claimed.

REMARK 3.3. There is a continuous groupoid 2-cocycle ϕc ∈ Z2(ΓU , G)
given by the formula ϕc((i, x, j), (j, x, k)) = cijk(x) for x ∈ Uijk. For this cocy-
cle, Σc is equal to the extension Σ(ΓU , ϕc) described in Notation A.4 under the
natural identification.

Our first goal is to determine the Dixmier–Douady class of C∗(Σc). To do
so, we need the following construction. Given a Čech 2-cocycle c ∈ Z2(U , G ),
where U = {Ui}i∈I is a locally finite open cover of X, the cover V = {Ĝ×Ui}i∈I
of Ĝ× X is locally finite and supports a normalized 2-cocycle νc such that

(3.4) νc
ijk(τ, x) = τ(cijk(x)).
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There is a well-defined homomorphism

m∗ : H2(X, G )→ H2(Ĝ× X, S )

such that m∗([c]) = [νc] for all c ∈ Z2(X, G ).
Our first main theorem is the following computation of the Dixmier–Dou-

ady class of C∗(Σc).

THEOREM 3.4. Suppose that X is a second-countable locally compact Hausdorff
space and that G is a second-countable locally compact abelian group. Let G be the
sheaf of germs of continuous G-valued functions on X. Suppose that c ∈ Z2(U , G )
is a normalized cocycle on a locally finite cover U by precompact open sets represent-
ing a class a ∈ H2(X, G ), and let Σc be the associated groupoid extension (3.3). Then
(τ, x) 7→ [Ind((i, x), τ)], x ∈ Ui, is a homeomorphism of Ĝ × X with the spectrum
C∗(Σc)∧. Furthermore C∗(Σc) has continuous trace, and with respect to this identifica-
tion of the spectrum with Ĝ × X, its Dixmier–Douady class δ(C∗(Σc)) is equal to the
image of m∗(a) in H3(Ĝ× X,Z).

The proof of Theorem 3.4 requires some preparation, including the Rae-
burn–Taylor construction described in the next section. So we defer the proof to
Section 5.

4. THE RAEBURN–TAYLOR ALGEBRA

For our computation of the Dixmier–Douady class of C∗(Σc), we want a
slight modification of the Raeburn–Taylor algebra based on their original construc-
tion in [23] and reproduced in Proposition 5.40 in [25]. Specifically, given a nor-
malized 2-cocycle ν = {νijk} ∈ Z2(U , S ) defined on a locally finite cover U by
precompact open sets, we want to produce a concrete C∗-algebra A(ν) with finite-
dimensional representations such that δ(A(ν)) is the image of [ν] in H3(X,Z). In
Proposition 5.40 of [25] and in [23], it is assumed for convenience that ν is alter-
nating. Although every cocycle is cohomologous to an alternating one by Propo-
sition 4.41 in [25], it will simplify our arguments here to observe that basically the
same constructs work in the normalized case. We supply some of the details for
completeness and also since we will have to push the envelope a bit further in
Section 5.

REMARK 4.1. It is not stated in [23] that their cocycle is alternating, but it
is needed for their constructions. Furthermore, there is a subtle caveat in the
Raeburn–Taylor construction. They use the shrinking lemma (see Lemma 4.32
in [25]) to replace U by a cover V = {Vi}i∈I with the same index set such that
Vi ⊂ Ui. Replacing U by V allows them to assume that each νijk extends to Uijk.
The exposition here, taken from [25], avoids this technicality.
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To construct A(ν), we begin by forming the algebra A1(ν) which is the set
of sparse I × I matrices

f = ( fij)i,j∈I

where each fij ∈ C0(X) and vanishes off Uij. For each x ∈ X, the set I(x) := { i ∈
I : x ∈ Ui } is finite. Thus if nx = |I(x)|, then ( fij(x))i,j∈I is an nx × nx matrix. We
define a multiplication on A1(ν) by twisting the usual matrix multiplication with
ν:

( fij)(glk) = (hik)

where

(4.1) hik(x) = ∑
j

νijk(x) fij(x)gjk(x).

To see that the sum in (4.1) is meaningful, observe that it is always a finite sum:

hik(x) =

{
∑{ j∈I:x∈Uijk } νijk(x) fij(x)gjk(x) if x ∈ Uijk for some j, and

0 otherwise.

As in Lemma 5.39 in [25], using the local finiteness of the cover and the compact-
ness of the Ui, it is not hard to see that each hik is continuous and vanishes off Uik.
(This will also be a special case of Lemma 5.1.)

To get an involution, we have to adjust the definition of the involution on
A(ν) given by Raeburn and Taylor to account for the fact that our cocycle might
not be alternating: we define

f ∗ = ( fij)
∗ = (gij) where gij(x) = νiji(x) f ji(x).(4.2)

This map is involutive in view of Lemma 3.1(ii). To see that it is anti-multiplica-
tive, we require Lemma 3.1(v):

( f ∗ g)∗ij(x) = νiji(x)( f ∗ g)ji(x) = νiji(x)∑
k

νjki(x) f jk(x)gki(x)

which, using Lemma 3.1(v), is

= ∑
k

νikj(x)νiki(x)gki(x)νjkj(x) f jk(x) = ∑
k

νikj(x)g∗ik(x) f ∗kj(x) = (g∗ ∗ f ∗)ij(x).

We now follow the discussion preceding Proposition 5.40 in [25] mutatis
mutandis.

For each pair (i, x) ∈ ä Ui, define a representation π(i,x) of A1(ν) on `2(I(x))
by letting π(i,x)( f ) act by multiplication by the matrix

(νikl(x) fkl(x))kl .

Using some straightforward cocycle identities, we see that π(i,x) is multiplicative
and ∗-preserving. The representations π(i,x) and π(j,x) are equivalent, so we get a
seminorm

‖ f ‖x = ‖π(i,x)( f )‖ for any i such that x ∈ Ui.
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Just as in Proposition 5.40 in [25] and Theorem 1 in [23], we can let

A(ν) = { f ∈ A1(ν) : x 7→ ‖ f ‖x vanishes at infinity on X }.

Then ‖ f ‖ = sup
x
‖ f ‖x is a complete norm on A(ν). Furthermore, with respect to

this norm, A(ν) is a continuous-trace C∗-algebra with spectrum X = { [π(i,x)] :
x ∈ X } and Dixmier–Douady class [ν]. (Here and elsewhere we will often write
[ν] for its image in H3(X,Z).)

REMARK 4.2 (The Raeburn–Taylor groupoid). Nowadays we favor realiz-
ing A(ν) as a groupoid C∗-algebra twisted by a continuous 2-cocycle ϕν. The
groupoid is the blow-up ΓU associated to the cover U of X corresponding to ν

and the cocycle ϕν in Z2(ΓU ,T) is given by

(4.3) ϕν((i, x, j), (j, x, k)) = νijk(x).

(The complex conjugate in (4.3) is missing from the formula in [23].) Note that
ϕν is normalized as in Appendix A since ν is. The operations in Cc(ΓU , ϕν) are
given by

f ∗ g(i, x, k) = ∑
j

f (i, x, j)g(j, x, k)ϕν((i, x, j), (j, x, k))

= ∑
j

f (i, x, j)g(j, x, k)νijk(x), and

f ∗(i, x, j) = f (j, x, i)ϕν((i, x, j), (j, x, i)) = νiji(x) f (j, x, i).

Looking over these formulas, it is immediate that we get a ∗-homomor-
phism Φ : Cc(ΓU , ϕν)→ A(ν) given by

Φ( f )ij(x) = f (i, x, j).

Just as observed in Remark 3 in [23], this map extends to an isomorphism.

PROPOSITION 4.3 ([23], Remark 3). The map Φ extends to an isomorphism of
C∗(ΓU , ϕν) onto A(ν).

The proof is essentially the same, but easier, than the proof of Theorem 3.4
that is given below.

5. THE DIXMIER–DOUADY CLASS OF C∗(Σc)

Given a locally compact space X, a locally compact abelian group G and a
2-cocycle c ∈ Z2(U , G ), let νc be as in (3.4). We can form the associated Raeburn–
Taylor twisted groupoid (ΓV , ϕνc). We want to verify that C∗(ΓV , ϕνc) is a con-
tinuous-trace C∗-algebra with Dixmier–Douady class [νc] = [m∗([c])], and then
to realize C∗(ΓV , ϕνc) concretely as A(νc). Unfortunately we cannot refer directly
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to Proposition 5.40 in [25] for this because V is not a cover of ΓU × X by pre-
compact sets and the proof of Proposition 5.40 in [25] assumes this, even if it is
not mentioned in the statement. So in this section we show that C∗(ΓV , ϕνc) is
continuous-trace with the desired Dixmier–Douady class for the given cover V ,
and then use this to prove Theorem 3.4.

We let A1(ν
c) be defined just as in Section 4. We want to define ( fij)(gij)

to be the matrix (hij) defined by the equation (4.1). To see that this determines a
binary operation on A1(ν

c) we need the following analogue of Proposition 5.39
in [25].

LEMMA 5.1. Let f = ( fij) and g = (gij) be elements of A1(ν
c). Define

hik(τ, x) = ∑
j

fij(τ, x)gjk(τ, x)νc
ijk(τ, x).

Then hik ∈ C0(Ĝ× X) and vanishes off Vik.

Proof. Clearly, hik vanishes off Vik. Since each point x in the compact set Uij
has a neighborhood W that meets only finitely many Ul , there is a finite set F such
that

hik(τ, x) = ∑
j∈F

fij(τ, x)gjk(τ, x)νc
ijk(τ, x)

for all (τ, x) ∈ Vij = Ĝ×Uij.
Since each summand is in C0(Ĝ × X), it will suffice to see that hik is con-

tinuous on Ĝ × X. Suppose that (τn, xn) → (τ0, x0). It is enough to show that
hik(τn, xn)→ hik(τ0, x0). For this, it suffices to consider each summand

aj(τ, x) =

{
fij(τ, x)gjk(τ, x)νc

ijk(τ, x) if x ∈ Uijk,

0 otherwise.

We clearly have hik(τn, xn) → hik(τ0, x0) if (τ0, x0) ∈ Vijk or if (τ0, x0) 6∈ Vijk. So
we suppose that (τ0, x0) ∈ Vijk \Vijk = Ĝ× (Uijk \Uijk).

We suppose that aj(τn, xn) 6→ aj(τ0, x0) = 0 and derive a contradiction. By
passing to a subsequence, we can assume that |aj(τn, xn)| > ε > 0 for all n. Since
x0 /∈ Uijk, we can assume by symmetry that x /∈ Uij and hence that x0 ∈ Uij \Uij.
Since fij is continuous on X and vanishes off Uij, we have fij(xn) → 0. Hence
aj(τn, xn)→ 0, a contradiction.

Since there is no difficulty with the involution as defined in (4.2), we see
that A1(ν

c) is a ∗-algebra just as in Section 4. We get seminorms ‖ f ‖(τ,x) =

‖π(i,(τ,x))( f )‖ almost exactly as in Proposition 5.40 in [25], and let

A(νc) := { f ∈ A1(ν
c) : (τ, x) 7→ ‖ f ‖(τ,x) vanishes at infinity}.
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Just as in the proof of Proposition 5.40 in [25], A(νc) is complete with respect to
the norm

‖ f ‖ = sup
(τ,x)
‖ f ‖(τ,x),

and has spectrum identified (topologically) with Ĝ × X. Moreover, we have the
following analogue of the Raeburn–Taylor result.

LEMMA 5.2. The C∗-algebra A(νc) has continuous trace with spectrum Ĝ × X
and Dixmier–Douady class δ(A(νc)) = [νc].

Proof. We have already seen that A(νc) is a C∗-algebra with Hausdorff spec-
trum. We continue by making the necessary modifications to the proof of Propo-
sition 5.40 in [25]. Let {On} be a locally finite cover of Ĝ with open, precompact
sets. To show that A(νc) has continuous trace, we show that it has local rank-one
projections as required by Definition 5.13 in [25]. Let (τ, x) ∈ Ĝ × X, say with
(τ, x) ∈ On ×Ui. Let φ ∈ C+

c (On ×Ui) be such that φ ≡ 1 near (τ, x). Let

pjk(x) =

{
φ(x) if j = i = k, and
0 otherwise.

Then p = (pjk) ∈ A(νc) and

π(i,(τ′ ,x′))(p)

is a rank-one projection for (τ′, x′) near (τ, x). This suffices.
We will calculate δ(A(νc)) using Lemma 5.28 in [25]. Using the shrinking

lemma (see Lemma 4.32 in [25]), we can find compact sets Fn,i in Wn,i := On ×Ui
such that the interiors of the Fn,i cover Ĝ× X. Since W = {Wn,i} is a refinement
of V , [νc] is represented by the cocycle in Z2(W , S ) given by

ν̃c
(n,i)(m,j)(l,k)(τ, x) = νc

ijk(τ, x).

Let φn,i ∈ C+
c (Wn,i) be such that φn,i ≡ 1 on Fn,i. Then as above, we get

p(n, i) ∈ A(νc) such that

π(i,(τ,x))(p(n, i))

is a rank-one projection for all (τ, x) ∈ Fn,i. Similarly, let φ(n,i)(m,j) be an element of
C+

c (W(n,i)(m,j)) which is identically one on F(n,i)(m,j). Then we get v((n, i), (m, j)) ∈
A(νc) with

v((n, i), (m, j))rs(τ, x) =

{
φ(n,i)(m,j)(τ, x) if r = i and s = j, and
0 otherwise.
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Then we check that

π(i,(τ,x))(v((n, i), (m, j))v((n, i), (m, j))∗) = π(i,(τ,x))(p(n, i)),

while, for all (τ, x) ∈ F(n,i)(m,j),

π(i,(τ,x))(v((n, i), (m, j))∗v((n, i), (m, j))) = π(i,(τ,x))(p(m, j)).

Note that the situation is symmetric as π(j,(τ,x)) is equivalent to π(i,(τ,x)) if
x ∈ Uij.

If (τ, x) ∈ F(n,i)(m,j)(l,k), then

φ(n,i)(m,j)(τ, x) = φ(m,j),(l,k)(τ, x) = φ(n,i),(l,k)(τ, x) = 1.

Thus we have the following that completes the proof:

[v((n, i), (m, j))v((m, j), (l, k))]rs(τ, x)

= ∑
a

νc
rsa(τ, x)v((n, i), (m, j))ra(τ, x)v((m, j), (l, k))as(τ, x)

=

{
0 if r 6= i or s 6= l, and
νc

ijk(τ, x)φ(n,i)(m,j)(τ, x)φ(m,j)(l,k)(x, τ) if r = i and s = l;

=

{
0 if r 6= i or s 6= l, and
νc

ijk(τ, x)φ(n,i)(l,k)(τ, x) if r = i and s = l;

= νc
ijk(τ, x)v((n, i), (l, k))rs(τ, x)= ν̃c

(n,i)(m,j)(l,k)(τ, x)v((n, i), (l, k))(τ, x).

With these modifications in place, we can prove Theorem 3.4.

Proof of Theorem 3.4. By Lemma 5.2, it suffices to produce an isomorphism
Φ : C∗(Σc)→ A(νc) that intertwines each Ind((i, x), τ) with π(i,(τ,x)). We use the
Fourier transform. If f ∈ Cc(Σc), then we define

Φ( f )(i, (τ, x), j) =
∫
G

τ(g) f (g, (i, x, j))dµ(g).

To see that Φ( f ) ∈ A(νc), first suppose that there exist φ ∈ Cc(G) and h ∈ Cc(ΓU )
such that f (g, (i, x, j)) = φ(g)h(i, x, j). Then

Φ( f )(i, (τ, x), j) = φ̂(τ)h(i, x, j),

and Φ( f ) ∈ A(νc) because φ̂ ∈ C0(Ĝ). Since finite sums of such functions are
dense in the inductive limit topology, we deduce that Φ( f ) ∈ A(νc) for all f .
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Note

Φ( f ∗(i, (τ, x), j)) =
∫
G

τ(g) f (−g− ciji(x), (j, x, i))dµ(g)

=
∫
G

τ(g) f (g− ciji(x), (j, x, i))dµ(g)

= τ(ciji(x))
∫
G

τ(g) f (g, (j, x, i))dµ(g)

= νc
iji(τ, x)Φ( f )(j, (τ, x), i)) = Φ( f )∗(i, (τ, x), j).

Hence Φ is ∗-preserving.
To see that it is multiplicative, we use (3.2) at the second equality, and Fu-

bini’s theorem and invariance of Haar measure at the third to calculate:

Φ( f ∗ f ′)(i, (τ, x), j)

=
∫
G

τ(g) f ∗ f ′(g, (i, x, j))dµ(g)

= ∑
k

∫
G

∫
G

τ(g) f (h, (i, x, k)) f ′(g− h− cikj(x), (k, x, j))dµ(h)dµ(g)

= ∑
k

∫
G

∫
G

τ(g + h + cikj(x)) f (h, (i, x, k)) f ′(g, (k, x, j))dµ(g)dµ(h)

= ∑
k

τ(cikj(x))Φ( f )(i, (τ, x), k)Φ( f ′)(k, (τ, x), j)

= ∑
k

Φ( f )(i, (τ, x), k)Φ( f ′)(k, (τ, x), j)ϕνc((i, (τ, x), k), (k, (τ, x), j))

= Φ( f ) ∗Φ( f ′)(i, (τ, x), j).

It remains to see that Φ is isometric and surjective. It follows from Lem-
ma 3.2, that Ind((i, x), τ)( f ) is equivalent to multiplication by the matrix

[τ(cijk)(x)Φ( f )].

Since τ(cijk(x)) = νc
ijk(τ, x), we see that

Ind((i, x), τ)( f ) = π(i,(τ,x))(Φ( f )).

This shows immediately that Φ is isometric. It also shows that the image
Φ(C∗(Σc)) is a rich subalgebra (in the sense of Definition 11.1.1 in [2]) of the
continuous-trace C∗-algebra A(νc). It follows that Φ is surjective by Proposi-
tion 11.1.6 in [2].
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6. GROUPOIDS ASSOCIATED TO LOCAL HOMEOMORPHISMS

In this section we extend our results from Section 3 to a more general setting.
Let ψ : Y → X be a local homeomorphism and form the principal groupoid

R(ψ) = { (x, y) ∈ Y×Y : ψ(x) = ψ(y) }.
Let G be a locally compact abelian group. Given a unit-space-preserving group-
oid extension

(6.1)
G×Y Σ R(ψ)

Y

ι π

such that ι(g, r(σ))σ = σι(g, s(σ)) for all g ∈ G and σ ∈ Σ, the groupoid Σ is
a groupoid with central isotropy. As described in detail in Appendix A, Σ is a
G-twist over R(ψ). So Σ is a principal G-bundle over R(ψ) with G action

g · σ = ι(g, r(σ))σ = σι(g, s(σ)) = σ · g.

We endow Σ with the Haar system {λy} given by

(6.2)
∫
Σ

f (σ)dλy(σ) := ∑
r(σ)=y

∫
G

f (g · σ)dµ(g) = ∑
r(σ)=y

∫
G

f (σ · g)dµ(g).

If π has a continuous section κ : R(ψ) → Σ (this is equivalent to π being
trivial as a principal G-bundle), then Proposition A.6 shows that Σ is properly iso-
morphic to the extension Σ(R(ψ), ϕ) constructed from a continuous (normalised)
G-valued 2-cocycle ϕ ∈ Z2(R(ψ), G) as in Notation A.4.

To proceed, we need to assume that the map π in (6.1) has local sections:
that is, for each (x, y) ∈ R(ψ), there is a neighbourhood U of (x, y) on which
there is a continuous map s : U → Σ satisfying π ◦ s = idU . If G is a Lie group,
then this is automatic due to the Palais slice theorem ([21], Section 4.1). But in
addition, we need to guarantee that the collection of local sections is sufficiently
robust to allow us to build an equivalent groupoid with a global section. To this
end, we assume that X is locally G-trivial: every open cover of X has a refinement
{Wi} such that each H1(Wij, G ) = {0}. Equivalently, all locally trivial principle
G-bundles over the double-overlaps Wij are trivial. A special case where these as-
sumptions automatically hold is when G is a Lie group and X admits good covers
in the sense that every open over of X admits a refinement in which all nontrivial
overlaps are contractible. This suffices: locally trivial principle G-bundles over
a space Z have a classifying space BG so that bundle classes are parameterized
by homotopy classes [Z, BG]; so if Z is contractible, then all bundles over Z are
trivial. All differentiable manifolds admit good covers by Corollary I.5.2 in [1].

For our main result, we will need to verify that the Morita equivalences
we will use preserve the identification of the spectra with Ĝ × X in each case.
In particular, recall that a subset U ⊂ Y = Σ(0) is full if it meets every orbit:
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equivalently, Σ · U = Σ(0). In that case, ΣU is a (Σ, Σ(U))-equivalence. Then
induction from C∗(Σ(U)) to C∗(Σ), ΣU-Ind, induces the Rieffel homeomorphism
of C∗(Σ(U))∧ onto C∗(Σ)∧. (For the basics on induced representations in this
context, see Section 2 of [9].) Both these C∗-algebras have spectrum identified
with Ĝ× X, and the observation that the Rieffel homeomorphism is the identity
with respect to these identifications follows immediately from the next lemma.

LEMMA 6.1. If y ∈ U and τ ∈ Ĝ, then ΣU-Ind(IndΣ(U)(y, τ)) is equivalent to
IndΣ(y, τ).

Proof. As on p. 12 of [14] or equation (1.3) in [28], the Cc(Σ(U))-valued inner
product on Cc(ΣU) is given by

〈 f1 , f2〉
Σ(U)

(γ) =
∫
Σ

f1(σ−1) f2(σ
−1γ)dλr(γ)(σ).

Then ΣU-Ind IndΣ(U)(y, τ) acts by convolution on the completion of Cc(ΣU) �
Cc(Σ(U)y) with respect to the inner product

( f1 ⊗ k1 | f2 ⊗ k2) = (〈 f2 , f1〉
Σ(U)
∗ k1 | k2)

which, by (2.2), is

=
∫
G

∫
Σ(U)

k2(σ−1)〈 f2 , f1〉
Σ(U)
∗ k1(σ

−1 · g)τ(g)dλ
y
U(σ)dµ(g)

=
∫
G

∫
Σ(U)

∫
Σ(U)

k2(σ−1)〈 f2 , f1〉
Σ(U)

(η)k1(η
−1σ−1 · g)τ(g)

dλ
s(σ)
U (η)τ(g)dλ

y
U(σ)dµ(g)

which, after sending η 7→ σ−1η, is

=
∫
G

∫
Σ(U)

∫
Σ(U)

k2(σ−1)〈 f2 , f1〉
Σ(U)

(σ−1η)k1(η
−1 · g)τ(g)

dλ
y
U(η)τ(g)dλ

y
U(σ)dµ(g)

=
∫
G

∫
Σ(U)

∫
Σ(U)

∫
Σ

f2(γ−1)k2(σ−1) f1(γ
−1σ−1η)k1(η

−1 · g)τ(g)

dλs(σ)(γ)dλ
y
U(η)dλ

y
U(σ)dµ(g)

which, after γ 7→ σ−1γ, is

=
∫
G

∫
Σ(U)

∫
Σ(U)

∫
Σ

f2(γ−1σ)k2(σ−1) f1(γ
−1η)k1(η

−1 · g)τ(g)

dλy(γ)dλ
y
U(η)dλ

y
U(σ)dµ(g)
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=
∫
G

∫
Σ

W( f2 ⊗ k2)(σ−1)W( f1 ⊗ k1)(σ
−1 · g)dλy(σ)τ(g)dµ(g),

where

W( f ⊗ k)(σ) :=
∫

Σ(U)

f (ση)k(η−1)dλ
y
U(η).

It follows that W defines an isometry from the space of ΣU-Ind(IndΣ(U)(y, τ) into
the space of IndΣ(y, τ) that intertwines the two representations. Since the repre-
sentations are irreducible, W must be a unitary and the representations must be
equivalent.

We also will need to examine the case of blowing up the unit space Σ(0) with
respect to a locally finite cover U = {Ui}. This gives us the equivalent groupoid

Σ′ = { (i, σ, j) : σ ∈ Σ, r(σ) ∈ Ui and s(σ) ∈ Uj },

where the (Σ, Σ′)-equivalence is given by

Z := ä ΣUi = { (i, σ) : σ ∈ Σ and s(σ) ∈ Ui }.

We endow Σ′ with a Haar system λ = {λ(i,x)} just as in (6.2). As above, every ir-
reducible representation of C∗(Σ′) is equivalent to one of the form IndΣ′((i, y), τ)

for y ∈ Σ(0) and τ ∈ Ĝ. As before, we want the Rieffel homeomorphism in-
duced by Z-Ind to preserve the identification of these spectra with Ĝ× X. This is
verified in the next lemma which is analogous to Lemma 6.1.

LEMMA 6.2. With U and Σ′ as above, we have Z-Ind(IndΣ′((i, y), τ) equivalent
to IndΣ(y, τ) for all y ∈ Ui and τ ∈ Ĝ.

Proof. The Cc(Σ′)-valued inner product on Cc(Z) is given by

〈 f1 , f2〉
Σ′
(i, γ, j) =

∫
Σ

f1(i, σ−1) f2(j, σ−1γ)dλr(γ)(σ).

Thus Z-Ind(IndΣ′((i, y), τ)) acts by convolution on the completion of Cc(Z) �
Cc(Σ′(i,y)) with respect to the inner product

( f1 ⊗ k1 | f2 ⊗ k2) = (〈 f2 , f1〉
Σ′
∗ k1 | k2)

which, in view of (2.2), is

=
∫
G

∫
Σ′

k2(j, σ−1, j)〈 f2 , f1〉
Σ′
∗ k1(j, σ−1 · g, i)τ(g)dλ(i,y)(i, σ, j)dµ(g)
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=
∫
G

∫
Σ′

∫
Σ′

k2(j, σ−1, j)〈 f2 , f1〉
Σ′
(j, η, l)k1(l, η−1σ−1 · g, i)τ(g)

dλ(j,s(σ))(j, η, l)dλ(i,y)(i, σ, j)dµ(g)

which, after invoking left-invariance, is

∫
G

∫
Σ′

∫
Σ′

k2(j, σ−1, j)〈 f2 , f1〉
Σ′
(j, σ−1η, l)k1(l, η−1 · g, i)τ(g)

dλ(i,y)(i, η, l)dλ(i,y)(i, σ, j)dµ(g)

=
∫
G

∫
Σ′

∫
Σ′

∫
Σ

k2(j, σ−1, j) f2(j, γ−1) f1(l, γ−1σ−1η)k1(l, η−1 · g, i)τ(g)

dλs(σ)(γ)dλ(i,y)(i, η, l)dλ(i,y)(i, σ, j)dµ(g)

=
∫
G

∫
Σ′

∫
Σ′

∫
Σ

k2(j, σ−1, j) f2(j, γ−1σ) f1(l, γ−1η)k1(l, η−1 · g, i)τ(g)

dλy(γ)dλ(i,y)(i, η, l)dλ(i,y)(i, σ, j)dµ(g)

=
∫
G

∫
Σ

W( f2 ⊗ k2)(γ−1)W( f1 ⊗ k1)(γ
−1 · g)dλy(γ)τ(g)dµ(g),

where

W( f ⊗ k)(γ) =
∫
Σ′

f ((i, γ) · (i, σ, j))k(j, σ−1, i)dλ(i,y)(i, σ, j).

As in the proof of Lemma 6.1, W extends to an intertwining unitary implementing
the desired equivalence.

THEOREM 6.3. Let Y and X be second-countable locally compact Hausdorff spaces
with X locally G-trivial as defined above. Suppose that ψ : Y → X is a local homeomor-
phism, and let Σ be a groupoid extension as in (6.1). Then C∗(Σ) has continuous trace
with spectrum identified with Ĝ × X via (τ, x) 7→ Ind((i, y), τ) for any y ∈ ψ−1(x).
Furthermore, there is a locally finite open covering W = {Wj}j∈J of X and a cocycle
c ∈ Z2(W , G ) (given in (6.3) below) such that the Dixmier–Douady invariant of C∗(Σ)

is given by the image of m∗([c]) in H3(Ĝ× X,Z).

Proof. Let {Ui} be a family of open subsets of Y such that each ψ|Ui is injec-
tive, and the sets {ψ(Ui)} cover X. (For example, any cover {Ui} of Y by sets on
which ψ is injective.) Since X is locally G-trivial, there is a locally finite refinement
W = {Wj}j∈J of the cover {ψ(Ui)} of X such that H1(Wij, G ) = {0} for all i and
j. Fix r : J → I such that each Wj ⊂ ψ(Ur(j)). For each j, let Vj = ψ−1(Wj) ∩Ur(j)
so that ψ restricts to a homeomorphism of Vj onto Wj. Let Y′ =

⋃
Vj ⊆ Y. Then

Y′ is open and meets every orbit in Y. Hence Σ(Y′) is equivalent to Σ and we can
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apply Lemma 6.1. (The Σ-orbits and R(ψ)-orbits coincide on Y.) We can blow up
Σ(Y′) with respect to the cover {Vj} to get an equivalent groupoid

Σ′ = { (i, σ, j) : σ ∈ Σ, r(σ) ∈ Vi and s(σ) ∈ Vj }

and then apply Lemma 6.2. If we let

R′ = { (i, (x, y), j) : ψ(x) = ψ(y), x ∈ Vi and y ∈ Vj },

then we obtain a generalised twist

G×ä Vj Σ′ R′.

ä Vj

ι′ π′

The map (x, y) 7→ ψ(x) is a homeomorphism of R(ψ) ∩ (Vi × Vj) onto Wij.
Hence π−1(R(ψ) ∩ (Vi ×Vj)) is a trivial bundle by our assumption on the {Wi}
and there is a local section κij defined on R(ψ) ∩ (Vi × Vj) (we may choose κii
to respect the identification of unit spaces). By definition of R′ and Σ′ each κij
determines a section κ′ij : {i} × (R(ψ) ∩ (Vi ×Vj))× {j} → Σ′ satisfying

κ′ij(i, (x, y), j) = (i, κij(x, y), j).

Since the domains of the κ′ij are topologically disjoint in R′, these κ′ij assemble
into a global section κ′ : R′ → Σ′ for π′. Hence there is a continuous G-valued
normalised cocycle ϕ ∈ Z2(R′, G) such that Σ′ ∼= Σ(R′, ϕ) (see Proposition A.6
for details). There is a groupoid homomorphism τ : R′ → ΓW such that

τ(i, (x, y), j) = (i, ψ(x), j)

and

τ−1(i, w, j) = (i, (x, y), j) if x ∈ Vi and y ∈ Vj satisfy ψ(x) = w = ψ(y).

So, defining ϕ̃ := ϕ ◦ (τ−1 × τ−1) ∈ Z2(ΓW , G), we obtain an isomorphism
Σ′ ∼= Σ(ΓW , ϕ̃). We define c ∈ Z2(W , G ) by

(6.3) cijk(w) = ϕ̃((i, w, j), (j, w, k)).

Then Σ(ΓW , ϕ̃) = Σc.
The isomorphism of Σ′ and Σc clearly intertwines the two Haar systems (see

Proposition A.6), and therefore it intertwines the representations IndΣ′((i, ψ(x))
and IndΣc((i, x), τ). Combining this with Lemmas 6.2 and 6.1, the Dixmier–Dou-
ady class of C∗(Σ) can be identified with that of C∗(Σc). The result now follows
from Theorem 3.4.
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Appendix A. EXTENSIONS AND COCYCLES

Let G be a locally compact Hausdorff abelian group and let Γ be a locally
compact Hausdorff groupoid with Haar system {λu}u∈Γ(0) . Following [8], [13],
and [29], we define an extension (or twist) by G over Γ to be a central groupoid
extension Γ(0)×G ι−→ Σ

π−→ Γ where Σ(0) = Γ(0), ι is a groupoid homeomorphism
onto a closed subgroupoid of Σ such that ι(u, 0G) = u for all u ∈ Γ(0), π is an
open, surjective groupoid homomorphism such that π(u) = u for all u ∈ Γ(0),
such that π−1(Γ(0)) = ι(Γ(0) × G), and such that ι(r(σ), g)σ = σι(s(σ), g) for all
σ ∈ Σ and g ∈ G. We summarize all of this by drawing the diagram

Γ(0) × G Σ Γ.

Σ(0)

ι π

Two twists by G are properly isomorphic if there is a groupoid isomorphism be-
tween them which preserves the inclusions of Γ(0) × G and intertwines the sur-
jections onto Γ. If Γ(0) × G ι−→ Σ

π−→ Γ is an extension by G over Γ, then G acts
freely and properly on Σ via gσ := ι(r(σ), g)σ. Hence π : Σ → Γ is a principal
G-bundle. Moreover, G \ Σ ' Γ and π can be identified with the quotient map.

REMARK A.1. For completeness, we check that the action of G on Σ is prop-
er. We need to show that the map (g, σ) 7→ (gσ, σ) is proper. Let K be a compact
subset of Σ and let {(gn, σn)}n be a sequence in the preimage of K × K. Then
{gnσn}n ⊂ K and {σn}n ⊂ K. Hence there is a subsequence {σnk}k>1 such that
σkn → σ ∈ K and gkn σkn → σ′ ∈ K. It follows that π(σ) = π(σ′). Hence there
exists g ∈ G such that σ′ = gσ. Therefore

ι(r(σkn), gkn) = ι(r(σkn), gkn)σkn σ−1
kn
→ gσσ−1 = ι(r(σ), g).

Since ι is a homeomorphism, it follows that gkn → g, so the action of G on Σ is
proper.

As in [29], the Baer sum Σ1 ∗ Σ2 of two extensions Γ(0) × G −→ Σi −→ Γ is
the extension Γ(0) × G −→ Σ1 ∗ Σ2 −→ Γ with

Σ1 ∗ Σ2 = {(σ1, σ2) ∈ Σ1 × Σ2 | π1(σ1) = π2(σ2)}/ ∼,

where (gσ1, σ2) ∼ (σ1, gσ2). The map π : Σ → G is given by π[(σ1, σ2)] =

π1(σ1) = π2(σ2), and the inclusion ι : Γ(0) × G → Σ is ι(u, g) = [(ι1(u, g), u)] =
[(u, ι2(u, g))]. The inverse of the extension Γ(0) × G ι−→ Σ

π−→ Γ is the extension

Γ(0) × G ι′−→ Σ̃
π−→ Γ, where Σ̃ = Σ as a groupoid, but ι′(g) = ι(−g). The semi-

direct product Γ × G is called the trivial twist. The collection TΓ(G) of proper
isomorphism classes of twists by G forms an abelian group under ∗ with neutral
element [Γ× G].
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REMARK A.2. Let Σ be an extension by G over a principal groupoid Γ; that
is, the map γ 7→ (r(γ), s(γ)) is injective; equivalently, I(Γ) = Σ(0). Then ι(Σ(0)×
G) = I(Σ): ι(Σ(0)×G) ⊆ I(Σ) is clear; and if σ ∈ I(Σ) then π(σ) ∈ I(Γ) = Σ(0)

and, hence σ ∈ ι(Σ(0) × G). As in the case of T-groupoids, if in addition Σ \ Σ(0)

is Hausdorff, then Σ has central isotropy.

A continuous 2-cocycle ϕ : Γ(2) → G is a continuous function such that for
all (γ0, γ1, γ2) ∈ Γ(3),

ϕ(γ0, γ1) + ϕ(γ0γ1, γ2) = ϕ(γ1, γ2) + ϕ(γ0, γ1γ2).

A 2-cocycle ϕ is normalised provided that ϕ(u, γ) = 0 = ϕ(γ, u) for all γ ∈ Γ, u ∈
Σ(0). The collection of all normalized cocycles forms a group denoted Z2(Γ, G).
A 1-cochain is a continuous function f : Γ → G. The associated 2-coboundary is
the map d1 f ∈ Z2(Γ, G) given by (d1 f )(γ0, γ1) = f (γ0) + f (γ1)− f (γ0γ1).

REMARK A.3. If Γ is étale, then any continuous 2-cocycle is cohomologous
to a normalized continuous 2-cocycle. Indeed, note first that ϕ(γ0, u) = ϕ(u, γ1)

for all (γ0, u, γ1) ∈ Γ(3). Define a 1-cochain f : Γ → G by f (γ) = 0G for all
γ /∈ Σ(0) and f (u) = ϕ(u, u) for u ∈ Σ(0). Since Γ is étale, Σ(0) is open so f
is continuous. So ψ(γ0, γ1) := ϕ(γ0, γ1) − (d1 f )(γ0, γ1) defines a continuous
normalized 2-cocycle cohomologous to ϕ.

NOTATION A.4. Recall from Lemma I.1.14 in [26] that given a normalized
2-cocycle ϕ on Γ, there is an extension Σ(Γ, ϕ) of Γ by G given by

Σ(Γ, ϕ) := G× Γ

with (g, γ1) and (h, γ2) composable if and only if γ1 and γ2 are composable,
and (g, γ1)(h, γ2) = (g + h + ϕ(γ1, γ2), γ1γ2). Then (g, γ)−1 is given by (−g−
ϕ(γ−1, γ), γ−1). The maps ιϕ : Γ(0) × G → Σ(Γ, ϕ) and πϕ : Σ(Γ, ϕ) → Γ are
defined by ιϕ(u, g) = (g, u) and πϕ(g, γ) = γ.

REMARK A.5. One can prove that the proper-isomorphism class of Σ(Γ, ϕ)
depends only on the cohomology class of ϕ. Indeed, if ϕ2 = ϕ1 + d1 f , then the
map ψ : Σ(Γ, ϕ1) → Σ(Γ, ϕ2) defined via ψ(g, γ) = (g − f (γ), γ) is a proper
isomorphism.

The following result generalizes the discussion on pages 130–131 of [18] (see
also [26], Lemma I.1.14).

PROPOSITION A.6. An extension Σ is properly isomorphic to Σ(Γ, ϕ) for some
continuous normalized 2-cocycle ϕ ∈ Z2(Γ, G) if and only if the map π admits a con-
tinuous cross section τ.

Proof. Assume that i : Σ(Γ, ϕ) → Σ is a proper isomorphism, where ϕ
is a continuous 2-cocycle. Then one can define a continuous cross section τ
of π by τ(γ) = i(0G, γ). Conversely, assume that τ : Γ → Σ is a continu-
ous cross section of π. By replacing τ with the map γ 7→ τ(r(γ))−1τ(γ), we
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can assume without loss of generality that τ(u) = u for all u ∈ Σ(0). Then
τ(γ1)τ(γ2)τ(γ1γ2)

−1 ∈ π−1(Γ(0)) = ι(Γ(0) × G) for all (γ1, γ2) ∈ Γ(2). Since
ι is a homeomorphism onto its image, there is a unique (u, g) ∈ Γ(0) × G such
that ι(u, g) = τ(γ1)τ(γ2)τ(γ1γ2)

−1. Note that u = r(γ1). Define ϕ : Γ(2) → G by
ι(r(γ1), ϕ(γ1, γ2)) = τ(γ1)τ(γ2)τ(γ1γ2)

−1. Then ϕ is continuous. To see that ϕ
is a 2-cocycle, first note that ι(r(γ1), ϕ(γ1, γ2))τ(γ1, γ2) = τ(γ1)τ(γ2) and that Σ

is an extension. So if (γ0, γ1, γ2) ∈ Γ(3), then

ι(r(γ0), ϕ(γ1, γ2) + ϕ(γ0, γ1γ2)) = τ(γ0)τ(γ1)τ(γ2)τ(γ0γ1γ2)
−1

= ι(r(γ0), ϕ(γ0γ1, γ2) + ϕ(γ0, γ1)).

Hence ϕ is a 2-cocycle because ι is injective. Moreover ϕ is normalized since
τ(u) = u for all u ∈ Σ(0). The map ψ : Σ(Γ, ϕ) → Σ defined by ψ(g, γ) :=
g · τ(γ) = ι(r(γ), g)τ(γ) is a homeomorphism and a groupoid morphism.
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