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ABSTRACT. Starting from a (small) rigid C*-tensor category ¢ with simple
unit, we construct von Neumann algebras. These algebras are factors of type II
orIll), A € (0,1]. The choice of type is tuned by the choice of Tomita structure
(defined in the paper) on certain bimodules we use in the construction. If the
spectrum is infinite we realize the whole tensor category as endomorphisms of
these algebras. Furthermore, if the Tomita structure is trivial, the algebras that
we get are an amplification of the free group factors with infinitely (possibly
uncountably) many generators.
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INTRODUCTION

Tensor categories (also called monoidal categories, see [16], [43]) are abstract
mathematical structures which naturally arise in different ways when dealing
with operator algebras on a Hilbert space H. In this context, they are typically
unitary and C* [20], i.e., they come equipped with an involution t + t* and a
norm t — |[|t|| on arrows, describing respectively the adjunction and the oper-
ator norm in B(#). Examples come from categories of endomorphisms of von
Neumann algebras with tensor structure given on objects by the composition of
endomorphisms, or from categories of bimodules with the relative tensor prod-
uct (Connes fusion), or from representation categories of quantum groups, or
again from the analysis of superselection sectors in quantum field theory (in the
algebraic formulation of QFT due to Haag and Kastler) where the tensor product
describes the composition of elementary particle states. See [45] and references
therein. In the theory of subfactors [30], [33], tensor categories (or more generally
a 2-category) can be associated to a given (finite index) subfactor by looking at its
fusion graphs.
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One of the most exciting additional structures that can be given on top of an
abstract (C*-)tensor category is an intrinsic notion of dimension [42], see also [10],
[11], which associates a real number dx > 1 to each object X of the category. The
dimension is intrinsic in the sense that it is formulated by means of objects and
arrows in the category only, more precisely by means of conjugate objects and
(solutions of) the conjugate equations (also called zig-zag equations). In the case
of the category of finite-dimensional Hilbert spaces V, the intrinsic dimension
coincides with the usual notion of dimension of V' as a vector space. The finite-
ness of the Jones index of a subfactor [38], [42], and the finiteness of the statistics
of a superselection sector in QFT [40] are as well instances of the intrinsic dimen-
sion applied to concrete C*-tensor categories. A C*-tensor category whose objects
have finite dimension (i.e., admit conjugate objects in the sense of the conjugate
equations) is called rigid. Similar notions appearing in the literature on tensor
categories, sometimes available in slightly more general contexts than ours, are
pivotality, sphericality, see, e.g., [16], [45], and Frobenius duality [68].

The question (motivated by the previous discussion) of how to realize ab-
stract rigid C*-tensor categories as endomorphisms (or more generally bimod-
ules) of operator algebras can be traced back to the seminal work of Jones on
the index of type II; subfactors [30] and it has been studied by many authors
over the years. In [27], Hayashi and Yamagami realize categories admitting an
“amenable” dimension function as bimodules of the hyperfinite type II; factor.
Later on, a different realization of arbitrary categories with countable spectrum
(the set of isomorphism classes of simple objects) over amalgamated free prod-
uct factors has been given by Yamagami in [67]. Both these works, and more
generally the research in the direction of constructing operator algebras out of
finite-dimensional combinatorial data, have their roots in the work of Popa on
the construction of subfactors associated to standard lattices [48§], i.e., on the re-
verse of the machinery which associates to a subfactor its standard invariant (the
system of its higher relative commutants). Moreover, the powerful deformation-
rigidity theory developed by Popa [49], [50], [51] makes it possible to completely
determine the bimodule categories for certain classes of type II; factors (see for
example [8], [18], [19], [65] for some explicit results on the calculation of bimod-
ule categories). More recently, Brothier, Hartglass and Penneys proved in [4] that
every countably generated rigid C*-tensor category can be realized as bimodules
of free group factors (see also [3]], [22], [23], [26], [32], [37]).

The purpose of the present work is to re-interpret the construction in [4]
via Tomita bimodules (defined in the paper, see Definition [.14), to generalize
it in order to obtain different types of factors (possibly III;, A € (0,1]), and to
prove the universality of free group factors for rigid C*-tensor categories with
uncountable spectrum (see Section ).

Unlike [4], we do not use the language of Jones” planar algebras [31] (a pla-
nar diagrammatic axiomatization of Popa’s standard lattices). Instead, we pre-
fer to work with the tensor category itself in order to exploit its flexibility: our
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main trick is to double the spectrum of the given category and consider the set of
all “letters” corresponding to inequivalent simple objects and to their conjugate
objects. This allows us to define Tomita structures (see Section [2) on certain pre-
Hilbert bimodules H without having to cope with ambiguities arising from the
choice of solutions of the conjugate equations in the case of self-conjugate objects
(depending on their Frobenius-Schur indicator, i.e., depending on the reality or
pseudo-reality of self-conjugate objects, in the terminology of [42]). The algebra
®(H)" associated to the Tomita bimodule H (via Fock space construction, see
below) is of type Il or IlI}, A € (0,1], depending on the choice of Tomita struc-
ture, both in the finite and infinite spectrum case. Even if we choose the trivial
Tomita structure, our construction is different from the one of [4] in the sense
that for finitely generated categories we obtain different algebras, e.g., the trivial
category with only one simple object 1 produces the free group factor with two
generators L(F,).

The paper is organized as follows. In Section [l we consider pre-Hilbert
C*-bimodules, a natural non-complete generalization of Hilbert C*-bimodules,
which we use to treat finite-dimensional purely algebraic issues before passing to
the norm or Hilbert space completions. Moreover, we define Tomita structures on
a pre-Hilbert - bimodule (hence we define Tomita -2 bimodules), where 2 is
a von Neumann algebra (Definition[I.14). The terminology is due to the fact that
every Tomita algebra is a Tomita C-C bimodule. We derive the main properties
of Tomita bimodules only in the case of semifinite von Neumann algebras 2 and
choosing a reference normal semifinite faithful tracial weight T on 2. We recall
the definition of (full) Fock space .# (H) (crucial in Voiculescu’s free probability
theory [66]]) here associated to a Tomita - bimodule H and express the Tomita—
Takesaki’s modular objects of the von Neumann algebras ®(H)"”, generated by 2
and by the creation and annihilation operators, in terms of the Tomita structure
of H and of the chosen tracial weight on 2 (Theorem|[T.28). This is the main result
of the section.

In Section 2} which is the main part of this work, we associate to every rigid
C*-tensor category, with simple unit, an abelian von Neumann algebra 2 and a
Tomita -2l bimodule H (Proposition[2.2). The Tomita structure is determined by
an arbitrary choice of strictly positive numbers A, for every a € ., where . is
a representative set of simple objects in the category (i.e., .7 labels the spectrum
of the category). The algebra 2 is endowed with a “canonical” weight induced
by the quantum trace on the category (the standard left and right inverses of
[42] are indeed tracial). The associated von Neumann algebra ®(H)"” on Fock
space (or better, on its Hilbert space completion with respect to the canonical
weight) turns out to be a factor (Theorem 2.7), and we study the type of ®(H)"”
depending on the size of the spectrum and on the chosen Tomita structure on H
(Proposition |2.10).

In Section 3} we study ®(H)"” in the case of categories with infinite spec-
trum . and assuming A, = 1 for every a € . (trivial Tomita structure). We
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prove that the free group factor L(F ), either with countably many or with un-
countably many generators, sits in a corner of ®(H)"” (Theorem . Easy exam-
ples of rigid C*-tensor categories which are not amenable and have uncountable
spectrum come from the algebraic group algebras of uncountable discrete and
non-amenable groups, see Example 2.2 in [27]. E.g., consider the pointed discrete
categories with fusion ring equal to C[R x F,] or C[Fx], where R is endowed
with the discrete topology and F is the free group with uncountably many gen-
erators, or the category of G-graded finite-dimensional Hilbert spaces, where G is
an uncountable and non-amenable group. Obtaining a realization result for such
categories, which were previously not covered in the literature, was the original
motivation of our work.

In Section 4 again in the infinite spectrum case, we interpret the algebra
®(H)" as a corner of a bigger auxiliary algebra @(¢’). We associate to every ob-
ject W of W(%) (where W(%) is a strict C*-tensor category equivalent to ¢, see
Section [2| for its definition) a non-unital endomorphism of ®(%’), and we cut it
down to an endomorphism of ®(H)” denoted by F(W). We conclude by show-
ing that F is a fully faithful unitary tensor functor from W(%’) into End(®(H)"),
hence a realization of the category W(%'), thus ¢, as endomorphisms with finite
index of a factor (Theorem which can be chosen to be either of type Il or
of type I, A € (0,1]. Moreover, the realization always happens on a o-finite
factor (e.g., L(Fw) if we choose trivial Tomita structure) by composing F with a
suitable equivalence of bimodule (or endomorphism) categories coming from the
amplification (Theorem [4.15).

In Appendix |A} as we could not find a reference, we define and study the
amalgamated free product of arbitrary von Neumann algebras (not necessarily o-
finite), as we need in our construction when dealing with uncountably generated
categories.

In Appendix[B] we generalize some results concerning the Jones projection
and the structure of amalgamated free products, well-known in the o-finite case,
to the case of arbitrary von Neumann algebras.

1. PRELIMINARIES

Let AV be a unital C*-algebra. A pre-Hilbert N'-N bimodule is an N-N bi-
module H with a sesquilinear N -valued inner product (- |-),- : Hx H — N,
fulfilling

(i) (C1|B-C2- A)pr = (B* - &1 | &) A, forevery &1, ¢, € Hand A, B € N;
(i) (¢] &)y > 0and (¢] &) = 0 implies & = 0;
(iii) [ A - ¢l < AN r, where [[E]la = (&1 &) prlIY2.

Note that (i) implies that (&1 | &2)\r = (&2 |&1) - A pre-Hilbert N-N bimodule
H which is complete in the norm || - || is called a Hilbert N-N bimodule. Let L(H)
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and B(H) be respectively the set of adjointable and bounded adjointable linear
mappings from H to H. Condition (iii) implies that the left action of A on H is
a x-homomorphism from N into B(H). If H is a Hilbert A'-A/ bimodule, then
B(H) = L(H) (see [39]).

REMARK 1.1. Let H be a pre-Hilbert N'-N bimodule and T € B(H). Note
that

IT*CIIE = KT I T &) el = 1 I TT* Ol < ITT*C gl < NTHHT*E 1815

Therefore T* € B(H). Thus if H is the completion of H, then each T € B(H) ex-
tends uniquely to an element in B(H). But B(H) is not a norm dense subalgebra
of B(H) in general.

EXAMPLE 1.2. Let N' = C, H = (N )and H = I>(N). Note that N =

-1
Uo{k 2" <k < 2" -1} Let & = 1/\ﬁ E epn i ; where {eq1,ez,...} is the
n

canonical orthonormal basis of [?(N). Define a partlal isometry V € B(I2(N)) by
Assume there exists T € B(I'(N)) and ||T — V|| < 1/2. Note that || Te,, —
¢nll < 1/2, thus

\/7.

Z|ezn+z|Ten|>¢zﬂ Z]ezn+z|Ten \>wz" 1| Tew—Cal)) >

We now choose inductively two subsequences of non-negative numbers 1 = 1y <
ny <mnp <---andn(1) < n(2) < --- such that n(k) > k?> and

Yo el Te,qpl <1, 1=12,....
ig[n_1,m—1]

Let n(1) = 1. Since Te; € I'(N), we can choose 17 € N that satisfies the above
condition. Assume that {ny,...,n;} and {n(1),...,n(k)} are chosen. Recall that
T* also maps I!(N) into I'(N) and {T*¢;} Il C I'(N). We may choose n(k +
1) > max{(k + 1), n, n(k)} such that [ v ] |{ei | Ten (k1)) < 1/2. Now it is
ie[1,m—1
clear that we can choose 1y, > 1y such that v |(ei | Tey k1)) | < 1. Let
i [ne g1 —1]

B= 21/k2 x € I1(N). Then

L oD S [(CID oF-L W B o o R

I=1ie[n;_1,n;—1]
Thus T is not in B(I'(N)), and B(I'(N)) is not dense in B(I*>(N)).

In the following, we shall also consider the Hilbert space completion H, of
a pre-Hilbert M-V bimodule H, associated to a choice of weight on N.
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NOTATION 1.3. Let H be a pre-Hilbert - bimodule, ¢ a faithful weight
on the C*-algebra N and denote M(H, ¢) = {¢ € H : ¢((¢|&))) < +oo}. The
formula

(1.1) (C1182) = @({C1162)n), €1,82 € M(H, @)

defines a positive definite inner product on 9(H, ¢). We denote the norm as-
sociated with this inner product by | - ||2, i.e., [|E]l2 = @((&]&))"/?, and the
completion of M(H, @) relative to this norm by H,,.

By Proposition 1.2 in [39], each T € B(H) corresponds to a bounded oper-
ator 7145(T) on Hy, such that 714,(T)¢ = T¢, & € N(H,¢), and T — my(T) is a
*-representation of B(H) on H,.

LEMMA 1.4. Let 2 be a von Neumann algebra and H a pre-Hilbert A-2 bimodule.
If ¢ is a normal semifinite faithful (n.s.f.) weight on 2A, then Ker(7t,) = {0}.

Proof. 1If 0 # T € B(H), then there exists { € H such that (T¢ | T¢)y # 0.
Since ¢ is semifinite and faithful, we can choose a self-adjoint operator A € 2
such that 0 < ¢(A?) < coand A(T¢ | TE)y A # 0. Note that ¢ - A € N(H, ¢), this
implies that 77,(T) #0. 1

Let 2 be a von Neumann algebra and ¢ a n.s.f. weight on 2. For the rest
of this section, H is a pre-Hilbert A-2 bimodule with a distinguished “vacuum
vector” (2 € Hsuch that (Q|Q)y =Iand A-Q = Q- Aforall A € A (as we
shall be equipped with in the Fock space construction at the end of this section).
Let

(1.2) eq($) :=(Q|8)yQ, Ce€H.
It is easy to check thateg (A ¢ - B) = A - ey (&) - B, where A, B € 2L.

PROPOSITION 1.5. The operator esy is a projection in B(H ), whose range is A - (.

Proof. Since (& Q) (Q2[C)o < (E]8)q, we have [lea(§)lln < [[S]la- Ttis

also clear that (B ex(€))gy — (8| ) (| Dha = (ea(B)] &)a, thus ex — ej. For
any A € A, wehaveey(A-Q)=A-Q. 1

For the rest of this section, M C B(H) is a *-algebra containing 2 (which
we regard as represented on H via its left action). Then

(1.3) Eo(T):=(Q|T-Q)y, TeM
is a conditional expectation from M onto 2 (see Theorem 4.6.15 in [59]). It is easy
to check that eg Tegq = Eo(T)eg, T € M. Also note that M =span{T-Q: T €

M} is a pre-Hilbert -2 bimodule and that L?(2, ¢) is canonically embedded
into Hy for any n.s.f. weight pon2(via A € 2 — A - ().

LEMMA 1.6. The operator ey defined in equation (1.2) extends to an orthogonal
projection, still denoted by eq(, from H, onto the subspace L?(2, ¢). Furthermore, we
have that eg 71y(T)eg = 7y(Eo(T))es, for every T € M.
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Proof. (B|earty(T)ead) = ¢({B|2)qEo(T)(Q2|5)a) = (Bl 7me(Eo(T))ens),
forall ¢, B € N(H, ¢). Thus egy(T)eg = my(Eg(T))es. 1

Note that A € A — 7y(A)ey is a *-isomorphism, namely the Gelfand-
Naimark-Segal (GNS) representation of 2 associated with ¢. By Lemma
eaTp(M)"eq = 1y(A)eg. For any B € 1y(M)", let E,(B) be the unique ele-
ment in 2 satisfying 77, (Ey(B))eyr = egBeg.

It is not hard to check that B — E,(B) is a normal completely positive
21- bimodule map, i.e., Ey(71y(A1)Bmy(A2)) = A1Ey(B)A;z for Ay, Ay € 2. By
Lemmall.6|Ey(774(T)) = Eo(T), T € M.

LEMMA 1.7. For any other n.s.f. weight ¢ on 2, ¢ = ¢ o E, is a normal semifinite
weight on 11y (M)" such that ¢(114(T)) = ¢p(Eo(T)), T € M. If MQ is dense in H
(with respect to the norm || - || ), then there exists a unitary U : Hy — L2(71y(M)", §)

such that U* 7T¢7(7I¢(T))U = 11¢(T) for every T € M, where 75 is the GNS represen-

tation of 7ty (M)" associated with ¢.

Proof. We claim that MQ N N(H,¢) is dense in Hy with respect to the
Hilbert space norm. Indeed, let { € 9(H,¢) and K = <§|C>é[/2. If T, =
mK(I—b—mK)’l, then KT; < KT, < KT3 < --- and KT, — K in norm. Note
that ¢(T2) < co. Since ¢ is normal, for any ¢ > 0, we can choose g such that

1 =& Tgllz = 19((& - (1= Ting) |- (1 = T o)/ < .

Let C = ¢(T7,) and p € MQ such that ||( — | — &)yl < €/C. Therefore

”,B : Tmo - g TmoHZ = ¢(Tmo<,B - g | 5 - §>91Tm0)1/2 < &

Thus MQNMN(H, ¢) is a dense subspace of Hy.

Similarly, for B € 7,(M)" satisfying ¢(E,(B*B)) < oo, let K = E,(B*B)'/2.
Repeating the argument above, for any ¢ > 0, we can find a positive operator
T, € 2 such that ¢(T2% ) < oo and ¢((I — Tyuy)Ep(B*B)(I — Tyy,y))/? < e. Since
¢(TngEg () Tiny) is a normal functional on 77, (M)"”, we can find A € M such that
P(TaE([7(A) — BI* [p(A) — B)Ty)/2 < &. Thus {rg(T) : 9(Eo(T"T)) <
oo, T € M} is dense in L? (775 (M)", ¢).

Since (AQ|BQ) = (Eo(A"B)) = $(Eg(mg(A"B))) = (my(A) | my(B)),
for AQ, BQ € MOQNN(H, ¢). The map AQ — 7y(A) € L?(7ty(M)", §) can be
extended to a unitary from Hy to L?(7ty(M)", ¢). Finally, note that

75(7p(T))UAQ = 71 (TA) = Ury(T)AQ, AQ € MOQNN(H,$). W

THEOREM 1.8. Let ¢ and ¢ be two n.s.f. weights on A. If MQ is dense in H
(with respect to the norm || - || ), then the map 7wy (T) = 74(T), T € M, extends to a
s-isomorphism between the two von Neumann algebras 1ty(M)" and t5(M)".
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Proof. By Lemma (1.7, we have normal *-homomorphisms pq : 7y(M)"” —
(M) and py : 15 (M)" = 715 (M)" such that pq (774 (T)) = 74 (T) and pa(714(T))
= 714(T) for every T € M. Thus p; is a *-isomorphism and p,=p; . 1

1.1. PRE-HILBERT BIMODULES WITH NORMAL LEFT ACTION.

DEFINITION 1.9. Let H be a pre-Hilbert -2 bimodule. We say that the
left action is normal if the map A € A — (G| A - §)y is normal for each ¢ € H,
ie, A (C|A- )y is continuous from (2A); to A both in their weak operator
topology, where (2); denotes the unit ball of 2.

REMARK 1.10. (i) In general, 71, (2)"” # 7,(2). However, if the left action
is normal, then 77, ()" = 7, (2) (see Proposition 7.1.15 in [34]).
(ii) For every B, € H,themap A € 2 +— (B| A - {)g is continuous from (2);
to A both in their weak operator topology.
(iii) For every { € H, themap A € 2 — (G| A - {)y is completely positive.
Indeed, let (K;;);; be a positive element in M, (%), then we only need to check

n
that ) ((Kj; - & Kjj- €)g)ij = 0, and this is true by Lemma 4.2 in [39].
I=1

The following easy fact is used implicitly in the paper and the proof is left
as an exercise for the reader.

PROPOSITION 1.11. Let D be a subset of H. Assume that % - D - 2 = span{A -
B-B:AB e AP e D}isdensein H. Then the left action is normal if and only if
A e A (B|A- B)y is normal for each p € D.

PROPOSITION 1.12. Let H be a pre-Hilbert A-2 bimodule. If the left action is
normal, then A — (| A - §) o is continuous from ()1 to A both in their strong operator
topology.

Proof. Assume that A, tends to 0 in the strong operator topology, then A A,
converges to 0 in the weak operator topology. Therefore (A, - ¢ | Ay - )¢ also con-
verges to 0 in the weak operator topology. From the inequality (As - ¢ | Aa - &) g =

1/1€01%,(Ax - €| &) (€| Ax - &)g, by Lemma 5.3 in [39], we have that (& | Ay - &)y
converges to 0 in the strong operator topology. 1

PROPOSITION 1.13. Let Hy and Hp be two pre-Hilbert A-2 bimodules. If the
left action on Hj is normal, then Hy @ Hp, the algebraic tensor product over 2, is a
pre-Hilbert A-2A bimodule with A-valued inner product given on simple tensors by

(C1©P1|82®@ Ba)or = (B | (C1[C2)a - B2)as  €1,2 € Hi, P12 € Ha
Proof. We only need to show that if { = }.¢; ® p; satisfying ({[{)g = 0,

then ¢ = 0in Hy ®g Hp.
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Since (B| T - B)y = 0 where B = (B1,...,Bn) € Hy and T = (({;[Gj)n)ij €

M, (1), TV2. B = 0. Thus (8| T'/?- B)y = 0 and this implies T'/# - g = 0. By in-
duction, we have T1/2" . p=0,n=1,2,.... Since T1/2" tends to the range projec-
tion P = (p;;);; of T in the strong operator topology, we have that (8| T!/2" - B)
converges to (B|P - B)g in the strong operator topology. Thus P-p = 0 and

n
kglm,kﬁk =0,i=1,...,n

" Note that

0= (I-P)({Ck|&a)ki(I—P) = <<§i - ;ék Pkl &= Zl:Cl : Pl,j>21)

Therefore ; = ) Gk - pxi,i = 1,...,n. Then it is clear that
k

ij

0=Y3Ci®Bi=) Ctei®Bi=) Ck®@pii-Pi=0. 1
i ik ik

1.2. TOMITA PRE-HILBERT BIMODULES AND FOCK SPACE CONSTRUCTION. In
the remainder of this section, 2 is a semifinite von Neumann algebra and 7 is
a n.s.f. tracial weight on 2[. Recall that (A, 7) = {A € A : T(A*A) < oo} is an
ideal. Let H be a pre-Hilbert -2 bimodule H with normal left action of 2. Note
that

(C1B-A) =7({G[B)aA) = T(((BE)aA™)") = (G- A"[B).

Thus the right action ¢ — ¢ - B, § € 91(H, 7), gives a (normal) -representation of
the opposite algebra 2(°P on the Hilbert space H; (see Notation[I.3). Moreover, Hy
is an 2(-2( bimodule with scalar-valued inner product (also called correspondence
in [7], [41], [56]).

DEFINITION 1.14. Let H be a pre-Hilbert -2l bimodule with normal left
action of 2. We say that H is a Tomita A-2( bimodule if
(i) 91(H, 7) = H, and in this case we regard H as a dense subspace of H;
(ii) H admits an involution S such that S(A - ¢ - B) = B* - S(¢) - A* and S?(¢) =
¢, forevery € Hand A, B € 2;
(iii) H admits a complex one-parameter group {U(«x) : « € C} of linear iso-
morphisms satisfying the following properties:
(a) for every ¢, B € H, the map « — U(«)p is continuous with respect
to || - ||y and the function a — (& | U(«)p) is entire;
(b) S(U(a)E) = U(@)S(2);
(@) (€| U()B) = (U(-R)E| B);
(@) (S(2) [S(B) = (BIU(=0)2).

REMARK 1.15. It is clear that every Tomita algebra is a Tomita C-C bimod-
ule. The same definition of Tomita bimodule could be given for 2 not necessarily
semifinite and for T not necessarily tracial. In order to derive the following prop-
erties, and for the purpose of this paper, we stick to the semifinite case.
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Note that ||U(a)B||5 = (B|U(2ilma)B) is a continuous function of a for
each B € H, hence it is locally bounded. By Appendix A.1 in [62], « € C —
U(a)B € Hy is entire in the (Hilbert space) norm for every p € H. Furthermore,
we have the following fact.

LEMMA 1.16. Let H be a Tomita 2A-A bimodule. For any ¢, B € H, the map
a— (G| U(a)B)y € Ais entire in the (operator) norm.

Proof. By Definition iii)(a), the map is bounded on any compact subset
of C. Forevery A, B € (2, 7), T(A* (| U(«)B)yB) = (¢ - AB* | U(a)p) is entire.
By Appendix A.1 in [62] we have the statement. &

REMARK 1.17. Let H be the closure of H with respect to || - ||g. Using a
similar argument as in the proof of Lemma we can show that the map « —
U(a)& € H is entire for every ¢ € H.

Now, U(a) and S can be viewed as densely defined operators with domain
H C Hy, and we have the following result.

PROPOSITION 1.18. Let H be a Tomita A-2 bimodule. Then S is preclosed and
we use the same symbol S to denote the closure. If JAY/? is the polar decomposition of S,
then J> =1, JA] = A1, U(a) = A®|y and H is a core for each A%, « € C.

Proof. By Definition[T.14{iii)(d), H is in the domain of $*. Thus S* is densely
defined, S is preclosed and U(—i) C A. Hence Lemma 1.5 from Chapter VI in
[62] implies J> = I, JA] = A~!'. By the same argument used in the proof of
Theorem 2.2(ii) form Chapter VI in [62], it can be shown that the closure of U (it)
is self-adjoint for every t € R, U(a) = Al*|;; and H is a core for each Al%.

For the convenience of the reader, we sketch the proof. By condition (iii)(c),
{U(t) };er can be extended to a one-parameter unitary group on Hy. By Stone’s
theorem, there exists a non-singular (unbounded) self-adjoint positive operator
K such that Ki|; = U(t). By Lemma 2.3 from Chapter VI in [62], H C D(K™%)
for every a € C and K¥|y = U(a). Thus K|y = A|g. By Lemma 1.21 from
Chapter VIin [62], H is a core for K*, « € C. Thus K C A. Since A* = A and
K*=K,wehave K=A. 1

REMARK 1.19. By Proposition[1.18} S| = JU(—i/2), thus JH = H.

LEMMA 1.20. Let H be a Tomita A-2A bimodule. Then
S(A-&-B)=B"-S(¢)-A*, S*(A-B-B)=B*"-S*(B) A",
AY(A-C-B)=A-N%7)-B, J(A-{-B)=B"-J({) A"

where ¢, B, C are in the domains of S, S* and Al respectively and A, B € 2.

Proof. By Proposition[1.18} we only need to show that the equations hold for
£ € H. Note that (A~ 8- B|S(2)) = t((B| A* - S(£) - B*)y) = (¢| B - 5*(B) - A”).
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This implies A*(A - &-B) = A-A%(&) - B. Thus J(A-&-B) = AV2S(A-¢-B) =
B*-J(E)- A% 1
LEMMA 1.21. Let H be a Tomita A-24 bimodule. Then for any ¢, B € H, we have
(€ U(@)B)y = (U(-T)E| By
Proof. By Lemma we have
(G U(a)p)aA) = T((E[U(a)(B- A))g) = T((U(-T)E[ Bl A), YA 1
LEMMA 1.22. Suppose that Hy and Hp are two Tomita A-2A bimodules. Then

S(61®8&2) == 52(62) ® S1(81), U(a)(61 @ &2) := Up(a)(81) @ Un(a)(G2),

define a conjugate linear map S and a one-parameter group {U(«) }pcc, where S; and
U; () are the involution and one-parameter group for H;, i = 1,2,and & ® & € Hy Qg
Hy. Furthermore {U ()} satisfies the conditions (iii)(a) and (iii)(d) in Deﬁnitionm

Proof. By Proposition Lemma S and U(w) are well-defined. It is
easy to see that « — U(a)({1 ® &) is continuous with respect to || - || i@y H,-

By Lemma|1.20) (61 © &2 | Uy (&)1 @ Uz () B2) = (Un(—&)G2 | (G | Ur(a)B1)gB2)-
Then Lemma implies that {U(«) } satisfies the condition (iii)(a) in Definition

ine
For ¢;and B; € H;, i = 1,2, we have
(52(82) ® 51(61) [ S2(B2) © S1(B1)) = T((52(82) | S2(B2))ou (B1 [ Un(—1)G1) 1)
= T((B2 [ (B1 [ U (=1)81) o Ua(—1)82) ()
(B1® B2 |Ur(—1)1 ® Ua(—1)G2),

ie.,
(S(G1®@8) |S(B1®B2)) = (B1@ P2 |U(—1)(G1®E2)). 1

PROPOSITION 1.23. Given a Tomita -2 bimodule H, then H®, n > 1, is also
a Tomita A-2 bimodule with the A-valued inner product given by linear extension of

(G1@- @Cn|P1 @ @By = (Cu | (- (G2 (C1|B1)uB2)ay~ )uBr)sus
&i, Bi € H, and the involution S,, and one-parameter group { Uy () }pec are respectively
given by Sy(G1 @ -+ @ &n) 1= S(Gn) ® -+ ® 5(C1) and Up(a)($1 ® -+ ® Gu) =
U(a)(G1) @ - - - @ U(a)(En)-
Proof. By Proposition H® is a pre-Hilbert -2 bimodule with normal
left action. Conditions (i), (ii), (iii)(b) in the definition of Tomita bimodule are triv-

ial to check. By Lemma and Lemma (iii)(c) is also clear. By Lemma [1.22]
and induction on n, we get (iii)(a) and (iii)(d). 1

Let S, = ]nAln/ 2 be the polar decomposition of S;,, n > 1. By Propo-
sition m H®% is a common core for Al, t € R, and AL (& ® --- ® &) =
A(§1) @ - @ A(Gn). Therefore J4(§1 @ -~ @ &) = A/%Su(G1 @ -~ © &) =
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J(&n) ® - - - @ J(&1). We recall the following definition, see, e.g., Section 4.6 in [59]
for the same definition given for Hilbert bimodules over a C*-algebra.

DEFINITION 1.24. Given a Tomita 2- bimodule H, the associated Fock space,

denoted by .7 (H), is the algebraic direct sum of H®%, i.e., Z(H) := @ H%x,
n=0

where H®% := 9 with the 2-valued inner product (A | Az)g = AJA; for Ay,
Ay € A

By Proposition[1.13} .# (H) is a pre-Hilbert 2-2 bimodule. It is clear that the
identity I of 2 is a “vacuum vector” for .# (H), and we will use (2 to denote this
vector as in the beginning of this section.

For { € H, the creation and annihilation operators L(¢), L*(§) are de-
fined by

LOA=CA LEP1® - @Pn=CRP1® @By,
L*(§)A=0, L({)B1®@  @Bn:=(|B1)gy B2®@ @ Pn,
where Ac2and B; € H,i=1,...,n

DEFINITION 1.25. Let @(H) be the *-subalgebra of B(.% (H)) generated by
2 (acting on .# (H) from the left) and {I'({) := L(¢) + L*(S(¢)) : ¢ € H}.

Let ®(H)"” be the von Neumann algebra generated by 71:(®(H)) on the
Hilbert space completion .7 (H) (see Notation(1.3) and let ®(H)’ be the commu-
tant of ®(H)".

PROPOSITION 1.26. With the above notation, we have that &(H)Q = % (H).
Proof. By induction, it is not hard to check that AU U {1 ® - - ®§, : §; €

n>1

Hyi=1,...,n} C ®(H)Q. ¥

The GNS space L%(2, T) can be identified with the closure of the subspace
spanned by (2, ) in .% (H)+. Let eg be the orthogonal projection from . (H)
onto L?(2A, 7). By LemmaH T € @(H)" = exTexl2(q,r) € Tr(W)eal2(ar),
induces a normal completely positive map E; from ®(H)"” onto 2. Since A €
2 — 1:(A) is a *-isomorphism, E = 71 o E; is a conditional expectation from
@(H)" onto 7t¢(2A).

By Proposition [1.23) (.Z (H), ) = M(A,7) & @ H®% is a Tomita A-A bi-
n=1
module with involution Sy & @ S, and one-parameter group Id & @ U, («),

n=1 n=1
where Sy = Jp is the modular conjugation associated with T on the Hilbert space
L?(2,7) and Id is the identity map on 2. Let J := Jo & @ Ju. By Proposi-
7’1/

tion [1.23} the polar decomposition of the closure of So & @ S, (which we shall
n=1

denote again by S & @ Sy) is j(l o P Aln/2>-

n>1 nz=1
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PROPOSITION 1.27. For each ¢ € H, A € A, we have that TAJB = BA*,
JATp1 @@ Pn=P1©- - @ (Bn-A"), IT(G)TB = B-](§) and
(14) JT(E)T12 - @fn=P1© - - Pu@] () +p1© - - OBu-1-(J(Bn) [ S(E)) a1,
where B € N(A, 7). Thus JP(H)J C ®(H)' and the following conditional expecta-
tion is faithful:
E:=m0Er: ®(H)" — ().

Proof. All the equations can be checked by easy computation. Let p € H
and B € 91(2, 7). Note that S|y = JU(—i/2), Lemma implies

[F(B)ITT(E)TIB=p&B-]J()+(S(B)[B-](E))x
=p-BRJ()+J(B-B)|S(E)a = [TT(E)ITT(B)]B.

A similar computation shows that 7®(H)J C ®(H)'.

Note that Proposition and equation imply that &(H)'L?(2,
{TZ : ¢ € L*(A,7),T € ®(H)'} is dense in .#(H).. Since E;(T*T) = 0,
@(H)", if and only if Teg = 0, then E; and consequently E are faithful. &

T) =
T €

Since Ey is faithful, T := T o E¢ is a n.s.f. weight on ®(H)". By Lemma([L.7]
the map AQ € N(F(H),7) — m:(A) € L2(®(H)",T) extends to a unitary U
such that U*mtz(71¢(T))U = 7(T) for every T € ®(H), where 77 is the GNS
representation of ®(H)" associated with 7.

Let S be the involution in the Tomita theory associated with 7. We claim that
UN(Z(H),7) is a core for S. Indeed, let T be a self-adjoint operator in ¢(H)"”
such that T(E-(T?)) < co. Let Q be the projection onto the kernel of E;(T?). Since
E: is faithful, we have T7t-(Q) = 0. Thus, for any € > 0, there is a § > 0 such that

T(E(T?)(I-P)) <e, T(E(T(I—mc(P))T)) <e

where P is the spectral projection of E;(T?) corresponding to [J, | E-(T?)]|]. Note
that P € M(A, 1), and 71.(PP(H)P) is dense in 71:(P)®(H)" 7t¢(P). Therefore
there is a self-adjoint operator K € 7t:(P®(H)P) such that

T(Er((K = T7t(P))* (K — Tz (P)))) <,

T(E-((K— 7t (P)T)*(K — 7t (P)T))) < e.
Note that P@(H)P( C M(.F (H), ). We have that the graph of S|y (#(n),7) is
dense in the graph of S.

By the definition of S, it is clear that U*SU(B) = B* and U*SU({) =
I'(¢)*Q = S(&), where B € M(2, 7) and ¢ € H. Note that

$1 @& =T(81)I(82)Q2 —(5(81) G2)-

Since U*SU(I'(¢1)I'(¢2)Q2) = I'(§2)*I'(¢1)" 2 = S(&2) ® S(G1) + (82 |5(S1))ar,
we have U*SU({1 ® &) = S2(81 ® &2). A similar computation and induction
on the degree of the tensor, it is not hard to check that U*SU({; ® -+ - ® &y) =



446 LucA GIORGETTI AND WEI YUAN

Sn(E1®---®¢Ep), forany ; € H,i=1,...,n. Thus Sy ® @ S, = U*SU, where

n>1
S0 = Jo-

Therefore we have the following result which shows how the Tomita struc-
ture of H determines the modular objects of the associated von Neumann algebra
®(H)". This is the main result of this section and it is crucial for the determina-
tion of the type of factors constructed in the next section.

THEOREM 1.28. The commutant of ®(H)" is J®(H)" J. For each & € H, we
have that o7 °F* (I'(€)) = T'(U(t)¢) for every t € R.

Proof. Foreveryt € R, A € M(A,7) and f1 ® -+ @ B € H®%, we have

o E(T(E)B1® - - @Pn= (1@ @An)itr(g) (I@ @An)_itﬁl ® - By

n>1 n=>1

U(H)ERP1® - @Pn+(S(U(E)E) | B1)gf2® - - @Pu,
and o7°F (T(E)A = U(HE-A. 1

1.3. FOCK SPACE AND AMALGAMATED FREE PRODUCTS. We now consider a fam-
ily {(H;, Si, {U;(a) }pec) biep of Tomita A-A bimodules and define H := @ H; =

i€l
{(&)ier : & € H;, g is zero for all but for a finite number of indices}. It is
obvious that H admits an involution S := @S, and a one-parameter group

1

{U(oc) = P Ui(zx)} o If we define the 2-valued inner product by setting
i ae
((€i) | (Bi))g := X(Ci | Bi)g then H is a Tomita A-2A bimodule with left and right
i

action givenby A - (§;) - B := (A - ;- B).

Z (H;) can be canonically embedded into .7 (H) as an 2/-2l sub-bimodule.
We view .7 (H;). as a Hilbert subspace of .7 (H). Let eg and e; be the projection
from .Z (H) onto L?(2A, T) and .7 (H;), respectively. It is clear that, for every i € I,
e; € (AU{I(¢): & € Hi}) NB(F(H)<). By Proposition [1.27} the central carrier
ofe; € (AU{I'(E) : & € H;})' is the identity. Therefore

(AUAT(8) : ¢ € Hi})"(C B(F(H)7)) Z(AULT() : ¢ € Hi})e;
=®(H;)"(C B(Z (Hi)r))-

Therefore, ®(H;)" can be identified with a von Neumann subalgebra of ®(H)".
Let E be the faithful normal conditional expectation from ®(H)" onto 7t,(2)
defined in Proposition such that E(T)eg = egTegy. Consider Ty,...,T; €
@(H) such that Ty € ®(H;q)), i(1) # i(2) # - # i(l) and E(Ty) = 0 for all
k=1,...,1. Then each T} can be written as a finite sum of elements of the
form L(¢1) - L(&n)L*(B1) - - - L*(Bm), where ¢, B; € Hj) and n+m > 0. It is
not hard to check that eg (T - - - Tj)eg. = 0 (see Theorem 4.6.15 in [59]) and
es7tr(Ty - - - Tj)es #0 only if I=1 and s=i(1). Therefore es®(H)"es = ®(Hs)"es and



REALIZATION OF RIGID C*-TENSOR CATEGORIES VIA TOMITA BIMODULES 447

let E5(T) be the unique element in ®(Hs)"” such that e;Tes = Es(T )es, for each T €
®(H)". By definition of Es, we have Es(7t¢(A)T7t¢(B)) =t (A)Es(T) 7 (B) and

Eo Es(T)eg = egesTesesyy = E(T)ey,

where A, B € ®(H;) and T € &(H)"”. Thus E; is a faithful normal conditional
expectation from ®(H)"” onto ®(Hs)"” satisfying E o Es = E.

Summarizing the above discussion, we have the following proposition
(cf. Theorem 4.6.15 in [59] and Appendix [A| for the definition of amalgamated
free product among arbitrary von Neumann algebras).

PROPOSITION 1.29. Let {(H;, S;, {U;(a) }pec) bier be a family of Tomita A-2A
"
bimodules. Then (@(@Hi) ,E) = s () (P(H;)", Elo(p;yr)-
i

2. FROM RIGID C*-TENSOR CATEGORIES TO OPERATOR ALGEBRAS
VIA TOMITA BIMODULES

Since every C*-tensor category is equivalent to a strict one (see [43]), we
shall exclusively work with strict C*-tensor categories. Let (¢, ®, 1) be a (small)
strict rigid C*-tensor category with simple (i.e., irreducible) unit 1, finite direct
sums and subobjects, see [2], [16], [42]. For objects X in ¢ we write with abuse of
notation X € ¢, we denote by t € Hom(X, Y) the arrows in ¢ between X, Y € ¢
and by Ix the identity arrow in Hom(X, X). We use X to denote a conjugate object
of X (also called dual object) equipped with unit and counit

1x € Hom(1,X® X), ex € Hom(X® X, 1)
satisfying the so-called conjugate equations, namely
(ex®Ix)(Ix®nx) = Ix, (Ix®ex)(nx®Ix) = Ix.

Hence conjugation is specified by four-tuples (X, X, 7x,ex). Furthermore, we
always assume that (17x, €% ) is a standard solution of the conjugate equations, see
Section 3 in [42]. Important consequences of these assumptions on ¢, for which
we refer to [42], are semisimplicity (every object is completely reducible into a
finite direct sum of simple ones), the existence of an additive and multiplicative
dimension function on objects dx = nynx = exekx € R, dx > 1, and a left (=
right) trace defined by

(2.1) nx(Ix @ t)yx = ex(t ® Ix)ey, Vit € Hom(X, X)

on the finite-dimensional C*-algebra Hom(X, X). Moreover, for every X, Y € €
Hom(X, Y) is a finite-dimensional Hilbert space with inner product given by

(22) (C1162) = nx[Ix ® (¢1¢2)]nx, §1,62 € Hom(X,Y).

In the following, we need to keep track of the distinction between X ® Y
and X' @Y, evenif XY =X' @Y in¥and X # X orY #Y'.
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Thus we introduce the C*-tensor category W(%') considered in the proof of
Mac Lane’s coherence theorem (Theorem XI.3.1 in [43]). The objects of W(%') are
the “words” constructed from the objects of € (finite strings of objects in ). The
tensor product of two words W; and W, is defined by the concatenation of strings
and it is denoted by W; W,. Two words are equal if they have the same length and
they are letterwise equal. Note that, e.g., 11 and 1 ® 1 = 1 are different in W(%),
since 1 ® 1 is a one-letter word and 11 is a two-letter word. Let : be the map

(2.3) 101, XX Xy = X1 ®Xo® - ® Xy,

where X; € €,i =1,...,n,n 2 1, and @ denotes the empty word. The arrows
between words W; and W,, denoted by Hom(W;, W), are Hom (:(Wy), (W)
with the composition and tensor product defined just as in ¢. It is clear that
W(%) is a strict C*-tensor category which is equivalent to €. In particular, W(¢)
has finite direct sums and subobjects. With abuse of notation we write the tensor
product of arrows in W(%') as f ® g in Hom(W;W,, Y1Y3) for f € Hom(Wy, Y1)
and ¢ € Hom(W,,Y,), where W,, Y;, i = 1,2, are objects in W(%).

NOTATION 2.1. (i) Let . be a representative set of simple objects in ¢ such
that 1 € .. Let A := . U.¥ (disjoint union) where . := {& : a € .}. We shall
always consider « € . and & € .7 as distinct elements (“letters”) in A, even if
® = ® as objects in €. In particular 1 # 1 in A.

(i) We label the fundamental “fusion” Hom-spaces of € by triplesin . x . x
A, namely

(B1,B2,x) € S X S X A {%ﬂ := Hom(B1, B2 @ «),

where B, ® a is viewed as an element of €.

(iii) For every « € A, letry := 1, € Hom(l,a ®@ ) ifx € .7, and 1y 1= €, €
Hom(1, & ® &) for the corresponding @ € .%, where (1, €5) is a standard solution
of the conjugate equations as above.

(iv) For every a € .7, regarded as an element of A, let@ := a. Thusa € A —
w € Ais an involution on A.

In the following, we use «, 3,7, ... to denote elements in A, or in ., and
W,X,Y,Z,... to denote objects in W(%'). For a set S, we denote its cardinality
by |S|.

We define an abelian von Neumann algebra 2 by

(2.4) A:= P Hom(B,B) = P Clg

pes pes

with a (non-normalized, semifinite) weight T given by equation (2.1), i.e., the
value on minimal projections equals the categorical dimension 7(I) = dg.
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We are now ready to construct a Tomita -2 bimodule H. Let

H:= @ [ﬁzﬂ
x€EA,B,BreS ‘Bl

be the algebraic direct sum of the [ﬁgl‘x]. It is clear that H is an -2 bimodule with

left and right action given by

) Pou
Ly, G- Lyy 7= 095,8,09,,8,6, G € [,Bl

We define an 2(-valued inner product on H by

],(X S A,,BZ‘,’)/I' c,1=1,2.

wik;
Bi
It is easy to check that H is a pre-Hilbert -2l bimodule with normal left action,
as we defined in Section[I]
Leta € Aand B4, B € 7. By Frobenius reciprocity (see Lemma 2.1 in [42]),
we can define a bijection

(€21 E1) = G aaduoycnlils € Hom(By, Ba), & € [ } ~12

« = o
(2.5) ¢ e |:ﬁ,521 :| — ¢ = (g* & Ia)([ﬁz X I’y) S |:ﬁ1312 :| .
It is clear that & = ¢.

We now define an involution S on H and a complex one-parameter group
{U(z) : z € C} of isomorphisms that endow H with the structure of a Tomita
2-2A bimodule (see Definition[I.14).

For each &« € ., we choose a real number A, > 0. For the corresponding
x € .7, let Ay := 1/A,. Recall that & # & as elements in A. We define the action
of Sand U(z) on every ¢ € [%1“], x €A, By, B2 € S by

(2.6) S:E /A G Uz):Em AZE, z€C,
where ¢ is defined by equation . Summing up, we have the following propo-
sition.

PROPOSITION 2.2. The pre-Hilbert A-2A bimodule H is a Tomita A-2( bimodule,
for every choice of Ay and Az = 1/ A, associated with the elements o € A.

In the following, we choose and write nga = {¢;}!", for a fixed orthonor-
. =
mal basis of isometries in [%1“], ie, ¢/Gj = 6ijlg,, where n = dim [%1“], for every
B1,B2 € 7 and a € A. Note that (’)gf“ =Qifn = 0. Inthe case o = 1, we let
Olgﬂ = {I}. Thus we have that
(2.7) H= & & {a¢+b&:abeC}

a,B1,B2€S 56(922“
1
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From now on, we identify 2 with the von Neumann subalgebra 77,(2() of
@(H)" acting on the Fock (Hilbert) space .7 (H)+ (see Definition[1.24]and Defini-
tion [1.25), and we denote by E the normal faithful conditional expectation from
@(H)" onto 2 such that

(2.8) E(T'(G1)---T'(En)) = (Q[T(G1) -~ T(Cn) )aus

where (2 = [ is the vacuum vector in .% (H).

LEMMA 2.3. Suppose that Og“ # Qandlet ¢ € OB where BeSacA

If Ay < 1sety = ¢. Otherwise Ay = 1/Ay < 1and set y = ¢. Let N be the von
Neumann algebra generated by I' (1), then

o({al+bC:a,beCh)' =2Ng® @ CI, and

e \{B}
N = L(E) ifAg =1,
free Araki—Woods type 111, factor otherwise,

where A = min{ Ay, Az }. Furthermore, in the polar decomposition I' () = VK, we have
Ker K = {0} and V, K are *-free with respect to E. The distribution of K> = I'(5)*T (1)
with respect to the state d;lr o E| Ny 18

VAL — (= (1+1))2

27TAt
Proof. By exchanging the roles of ¢ and &, hence of a and &, we can assume
Ay < 1. It is clear that @({a¢ + bZ})" is generated by 2 and I'(yy) = L(¢) +
VAgL* (). Since Ig is a minimal projection in 2 and IgI'(17) = I'(y) = I'(17)Ig,
we have that E(T) = d;lr(E(T))Iﬁ for any T € Nj. Note that (¢|Z)y = 0.

Then Remark 4.4, Theorem 4.8 and Theorem 6.1 in [57] imply the result (see also
Example 2.6.2 in [28] for the case Ay = 1). 1

dt, te((1—vVA)>21+VA)>?).

REMARK 2.4. With the notation of Lemma we have that o7°F(I'(&)) =
AT (€) for every t € R by Theorem[1.28] Therefore K = (I'()*I'(¢))"/? is in the
centralizer of T o E, denoted by ®(H)”

ToE"
In the following, we adopt the notation used in [12] to specify the (non-
normalized) trace on a direct sum of algebras. Let 2; and 2, be two finite von

p q
Neumann algebra with two given states w; and wy, respectively. We use 21 @ 2

ty ty
to denote the direct sum algebra with distinguished positive linear functional

tiws (a) + tpwy(b), a € Ay, b € Ap, where p and g are projections corresponding
to the identity elements of 2(; and 2, respectively. A special case of this is when
w1, wy and tywy (+) 4 taws(+) are tracial.
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LEMMA 2.5. Let ¢ € ng“ fora € Aand By, B2 € 7, B1 # Po. If A =
/\“dﬁl/d/gz < 1, then

Ig; +Ppy )
®({a&+b&:a,beC}) = [ L([0,1]) ® My(C) & gd ® & CcCI,
dpy +Audpy PP ye s \(B1Bo)
where pg, and qg, are two projections such that pg, +qp, = Ip, and T o E(pp,) =
/\“dﬁv . E(qﬁz) =dp, — Aadp,.

Proof. As in the previous lemma, ®({a& + bZ})" is the von Neumann sub-
algebra of ®(H)"” generated by 2 and I'(¢). By Lemma 4.3 and Remark 4.4 in
[57], we have that the distributions of I'(¢)*I'(¢) and I'(¢)I'(¢)* with respect to
dgllT o E and dlglr o E are

VAL — (t— (1+A))2 & and VAL — (t— (1+1))2
27t)\t 27t

where ¢y is the Dirac measure concentrated in 0.

Let¢; = &and & = V1/AS(¢) € [51“] Then 38, = Ig,, because 7(838,) =

dg,, and the operator I'(¢) = L({1) + \FL(CZ) fulfills Ig, T (&) = I'() = I'(&)Ig,-
Let I'({) = UK be the polar decomposition of I'(§). By the proof of Lemma 4.3
in [57], we know that K € Iz @(H)"Ig, and Ker K = {0} (even when A = 1), and

U*U = Ig,. Since 07 °F(U) = AllU, t € R, we have

dt+ (1— A)do,

ds, = To E(UL) = Airo E(uu),

(4
thus 7o E(UU*) = Audpg, < dg,. Since T o E is faithful, we know that UU* is a
subprojection of Ig,. Let pg, = UU™ and gp, = Ig, — UU". Note that pg, = I, if
and only if A = 1. The fact that the distribution of K? is non-atomic implies that
the von Neumann algebra generated by K is isomorphic to L®([0,1]). Thus the
von Neumann algebra generated by Ig, I, and I'($) is isomorphic to

Iy tPp, 98,
(L°°([0,1])®M2(<C)> @d C . 1
B

dp, +Aadg, » el

Now consider the sets of isometries Og“ in the special case « = 1. For every

B € 7, let¢g = Ig be the only element in Ogﬂ. By Lemma we have that

2.9) o( @ {agp+155:abeCY) = P N

e pes
where N is L(F,) or the free Araki-Woods type IIT) factor, A = min{Ag, Ay},
and N is generated by a partial isometry V4 and a positive operator Kg in the

centralizer of T o E (see Remark . If welet Ug = f (Klzg) where f(x) = ™)
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X

and h(x) = [ /4A—(t— (1+A))2/(27tAt)dt, we get a Haar unitary, i.e.,
(1-vA)?
E (Ulg’) = 0 for every n # 0, which generates {Kz}". Moreover, Ug and Vj are

*-free with respect to E.

Denote by M the Lh.s. of equation and by 9 the strongly dense *-
subalgebra of M generated by 2 and {Upg, V5 : B € /}. By Propositionand
equation we have an amalgamated free product decomposition of ®(H)",
namely

(210) (¢(H)/// E) = (M11E|M1) 9 (MZ/E|M2)

@ {af+bF:abe (C})H.

where M, 1= CD( (&)
,B1,p2€5,(B1=P2aF#1 or f17P>) ggogT"
1

LEMMA 2.6. With the notations above, there is a unitary U € ®(H)"” M such
that E(t1U"ty) — 0 for n — o0 in the strong operator topology for every tq,t, € My.

Proof. By Lemma [2.3 and the discussion above, U = ) Up satisfies the
pes

conditions. 1

THEOREM 2.7. The von Neumann algebra ®(H)" is a factor.

Proof. Let U be the unitary in Lemma If T € ®(H)" N ®(H), then
T € {U}' N M, by PropositionB.3] Thus Lemma[2.5/implies ®(H)” N ®(H)' =
OH)NA=CI.

LEMMA 2.8. Let Z(P(H)! ) be the center of ®(H)" . Then Z(®(H)" ;)L

Proof. Proceeding as in the proof of Theorem [2.7] . we have Z(®(H)” ;) C
M. If Ay =1, then My C ®(H)” ; and we have Z(P(H)" ;) € A. By Corol-
lary 4 in [1], Corollary 5.5 in [57] and Lemmaa 2.3} it is also clear that Z(P(H)” ;)
CAifAL A1 1

ToE ToE

Recall that the Connes’ invariant S(M) of a factor M is given by N{Sp(4,) :
¢ is ans.f. weighton M} and that Rf N S(M) = Rf N{Sp(4y,) : 0 # ¢ €
Proj(Z(M,)} is a closed subgroup of R = {t € R,t > 0}, where ¢, = @[crse
and Z(M,) is the center of M,,. See Chapter IIl in [5], Chapter VI in [60]. Here
Proj(-) denotes the set of orthogonal projections of a von Neumann algebra and
Sp(+) the spectrum of an operator.

LEMMA 2.9. Let G be the closed subgroup of R generated by {AuAg,/Ap, : & €
A, B1, B2 € . such that [ﬁgf] £ {0}}. Then R} N S(@(H)") = G.

Proof. We use ¢ to denote T o E. By Lemma[2.8/and Section 15.4 in [60], we
know that R N S(®(H)") =R N {Sp(Aq,lﬁ) : B € .#}. Furthermore, note that
(I;;CD(H)”Iﬁ)(PI/3 = Ig(P(H)")ylg. Thus the center of (IﬁCD(H)”I/g)q,Iﬁ is trivial by
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Proposition 5.5.6 in [34]. Then Corollary 16.2.1, Section 16.1 in [60] imply R} N
S(®(H)") = RI NSp(4g,, ).

Let& € [P{1),8 € P22, 80 € [3 ] and i € A B € 7, n = 1,2,.
By Theorem|[1.28) for every t € R, we have

afa%ao~~r@n>::(ﬁz%;fﬁn(Aﬁg”)”(Aﬁf“)”rw@>~-r@o-

Also note that of (I(&2)T(E) (@) = (“f™)"T(E)T()I (@), where ¢y €

[ﬁlﬂgl], ¢ € [ﬁza] 0 € [11/5/32] Since the linear span of {Iy} U {I'(&,)---I'({1)} as

above is dense in the space L?>(I1@(H)"Iy, ¢y, ), we have Sp(Ag, )\ {0} =G. 1

PROPOSITION 2.10. The von Neumann algebra ®(H)" is semifinite if and only
if Ag, = Ap,Aa for every a € Aand By, By € 7 such that [’?821“] # {0}. If o(H)"
not semifinite, then it is a type 111, factor for A € (0, 1], where A depends on the choice
of (non-trivial) Tomita structure.

Proof. By Proposition 28.2 in [60], the algebra ®@(H)" is semifinite if and only
if S(P(H)") = {1}. If @(H)" is semifinite, Lemma 2.9/ implies that Ag, = Ag,Aq
for every a € Aand By, Bz € . such that [%1“] # {0}.

Conversely, if /\/31 = /\52 Ag, by Theorem 2.11 from Chapter VIII in [62], we
have

oI (@) = K'of " (M@K =T'(¢),
for every ¢ € [’52“} & € A, P1,p2 €7, whereK= ¥ Aglgand 1¢(-) = 7(K/2-

pes
K'/2). Thus ®(H)" is semifinite. &

REMARK 2.11. If ®(H)" is semifinite, then A3 = Ay implies Ay = 1. If
n € . is self-conjugate, i.e.,, « = & in €, then /\i = 1, which implies A, = 1. If
is not self-conjugate, then there is f € . which is a conjugate of « and we have
Aadg = 1.
If the spectrum . is finite, then ®(H)" is a type II; factor. If . is infinite,
then tx 0o E(I) = 5Zy Apdg = +oo, where T is defined in the proof of Proposi-
€

tion Thus ¢ (H)" is a Il factor. Observe that tx o E is a trace (tracial weight),
whereas T o E is a trace if and only if A, = 1 for every a € A.

3. THECASE A, =1

In this section, we assume that the spectrum .7 of the category ¥ is infinite
(not necessarily denumerable) and study the algebra @(H)" constructed before,
in the special case Ay = 1 for every « € . (hence for every & € A), i.e,, when
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the -2 pre-Hilbert bimodule H has trivial Tomita bimodule structure. The main
result is that, in the trivial Tomita structure case, the free group factor L(F ) (with
countably infinite or uncountably many generators) sits in a corner of ®(H)”,
namely [ ®(H)"Iy = L(Fy) (Theorem[3.7).

All von Neumann algebras in this section are semifinite and all conditional
expectations are trace-preserving. Since the conditional expectation onto a von
Neumann subalgebra with respect to a fixed tracial weight is unique (see The-
orem 4.2 from Chapter IX in [62]), we sometimes omit the conditional expecta-
tions from the expressions of amalgamated free products to simplify the notation,
when there is no ambiguity.

Recall that 24 = ¢ Clp is the abelian von Neumann algebra with tracial
pes

weight T such that 7(Ig) = dg, where I is the identity of Hom(B, §), and dp is
the categorical dimension of g € .#. By Theorem[2.7land Proposition 2.10}
" o = "

(®(H)",E) = *m,a,ﬁl,ﬁzeyée(’)g?(@({ag+ b :a,beC})'E)
is a Il factor (semifiniteness is due to the assumption A, = 1,0 € .¥).

We use L(Fs), 1 < s < oo, to denote the interpolated free group factor [14],
[54]. In general, for every non-empty set S, let L(Fs) be the free group factor of
the free group over S with the canonical tracial state 75 (see Section 6 in [47]).

We let M(Fs) = @ L(Fs) and identify 2 with the subalgebra @ C of
pes pes
M(Fs). Let Eg be the faithful normal conditional expectation from M (Fs) onto

2 such that ES( &) aﬁ> = Y. Ts(ap)lg, where ag € L(Fs). By Lemma 2.3, we
pes pes

have

(M(F), Ez) = (@({ag +bi:a,beC})",E).

*
Ql,ﬁeé’,c’je@éﬂ

The following fact is well known at least when S is denumerable [53] and it
shows that the fundamental group of an uncountably generated free group factor
isRf = {t e R,t >0} as well.

LEMMA 3.1. Let S be an infinite set (not necessarily denumerable). Then L(Fs) =
pL(Fs)p for every non-zero projection p € L(Fs).

Proof. Let S = |J S; be a partition of S such that |S;| = |N| and |®| =

€O

|S|. Let (M, T) be a W*-probability space with a normal faithful tracial state T,
containing a copy of the hyperfinite II;-factor R and a semicircular family {X;; :
i € ©,j € S;} (see Definition 5.1.1 in [66]) such that {X;; : i € ©,j € S;} and R
are free. Consider the von Neumann algebra V' = (RU {qX;;q: i € ©,j € S;})",
where g € R is a projection with the same trace value as p.

Let N; = (RU{qX;jq : j € S;})". For each i € ©, by Proposition 2.2 in [14],
there exists a semicircular family {Y;; : j € S;} C N such that N; = (RU{Y;; :
j€Si})"and {Y;;: j € S;} and R are free.
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Note that {Y;;; : j € S;;} and RU{X;j:i € ©\ {ip},j € S;} are free for every
ip € ©. Thus {Y;; :i € ©,] € S;} is a semicircular family which is free with R.

By Theorem 4.1 in [13], L(Fs) = (RU{Y;; : i € ©,j € S;})" = N. Since
gNq = (qRqU {gXjjq : i € ©,j € S;})" and gRq = R, we have L(Fs) = pL(Fs)p
by Theorem 1.3 in [14].

LEMMA 3.2. For every set S such that 1 < |S| < |.7|, let
(M, &) := (M(Fs), Es) *q,ne 7\ (1} ceop (P({al+ b 1 a,b € C}H", E).
Then M is a s factor with a tracial weight T o € and Iy M1y = L(F »).

Proof. Proposition[A.6|in the appendix implies that T o £ is a tracial weight.
By Lemma|[2.5 we have

di we\{1}

Iy
M= (L(Fs) D C) o1, pe.s\ (1} Mg/

where M pis

I L Li+pp qp
Mg=|L(Fs) P C ) *o LF)oM(C)|a C P C
s we () 2 b1 e\

and pg +qp = Ig. Itis clear that the central carrier of Ig in My is Iy + Ig. By
Lemma 4.3 in [15],

s Pp 95
I,BM/SI‘B = L(FS) % (L(Pl) D (z >
dg 1 4
By Proposition 1.7(i) in [12], IgMglg = L(Pt%) where t% is a real number bigger
than 1if S is a finite set (see [14]) or t5 = S if S is an infinite set. Then Theorem 2.4
in [14] and Lemmaimply LiMgly = L(Ftﬁ) where tg is a real number bigger
than 1if S is a finite set or {5 = S if S is an infinite set.

Note that [ M Iy = L(Fs) *ge. o\ {1} iMgly. Let # = | S; where O is
jEO

a set such that |@] = || and {S;};ce are disjoint countably infinite subsets of
. If S is a finite set, by Proposition 4.3 in [12], [y M1y = *jcgL(Fy) = L(Fy).
Otherwise, Iy MIy = *jcL(Fs) = L(Fy). Finally, M is a type Il factor because
the central carrier of Iy is I. 1

LEMMA 3.3. For every S such that 1 < |S| < ||, let

Iy +pa Ju Iﬂ
(M, €)= (M(Fs), Es) *q e\ 1), c0i | M(C)& C B CJ,
2 T ATy

where py + o = Ix. Then M is a Il factor with a tracial weight T o € and Iy M1y =
L(Ey).
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For the proof invoke Proposition 2.4 in [12] instead of Proposition 1.7(i) in
[12], and the lemma can be proved by the same argument used in the proof of
Lemma

The following fact is well known; we sketch the proof for the reader’s con-
venience.

LEMMA 3.4. Let 0 < ¢ < 1and M := ;e ((; ® 1(Ct). Then M = L(Fy).
Proof. We assume t > 1/2. Then by Theorem 1.1 in [12],
(o)=(Geg)=(mpm@)e o
By Theorem 4.6 in [12],
((L(P1)®M2((C)> ©® ) * ((L(P1)®M2(C)> @

C C )
22t max{2t—1,0} 29t max{2t—1,0}
= L) & C
17max{273,0} max{4t—3,0}

where s; > 1. By Proposition 2.4 in [12], there exists n € N such that
*i=1..n ((t: ® 1(%) = L(F,),
where s, > 1. Then Propositions 4.3 and 4.4 in [12] imply the result. 1

LEMMA 3.5. Let (M, T) be a W*-noncommutative probability space with normal
faithful tracial state T and let
enten q
A =M (C)e  C
2/(1+d) (@=1)/(1+d)
be a unital subalgebra of M, and d > 1. We use {e;; }; ; to denote the canonical matrix
units of Mp(C) in ;. Let 2y be the abelian subalgebra generated by e11 and P = exn +q
and E be the trace-preserving conditional expectation from M onto 2.
Assume that {ex } U{ps} is a -free family of projections in (ex + q) M (ex +q)
such that T(ps) = 1/ (1 + d). We denote by N the von Neumann subalgebra of (ep +
q) M (ex + q) generated by {ex} U {ps}ses. Then there exist partial isometries vs in
N such that vivs = ps and vsvs = ex. Suppose that {ws}scg is a free family of Haar
unitaries in ey Meoy which is *-free with exp N epy. Then

({9[1 U ( U {enfelzwsvs,U:w:Ezl/Ps,P}ﬂ//,E) = (A1, E) *9y (*21y,5e5(2A1, E)).
seS

Proof. The existence of vs is implied by Theorem 1.1 in [12]. It is clear that
{e11, e12wsvs, viwiesr, ps, P} = Ay.

We could assume that 0 ¢ S and denote by Zy = {e1p, €21, dexy — P} and by Zs =
{e1pwsvs, viwkey, dps — P} for every s € S. Note that E(a) = (1 +d)t(e11ae11)ern
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+ [(1 +d)/d]Tt(PaP)P. We only need to show that E(ty,...,t,) = 0, where t; €
Ziiy k(i) € {0} USand k(1) # k(2) # -+ #k(n),n > 1.
Note that E(t;---t,) = 0if t;---t, € e;yMP or PMeqq. Therefore we
assume that 0 # t; - - - t, is in e;7.Meqp or in PMP and show that t(t1 - - - t,) = 0.
Case 1. t; ¢ U {e1nwsvs, viwkesn }. If e1p and ep1 are notin {t4,...,t,}, then
seS
itis clear that t(t;---t,) = 0. Ifejp orepy isin {t1, ..., t,}, thenty = epp, ty = e21.
Note thatt; = deyy — Port; € {dps — P}ses, i =2,...,n—1land t, 1 # deyy — P,
i=2,...,n—1.Since {ps}scs and ey are free, then

T(t - ty) = T(t2 - ty_1e22) = 0.

Case 2. If the number of the elements in {i 1<is<ntie U {euwsvs}}
seS

and {i 1<i<ntie U {v;‘w;‘ez1}} are different, then 7(f; - - ;) = 0 since
seS

{ws }ses and eppNepy = exn (A1 UN') ep; are free.
Therefore, if T(#; - - - t,) # 0, there must exist i1 < i; such that

*, % ok
ti, = vswgen1, b, = e1pWsVs Or tj = e1pWsVs, i, = VgWgen1.

and t; ¢ U {enpwsvs, viwkesn }, iy <i < ip.
seS
Assume that t; = viwiey, t;, = ejwsvs. Since t; - -t;, # 0, ti41) = €12,

t(izfl) = ey, t; € {dps — P}SES U {dé’zz — P} h+1<i<iy—1and t(i1+2) -+
deyy — P, ti,—2) # deyy — P, then by Case 1, we have
T(ezzt(ilJrz) cee t(i2—2)622) =0.

Now assume that tj, = e1pWs0s, tj, = viwyer. Since by oot #0,t ¢ {612, 621},
i1 < j <ip. Then by Case 1,

T(Ost (i, 42) "+ tiy—2)0s) = T(Pst(iy42) " t(i—2)) = 0.
=0.

This, however, implies that T(t1 - - - t) 1

LEMMA 3.6. Suppose that S is a set such that |S| = |.7|, let

Li+p q
M 1= *g( ses Mzz((c) @dg

L b
where Ay = ?@gand L =p+gq,d>1 Then Misally factorand L MI; = L(Fy).

Proof. Letsy € S.

Case 1. d = 1. Then a similar argument as in the proof of Lemma 3.5 implies
that I; M1, is generated by a free family of Haar unitaries {us}cg\ (s} Thus
hMI = L(Fy).

Case 2. d > 1. By Lemma[3.5] [, M1, is generated by a free family of projec-
tions {ps} and a family of Haar unitaries {ws} C ps,Mps, such that T(ps) =

1, {ws} and ps,{ps}.-gps, are free. By Lemma {ps}l.g = L(F»). Then
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Lemma [3.1]implies ps, Mps, = L(Fy) * L(F5) = L(Fy). Note that the central
carrier of p, is I + I, thus M is a factor and [ MI; = L(Fy). 1
THEOREM 3.7. We have a x-isomorphism of factors Iy ®(H)" Iy = L(Fy).
Proof. By the axiom of choice, |.¥ x .| = |.7|. Let

I]l+p0( Ju
(M, €) = (M(F5), Ez) #9 0e 1y com | Ma(C) @ C - B CE
2 “ ﬁey\{n a}

where p, + g, = I. Note that
(M, &) = (M(Ex),Ex) *9(, e\ {1} Ma,

where

I Ig Li+pa Ga
M,x = L(Fy) @ (C *o( MZ((C) ¢ C @ (C
de  pes\{u} 2 W e

IJl +Lx I,B
Note that M, = ( (F») @ (C) by Lemma 4.3 in [15]. By Lemmaand

dy+de pe\{1a} %
Proposition[B.5, we have

I]l+P:x Ju
(M, &) = (M(Ex), Ez) *aac\ 1) ses | M2(C) @ C @ CE
2 “pes\(1a)

where S is an index set such that |S| = |.|. Thus (M, &) = #g sc5(M, E).
By Lemma[2.3) Lemma[2.5| Lemma[3.2] Lemma 3.3]and Proposition[B.5 we
have

" ~ = . "
(PCHY"EY = (M) 5y s i peote (PUAE+IE 2 a,b € C)YE).

Thus ®(H)" = ¢ where we set

A, ac.s Br1#BreS BaF#1,CE nga M

Li+pp qp
Mz = (M(Ez), Ez) *a,per\(1py) | M2(C) @ C. @ CE
2 P e\ (LB}

I.Bl+p52 qﬁz
o | (L(F)®@M(C))e  C b CE
24, 21 e\ (B 2}

if dﬁh <d B and Mg is similarly defined in the case d By S dﬁr Arguing as in the
proof of Lemma we have that M is a factor and Iy M¢Iy = L(Fy).
TH I~ ~
By Proposition|B.5, (H)" = H o ae S B fre s o, éeoﬁzu (M, E) = (M,E)

and Lemma 3.3|implies the result.
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4. REALIZATION AS ENDOMORPHISMS OF & (H )/ 4

In this section, we assume that the spectrum . of ¢ is infinite, and we show
that W(%) considered in Section thus ¢, can be realized as endomorphisms of
the factor @(H)" constructed in Section2] Recall that ¢’ and W(%') are equivalent
as strict C*-tensor categories. We first introduce for convenience an auxiliary
algebra living on a bigger Hilbert space.

From now on, we use ® and L?(®) to denote ®(H)” and L?(®(H)", T o E),
unless stated otherwise. Recall that L2(®) is a ®-® bimodule and lpe®,pes.
Let

H(E)= P H", whereH" := P Hom(B,Wy)® (IsL*(P)).
WeW(%) Bes

Here by ® and ® we mean the Hilbert space completions of the algebraic direct
sums and tensor products. The inner product on H (%) is given by

(1 @ 81 |12 @ &a) = ;ﬁ<u1 ) (&1 E2) = (&1 | (uf12)Ea),

where &1, & € IgL*(D), uy, u; € Hom(B, W7y) and (uy | up) is given as in Section
by equation . To simplify the notation, we will use u¢ to denote u ® Ig¢ for
every u € Hom(B, Wy) and & € L?(®). Moreover, note that L?(®) is canonically
identified with H?.

Each f € Hom(W; 81, Wa2), for By, B2 € 7, Wy, Wo, € W(¥%), acts on H (%)
as follows. On the linear span of the u¢’s as above let

f - (ug) = dw,p,, wy (fu)¢, u € Hom(B, Wy).

It is routine to check that
(L (e | (g < IFIP LG | arupey),
i ] L]

since (uf f*fu;)i; < ||f|*(ufuj);;. Thus the map extends by continuity to a
bounded linear operator in B(#(%’)), again denoted by f.

Let f; € HOI‘n(Wi(Xi,ZiIBi), fora;, p;i € S, Wi, Z; € W(%), i = 1,2. By the
above definition, for every {, {1,{» € H(€), we have

fi- (f20) = dwyay, 228, (f1f2) - ¢ and  (C1|f1-Q2) = (ff - C11G2)-

In particular, for u € Hom(8, W) and ¢ € L2(®) = H?, we have u - & = uf.
Therefore, we write f - ¢ as f{ from now on.
It is also clear that

(4.1) H(E) = P P ul*(o),

WeW (%), pes ueog“”
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where Og‘/”m = U OE\M (disjoint union) and OZM is a fixed orthonormal basis
yes

of isometries in Hom(B, W), for every B,y € ., W € W(%), while (’)E\/V =Qif
dim Hom(B, Wvy) = 0.

For every ¢ € [ﬁﬁzf‘] C H o € A, By, B2 € 7, the operator I'(§) € P acts
from the left on (%) in the following way

{F(C)(C) =T ifge M,
r@)wg) =0  ifuf¢H,

and we denote again by I'(¢) the operator acting on H(%).

DEFINITION 4.1. Let @(%) be the von Neumann subalgebra of B(#H (%))
generated by {f € Hom(W; 1, Wa2) : B1, B2 € #, Wi, W, € W(%)}and {I'(C) :
ge [%f‘},« €A BLBrE S

Let Py : H(%) — H" be the orthogonal projection onto H" for W €
W(%'). We have the following easy result and its proof is omitted.

LEMMA 4.2. The algebra @ constructed in Section 2|is a corner of @(€'), namely
@ = Py () Py and a canonical *-isomorphism is given by

Iﬁ — 1‘5‘7_[@, F(ff) —> F(@)\H@,
for every & € [’?821’)‘] where a € A, B1,B2 € 7.

From now on, we identify L?(®) and ® with H? and P»®(%)Pyp, respec-
tively.

THEOREM 4.3. For every word W € W(€), the projection Py is equivalent to
P@ in (D(“f) Thus PW®(%)PW = P@@(%)P@ = Q.
Proof. Note that Pp = )} Igand Py = Y. Y uwu™. Since the central
pes pes ueop”
carrier of Py is I, @(%) is either a type Il or a type III factor by Proposition 5.5.6,
Corollary 9.1.4 in [34].
Assume first that @(%) is a type III factor. By Corollary 6.3.5 in [34], I

and Y, uu® are equivalent for every B € .7, since they are both countably
ueOf
B

decomposable projections. Therefore Py is equivalent to Pp.
Assume now that @(%) is type Il. Let .7 = |J . be a partition of .7

ic®
such that each . contains countably many elements and |.| = |©|. Note that
each projection @ wuu* is a finite projection and equivalent to a subprojection

ue@E"y

of @ Iy, where 0 is a one-to-one correspondence between . and ©. This
YES 0(B)
implies that Py is equivalent to Pp. 1
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Let Abe the modular operator of @ with respect to T o E. Then we can define
a one-parameter family of unitaries in B(7 (%)) as follows

Us : ul — u(A¥7), teR,
for every { € L2(®),u € Ozvy . It is easy to check that
Ufui = f, WU = AT (), teR,

where f € Hom(W;81, W2B2) and ¢ € [16‘821“]/ fora € A, B1,B2 € S, Wy, Wy €
W(%). Therefore AdU; € Aut(®(%)).
Note that {ulg : u € Og‘ly,lﬁ € L2(P),W € W(¥),B € .7} is a total set of

vectors for @(%)’ (here I is the operator in 2 and treated as a vector in L?(®),
see equation (2.4)). Thus

42 9(A):= ), Y, (ulg|Aulp)), A€d(6),A>0,
,Bey,WEW(%()) ueog‘]y

defines a n.s.f. weight on @(%). Moreover, ¢(U; - U;) = ¢(-) for every t € R,
since Ut(ulﬁ) = ulg. Now we show that U, t € R, implement the modular
group of @(%’) with respect to ¢.

LEMMA 4.4. For every A € ®(€) we have of (A) = U AU}, t € R.

Proof. Note that p(uA) = (Ig | A(ulg)) = (Ig | (Au)lg) = ¢(Au) for every
ue Og\/y’ B e, We W(%). Then Theorem 2.6 from Chapter VIII in [62] im-
plies that the von Neumann subalgebra generated by {f € Hom(W; 1, Wzf7) :
B1,B2 € S, Wy, Wo € W(%)} is contained in the centralizer (%), and o/ (f) =
f = wsu;.

Since E(B) = Y d?(Iﬁ | Blg)Ig, for every B € @, we have To E(B) =
pes

@(B). Then Theorem 1.2 from Chapter VIII in [62] implies o (I'(¢)) = U;T'(&)U;
forevery ¢ € [P 521“]. By the definition of @(¢), the lemma is proved. 1

LEMMA 4.5. For every word W € W(€') there exists a non-unital injective -
endomorphism py of ®(€) such that

oW :f S Hom(W1ﬁ1,W2ﬁ2) — Iy ®f S HOIn(WWlﬁl,WWZﬁz) and
pw:T(@) = ) ) ul ([u” @ L[y @ ¢Jv)o*

7 w
N7267 ueOK\;ﬁz, ve(%fl

for every & € [%1“], where € A, B1, B2 € S, Wi, Wo € W(F).
Proof. Let dw = d,). It is easy to check that ¢(f) = 1/dwe(Iw ® f).
Let &; € [ﬁ’zl_“"] where ; € &, a; € A,i =1,...,m+1, m > 1. Note that

@(F(Em)---T(&1)) = 0 = diy' @(ow(I'(&m)) - - - pw(I'(§1))) unless m = 2n and
B1 = Bant1-
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We claim that ¢(I'(820) - -~ T'(§1)) =dyy 4’(Pw( (G2n)) -+ pw(L'(E1))) if f1 =
B2n+1. By the definition of T and E (see equation (2.8)), we have

n /\oc]
VALl
TOE(F(CZH)F(gl)) :d,ﬂl Z H d <§]'k|§ik>'
(it b jnsin}) k=1 “Pig
GNCZ(ZH),ik<jk
where NC;(2n) stands for the set of non-crossing pairings of {1,. . .,Zn}, ie.,
there does not exist 1 < i < i < jr < j; < 2n (see Notation 8.7 in [46] for

more details). Thus we only need to show that, for every ({j1,i1},...,{jn, in}) €
n —
NGCy(2n), dg,dw kl:11(1 /dp, )(Sj, i) equals

Z dy Y, Hdl ((u], ® I, )(1W®Ejk)ujk+1|(“Z+1®Iaik)(1w®§ik)uik>,

e, eOWﬁ’ k=1 "7y

i=1,. 2
here 15,11 = u;. We show that the two expressions are equal by induction on 7.
If n =1, then
Y Y ((u3 @ Iny) (Iw @ &) | (u3 @ Ly ) (T @ &1 )un)

, w w
Y172 " Goylﬁlﬂ/’ZeOyzh

=) Z g, E &) = dw (B | &)

m uEOWﬂl

Assume the claim holds for n = 2I. Forn = 21 +2,letk € {1,...,2] +2}
such that j, = i; + 1. Note that

1 _
Z Z d7<(u;kk+l®lﬁ,'k+1)(IW®§ik+l)uik+2 | (u?(](+1®laik)(lw®§ik)uik>
Vip+1 Whip+1 Vi

Ui +1€0y, 5

1 _
Téﬁfk/ﬁik+2§uik+2’ uik <§]k | §Zk>
k

Then the inductive hypothesis implies the claim.

Let @) be the x-subalgebra of (%) generated by {f : Hom(W; 1, Wa2B2),
Bupr € Wi, Wy € W(%)} and {T(¢) : & € [ p1p2 € Fa € A},
Moreover, let py (Pg) be the *-subalgebra of P®(¢)P generated by {pw(f) :
Hom(W1p1, Wap2), P1,p2 € -, Wi, Wz € W(#)} and {pw(I'(2)) : ¢ € 2]

P
Bi,Br €S we A}, whereP= ¥ DPyy.
VeWw(#)
By Lemmal[4.4Jand Lemma 2.1 in [29], @) and py (Py) are respectively dense
in L?(0(€), ¢) and L2(pw (®o)”, dyy' ¢). By the discussion above,

@(ul' (&) -+~ T(&1)0*) = diy' p(ow (w)pw (T (Gn)) - - - ow (I (&1))pw (0%)),
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where &; € [’SiE:“’], ue ngjf and v € Oz\lfl'y, gic L aieNi=1...,nn=1,
and Wy, W, € W(%)

Thus there exists a unitary U from L2(®(%), ¢) to L2(ow (Po)", dyy' ¢) such
that U*t(pw (f))U = f and U*nt(pw (I'($)))U = I'({) where 7 is the GNS rep-

resentation of pyy (®p)” with respect to d;\,l . 1

REMARK 4.6. With the notations used in Lemma it is routine to check
that
ul ([u* @ L][Iy ® &Jv)v*
uGO};\;ﬁz,veOK\iﬁl

does not depend on the choice of orthonormal basis of isometries in Hom(vy;, Wp;)
where the sum over u and v runs. Then it is not hard to check that pw, o pw, =
pw,w, for every Wy, W, € W(¥%).

LEMMA 4.7. For every pair of words Wi, Wy € W(€') and f € Hom(W;, W),
we denote

fel:= Y. f®Iyg € D(%),
Be.S WEW (%)

where f @ Iy € Hom(WWB, WoWp). Then the following intertwining relation in
End(® (%)) holds:
(f @ Dow, (A) = pw,(A)(f® 1), VA € &(%).

Proof. We only need to show that (f @ I)ow, (I'($)) = pw,(I'())(f ® I) for
every ¢ € [ﬁ ﬁzl“], x €A, B € .7,i=1,2. Without loss of generality, we assume that
f = upuj where u; € (’)Zvi, B € ., i =1,2. Note that @zviﬁj = {(u@lﬁj)v Tu €
O,;N v e (’)zﬁj ,n € '} is an orthonormal basis of isometries in Hom(y, Wl-,[%j),
i =1,2,j =1,2. Hence by Remark [4.6|we have the desired statement. &

We choose and fix a partial isometry Viy € ®(%) such that Vi, Viy = Py
and Viy Vi, = Pp (whose existence is guaranteed by Theorem[4.3) for every object
W € W(%) and Vi = Pyp. Note that pyy (Pp) = Pw.

DEFINITION 4.8. For every object W € W(%), let F(W) be the unital *-
endomorphism of @ (= Py P (%) Pp) defined by

F(W)(A) :==Vwow(A)Viy, A€ D.
In particular, F(®) = Ide.

Let End(®) be the (strict) C*-tensor category of endomorphisms of @ (nor-
mal faithful unital and *-preserving), with tensor structure given on objects by
the composition of endomorphisms and C*-norm on arrows given by the one of
®. The tensor unit Idg of End(®) is simple because @ is a factor.
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By Lemmalt.7] for every W,Y € W(%) and f € Hom(W, Y) we have
W(f @)V FE(W)(A) = F(Y)(A) [W(f @ )Viy], VA€ .
Therefore
Wi F(W), fe=F(f):=W({fehVy

is a *-functor from W(%) into End(®). In particular, F(Iy) = Irgy) and F(f*) =
F(f)* hold.

We now show that F is a fully faithful tensor functor from W(%¢’) to End(®),
hence an equivalence of C*-tensor categories onto its image.

The (unitary) tensorator of the functor

Jw,w, : F(W1) @ F(W2) = Ad(Viy, pw, (Viv,)) © ow, (ow, (+))
—> AdVWlW2 OPW1W2 = F(W]Wz)

is defined for every Wy, W, € W(%) by

]Wl,Wz = VW1W2PW1(VIX/2)VV>§/'1 € @

LEMMA 4.9. The family of morphisms { Jw, w, } is natural in Wy and W», i.e., the
following diagram commutes in End(®) for every f; € Hom(W;, Y;), W;,Y; € W(¥%),
i=1,2:

F(Wy) ® F(W2) LT F(W1W,)
F(f1)®F(f2)J JF(ﬁ@fz)
F() © F(ra) — 12

Proof. Since pw (Pgp) = Pw, W € W(%), Lemmal[4.7/implies that
Ty, v, (F(f1) @ F(f2)) = Vyiv,0v, (V) (f1 @ Dow, (Vy,)ow, (f2 @ Dew, (Vix, ) Viy,
=Wy, [(fl @ Iow, (ﬁz f2® Iﬁ)}Pwl(sz)le

F(V1Ya).

and F(f1 ® f2)Jw,w, = Vv, [(f1 ® f2) ® I]pwl(VV’Q,z)V;‘\,l. Note that

(A®]) Pwl( Z f2®1ﬁ) Y. (h®fh) I =I[(fi® f) @1 Pww,

pes

Thus {Jx,,x, } is natural. &

LEMMA 4.10. The functor F defined above is a tensor functor.

Proof. By Section 2.4 in [16], we only need to check that the following dia-
gram commutes:
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Jwy,z

E(W) @ F(Y) @ F(Z) "2 powy) @ E(2) E(WYZ)
F(W 2 F(2) T powy o B(vz) 7 B(WY2Z),

By Lemmaand by ow(py(Pz)) = Pwyz, we have
Jwy,z(Jw,y ® Irz)) = Viwyzew ey (V2))ew (Vy)Viy = Jwyz(Irw) © Jv,z)- B

We denote by (%) the von Neumann subalgebra of &(%) generated by

{f € Hom(B1, Wp2) : 1, B2 € #, W € W(%)}. By Theorem 4.2 from Chapter IX
in [62] and Lemma |4.4} there exists a faithful normal cond1t10na1 expectatlon E:

D(¢) — A(¥) with respect to ¢ defined by equation (4.2). Note that E|¢ = E :
@ — 2 defined in equation (2.8).

LEMMA 4.11. For every W € W(€), let (W) := Py P(€) Py and A(W) :=
A(€) N P(W). Then
(@(W),E) = (Mi(W), E) () (M2(W), E),
where Mj(W), j = 1,2, is the von Neumann subalgebra of @(W) generated by
{MzAMT A€ M]‘,Ml‘ S Hom(ﬁi, W’)/i) ﬁi,’yi €.7,i= 1,2},
and My and My are defined by equation (2.9) and equation (2.10) respectively.
Proof. By equation (2.10), it is not hard to check that ®(W) is generated by
M1(W) and My (W). Since E(upAuy) = upE(A)ui and
E[(u14107) (u2A203) - - - (un Anvy)] = m E[(Ar0fuz) (Az03u3) - Al =0,
whenever Ay € KerENM; with iy # iy # -+ # iy, u; € Hom(B;, W+;) and
v; € Hom(pB}, W+!), the lemma is proved.
LEMMA 4.12. The endomorphisms pw of ®(€') defined in Lemma[d.5map @ into
@ (W), moreover py (P)' N @ (W) = Hom(W, W) for every W € W(%).
Proof. With the notation as in the previous lemma, it is clear that
Ml(W) = {leALli< tAe N'y, u; € Hom(’y, W‘Bi),’)/, ‘31,,52 S y}”,

where N, is the factor generated by I' (&), §, = I, € (’)3IL (see equation ).
By the definition of py, we have

w(T@p)= ) ul(Weh]llw@iguu” = )  ul(Gy)u"
VEY,MEO};\% VEY,MEO};\%
Let {U, }, ¢~ be the unitaries defined before Lemma it is clear that

Z Z ullyu* € pw (@) N My (W).
PES yes ucOl
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Let B ( ﬁGBy Hom(y, Wﬁ)) be the algebra of bounded linear operators acting
€

on the Hilbert space @ Hom(v, Wp). Then it is easy to check that
pe.s

leAu’f — lelxli< RA A€ N'y, u; € Hom(’y, W‘Bi),

induces a *-isomorphism from M;(W) onto @ B( @ Hom(vy, Wﬁ)) Q N,.
yes Bes
Therefore Lemma 2.6)implies py (@)' N (W) C My (W).
Since @ is a factor, Proposition 2 from Chapter 2 in [9] implies that the re-
duction map by Iy = pw(l1) is an isomorphism py (P)' N M (W) 5 A —
Alwy € (Iwapw (@) Iw1)" N Iwyg M1 (W) Iy

Note that
IyaM1(W)Iyg = ) B(Hom(y, W1)) @ N,
veS
and pw (I'(¢1)) = Y ul' (&, )u*. We have

; W1
v€S,uc0y

(Iwzow (@) Iw1)' N I M1 (W) Iy € @D B(Hom(y, W1))® Ly, = Hom(W, W),
e

and the claim is proved by Lemma 1

LEMMA 4.13. For every Wy, Wy € W(%'), we have that Hom(F (W), F(W;)) =
Hom (W, W,).

Proof. Let f; € Hom(W;, W; @ W) be isometries such that f; f; = Iy, and
e1 +ex = Iw,gw,, where ¢; = f;f7, i = 1,2. Here Wy @ W, € W(%) denotes the
direct sum of objects in W(%'). Then T € Hom(F (W), F(W,)) if and only if

(f2 @ DV, TV, ow, (A) (ff @ 1) = (2 Dpw, (A) Vi, TV, (ff ® 1), VA€ &.

Thus (2@ 1) Vi, TV, (fi ®I) € (2@ I) [owyew, (@) N @(W1 & W2)](e1 ® I) and
Lemma implies the result. 1

Denoted by End(®) the subcategory of finite-dimensional (i.e., finite in-
dex) endomorphisms of @, by Lemma[4.9] Lemma and Lemma [£.13| we can
conclude the following theorem.

THEOREM 4.14. The functor F is a fully faithful tensor x-functor (non-strict but
unital), hence it gives an equivalence of W(€’) with (the repletion of) its image F(W(€))
C Endy(®) as C*-tensor categories.

Recall that a von Neumann algebra is called o-finite (or countably decom-
posable) if every decomposition of unit by means of non-zero orthogonal projec-
tions is countable, and that o-finiteness is equivalent to the existence of normal
faithful states. In the case of categories with infinite and non-denumerable spec-
trum ., the factor & = ®(H)"” is not o-finite (and it is either of type Il or
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I, A € (0,1]). Indeed, m(A) C @(H)" and 71:(Ig) € mc(A), B € 7, are
uncountably many mutually orthogonal projections summing up to the iden-
tity. However, & = & ® B(H) where & is a o-finite factor and H is a non-
separable Hilbert space. Moreover, Bimody(® @ B(H)) ~ Bimody(®) where,
e.g., Bimody(®) denotes the category of faithful normal @-& bimodules (in the
sense of correspondences) with finite dimension (i.e., with finite index) and ~
denotes an equivalence of C*-tensor categories. In the type III case, we also have
Bimod(®) ~ Endy(®). In [21] we give a proof of these last facts, that we could
not find stated in the literature, cf. Corollary 8.6 in [55], [44]. Recalling Theo-
rem[3.7jand summing up the previous discussion, we can conclude the following
theorem.

THEOREM 4.15. Any rigid C*-tensor category with simple unit and infinite spec-
trum 7 (not necessarily denumerable) can be realized as finite index endomorphisms of
a o-finite type 111 factor, or as bimodules of a o-finite type 11 factor, such as the free group
factor L(F) that arises by choosing the trivial Tomita structure.

We leave open the questions on whether every countably generated rigid
C*-tensor category with simple unit can be realized on a hyperfinite factor, and
on whether the free Araki-Woods factors defined by Shlyakhtenko in [57] are
universal as well for rigid C*-tensor categories with simple unit, as our construc-
tion (see Lemma [2.3) Lemma [2.9|and Theorem [3.7] the latter in the trivial Tomita
structure case) might suggest.

Appendix A. AMALGAMATED FREE PRODUCT

In [63], the amalgamated free product of o-finite von Neumann algebras
is constructed. The purpose of this appendix is to demonstrate that the method
used in Section 2 of [63] can be applied to construct the amalgamated free product
of arbitrary von Neumann algebras.

DEFINITION A.l. Let {M;}scs be a family of von Neumann algebras hav-
ing a common von Neumann subalgebra N such that each inclusion I € N' C
M has a normal faithful conditional expectation E; : Ms — N. The amalgamated
free product (M, E) = #xrses(Ms, Es) of the family (Mg, Es) is a von Neumann
algebra M with a conditional expectation E satisfying:
(i) there exist normal *-isomorphisms 775 from M; into M and 71|y = 70y| a7,
s,s' € S;let m = 75| p;
(ii) M is generated by 715(M;), s € S;
(iii) E is a faithful normal conditional expectation onto 7(A\') such that

E(rs(m)) = mt(Es(m)),
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and the family {ms(Mj)} is free in (M, E), i.e.,
E(7ts)(my) - - - 715, (my)) = 0
ifs) #sy #--- #sgandm; € KerEs,, i =1,...,k, wherek > 1.

LEMMA A.2. Let {(Ms, Es)}ses and {(Ms, Es) }ses be two families of von Neu-
mann algebras having common unital von Neumann subalgebras N and N, respectively,
and Es : My — N and Es MVS — N normal faithful conditional expectations.

Let (M,E) := #prscs(Ms, Es) and (M,E) := *N,ses(ﬂs’gs) with normal
x-isomorphisms s from Ms into M and 7ts from M into M. If there is a family of
s-isomorphisms ps : Ms — M such that ps(Es(m)) = Es(ps(m)) and ps|xr = pg|nr,
then there exists a unique *-isomorphism p : M — M such that E o p = pokEand
0 : 1ts(m) — 70s(ps(m)) for everym € Mg, s € S.

Proof. Without loss of generality, we can assume that M; C M and M s C
M and 715(m) = m, 7s(iit) = it for every s € S, m € M, and /it € Ms.
Let ¢ be a n.s.f. weight on A/ and 2 be the #-subalgebra of M generated
by U (M(Ms, ¢ o Es) N N(Ms, ¢ 0 E)*). For each m € N(M, ¢ o E), we use
seS

m@'/? to denote the vector given by the canonical injection m € M(M, 9 o E)

L2(M, ¢ o E). Note that 21y C 9(M, ¢ 0 E) 19" (M, ¢ o E). We claim that y¢!/?
is dense in L2(M, ¢ o E).

Fora € M(M, 9o E) NN*(M, ¢ o E) and € > 0, there is a spectral projection
p of E(a*a) such that ||(a — ap)9'/?|| < e and ¢(p) < 0. Since g is a dense *-
subalgebra of M in the strong operator topology, there exists b € 2y such that
||(b — a)pp'/?|| < e. Thus g is dense in L2(M, ¢ o E).

Note that ¢ = @ o p; ! is a n.s.f. weight on N. Similarly, let 2y be the *-
subalgebra generated by | (9(Ms, § o Es) N DN(Ms, § o Es)*), then Ap§'/? is

seS

dense in L2(M, § o E).
Let U be the linear map given by linear extension of

Umymy - - mpg"'* = py(1) (m1)ps(2) (m2) - - psiy (mie) ¢/

where m; € (M), ¢ 0 Eg;)) N N( M), ¢ 0 Eg)), i(1) # i(2) # -+ # i(k),
k > 1. By Definition [A.1{iii), it is not hard to check that U can be extended to a
unitary from L>(M, ¢ o E) onto L2(M, § o E) such that

Ury(m)U* = mtgops(m), Vm € Ms,s €S,

where 71, and 715 are GNS representations of M and M with respect to ¢ o E and
¢oE. Thenp(-) = 7'(43)1 (Ury(-)U*) satisfies the conditions in the lemma. &

To construct the amalgamated free product, we first fix a n.s.f. weight ¢ on
N and regard M as a concrete von Neumann algebra acting on s = L?(M;, g o
E;) for every s € S. Let My = KerEs; and (M, 9o E;) = {m € M; :
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¢ o Es(m*m) < oo}. For each m € M(Ms, ¢ o Es), we use mg'/? to denote the

vector given by the canonical injection (M, ¢ o E;) — Hs. Let J5, As be the
modular operators and {c;’ oFs }ter be the modular automorphism group of M
with respect to ¢ o Es. Recall that H; is a M- M bimodule with left and right
actions given by

ml(a(Pl/2>m2 = ]SmE]Smla(Pl/zl m1/m2 S MS/a € m<MS/ (P o ES)

By Lemma 3.18 from Chapter VIII in [62], my(ap/?)my = mlaafffzs(mz)(plﬂ if

my € D(Ufio/E; ). In the following, let 2; be the maximal Tomita algebra of the left

Hilbert algebra 91(Ms, ¢ o Es) N 9( M, ¢ 0 Es)*, ie.,
As={meM; : mGD(UfOES) and az(”OES (m)eN(Ms, poEs)NN( M, poEs)*,VzeC},

and Ay = N N2A; = Es(As). For my, my € 2As, we use ml(pl/zmz to denote
q0(.1);525(1712)491/2. In particular, (pl/zmz = (Tioffzs(mz)gol/z and <g01/2m1 | q)l/zmz)
= @ o Es(mym7) (see Appendix B in [7], Section 2 in [17], Chapter IX in [62]).
Note that n € (N, @) — ng'/? € H; gives the natural embedding of
L2(N, ¢) into L?(Ms, ¢ o E). By [61]], we can identify L2(N, ¢) as an N'-A sub-

bimodule of LZ(MS, ¢ o E;), moreover Js and A; can be decomposed as

(In Y L2(N, ¢)
’S‘( Is)' AS‘( AZ) °“< He )

where H = Hs © L2(N, ¢).

Define H = L>(N, ¢) © @ ( D H; Ry Ry ’Hg’k), where ®, is the
k=1 sy sy
relative tensor product ([56]). By Remarque 2.2(a) in [56],

myo

Ho = Qquol/z @ @ ( @ span{al(pl/2 Q- ®ak<p1/2 1a; € 2[;’1})
k=1 "s1#- sy

=Ave' o P ( P span{¢'?m @ - ® ¢ 0; € 2[;})
k=1 sl#---;«ésk
is dense in H, where 2 = A; N M. By the definition of relative tensor product
and Lemme 1.5(c) in [56] (or Proposition 3.1 in [17]), we have
<a1q01/2 ®--- ®uk§0l/2 | bl(pl/Z R ® bk(Pl/2>
= ¢(Es(aEs_ (- - - a3Es (a1b1)ba - - )by)),
(9@ @ 9" 2ar | 9?01 ® - - - @ ' 2by)
= (P(Esl (b1E52(~ o bkflESk(bkalt)alt—l e )‘ZT))
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For each s € S, let H(s,]) = L*(N,¢9) D & ( &) H, Qg+ R
k=1 sy #sps1#8

’H;’k) By Proposition 3.5 in [17] (or Section 2.4 in [56]), we have unitaries

Us : Hs @9 H(s,1) = (L2(N, @) B HS) @ H(s,1) — H.
For m € M, let ms(m) = Usm ®¢ Iy Us (see Corollary 3.4(ii) in [17]). If

ms € 2, it is not hard to check that ns(ms)m<p1/2 = Es(msm)<p1/2 + (mgm —
Es(msm))@'/? and that

7s(ms)arp!? @ - @ agg'/?

1/2

msay — Ls\(Msdy ) )@ 1 Y
(msay = Es(msar) )92 @ az !/ - @ ayp!/2

(A.1) - +Es(msa1)u2(pl/2 "® ak(Pl/Z/ 8$1=S5,
(ms—Es(ms))9*? @a 4’1/2 - ® apg'/?
+Es(ms)a; @ - ®akq01/2 S1 #5,

where m € 2 and 4; € 2. Note that L2(N, ¢) & Hs = L*(Ms, ¢ o E;) and 715
is a x-isomorphism. If n € N, then it is clear that 7ts(n) = 7y (n),s, s’ € S. And
we use 7 to denote 775|r. Define M to be the von Neumann algebra generated
by {7ts(M;) : s € S}.
Let ] be the conjugate—linear map defined on Ho by Jng'/? = J\nel/?,
%w and J(m@'? @ - @ a9'?) = J (') @ - @ [ (m9?) = ¢'2a; @
- ® @'/2a%, where a; € Hs,- Note that

(¢ 2a; @@ ¢! %0} | 920 @ - @ ¢! 2D]))
= (119" @ @ bg'? |a19' 2@ @ arg'/?).

Thus ] can be extended to a conjugate-linear involutive unitary and we still use |
to denote its extension.

The following fact is well known, at least when the von Neumann algebras
are o-finite (see Lemma 2.2 in [63]).

(A.2)

PROPOSITION A.3. For every ms € Ms,mg € Mgy, s, s’ € S, the operators
75 (ms) and Jrty (m%)] commute. Furthermore, the linear subspaces ML2(N, ¢) and
JMJL?(N, @) are both dense in H.

Let ey and e; be the projections from H onto L2(N, ¢) and L2(N, ¢) @ H,
respectively.

PROPOSITION A4. Let s € S, then esrts, (mq)msy(my) - - - 75, (my)es = 0 if
m; € Mg, s1 # sy # -+ # spand k > 1. Moreover, es7ts, (mq)es = ds,s, 75 (M1 ) es and
enTls, (my)en = 0. If n € N, then esrt(n)es = 1t(n)es and eprrt(n)ey = mw(n)ey.

Proof. By equation (A.T), an easy calculation verifies all the equations when
ms; € A; and n € Ay Since s is dense in the strong operator topology in M,
the assertion is proved. 1
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By Proposition itis clear that e; € 715(Ms)’ (enr € (N)) and esMes =
7T5s(Ms)es (e Mepn = m(N)ey). Let Epq, and E be the normal conditional ex-
pectations from M onto 715(Ms) and 7w(N), respectively defined by

esAes = Epq (A)es, enAey =E(A)ey Ae M.

By Proposition E and E 4, are faithful. Also note that E(Ep, (A)) = E(A)
and E(7ts(m)) = 1t(Es(m)). Therefore (M, E) is an amalgamated free product of
the family (M, E;) as in Definition[A.1]

PROPOSITION A.5. Let (M,E) = sy ses(Ms, Es). Then there exist normal
conditional expectations E g, : M — 15(Ms) such that E o E g, = E. Furthermore,
for every n.s.f. weight ¢ on N, we have (Tt(POE(ns(m)) = 7‘[5((7;/) Es(m)), m e Ms,
where = ¢p ot 1.

Proof. Note thatpoE = (<P°E|n ) Enm, and ¢ o E(rt5(m)) = ¢ o Es(m).
Then [61] implies the result. 1

By Proposition and Lemma 2.1 in [29], we can identity L>(M,po 7 !o
E) with H by using the unitary given in Lemma Let S be the involution on
the left Hilbert algebra (M, pot 1o E)NN(M, port 1o E)*,ie, S : m > m*.

PROPOSITION A.6. The left Hilbert algebra H is a Tomita algebra with involu-
tion So = S|y, and complex one-parameter group {U(z) : z € C} given by

oEs @oE;
UE) (¢ 20 2 a9 /?) = 0! (a1) 920 @0r *(ar)9'?,

and U(z)(ng?) := of (n)@'/?, where a; € A and n € Wpy. In particular, the
modular operator A associated with @ o 71~ 1 o E is the closure of U(—i) and the modular
conjugation is J.

Proof. For a;, b; € A3, 81 # -+ # s, let ¢ = algol/z ® - ®app/? and
B="b192® - @ bep/2. Note that So¢ = a;¢'/2 ® - - - @ aj ¢!/2. Thus we have

(€|U(z)B) = <Esk<akEs“< @3Es, (0?1 (01) 0?2 (b) - )0 T (b))

* oE; OES %
= (s (072 () B, (077 (02) By (6777 (a1) Br)ba -+ ) b))
= (U(-2)¢ |ﬁ>-
By the definition of ] and equation (A.2), we have

(Soz| Sop) = (Ju( 3 )elTu(=3)8)=(u(~3)pIu(~3))=WUEDpo).
The other conditions in the definition of Tomita algebra can also be checked easily.
Let Sy be the closure of Sy. By Theorem 2.2 from Chapter VI in [62], H, is a core
for both Sy and S;- Note that H is contained in the maximal Tomita algebra in
N(M,por Lo E)NN(M,por!oE)*. Therefore Hy C D(S) N D(S*) and by
Theorem 2.2 from Chapter VI in [62], A and A'/? are the closure of U(—i) and
U(—i/2), respectively. Since H, is dense in H, the modular conjugationis J. 1

(poE q)oE
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Appendix B. TECHNICAL RESULTS ON NON-¢-FINITE ALGEBRAS

The results of this appendix are well known in the case of o-finite von Neu-
mann algebras (i.e., von Neumann algebras that admit normal faithful states), but
we could not find them stated in the literature in more general situations. In the
following we generalize them to the case of arbitrary von Neumann algebras, as
we shall need in our construction (when considering categories with uncountably
many inequivalent simple objects).

Let NV be a von Neumann subalgebra of a von Neumann algebra M and let
E be a normal, faithful conditional expectation from M onto /. Then M is a pre-
Hilbert V- bimodule, as defined in Section[I} with the A/-valued inner product
(my | ma) s := E(mjmy). The left action of " on M is clearly normal. For a n.s.f.
weight ¢ of V, the Hilbert space H, defined in Section || (see Notation[1.3), with
H = M, coincides with the GNS Hilbert space L?>(M, ¢ o E). The inner product
(-]) associated with H and ¢ is the GNS inner product (- | -),.z. We regard M
and NV as a concrete von Neumann algebras acting on L2(M, ¢ o E). Recall that
exs € N is the Jones projection from L?(M, ¢ o E) onto the subspace L*(N, ¢),
and ey Tens = E(T)ey for every T € M. Moreover, there exists a unique n.s.f.
operator-valued weight E~! from A to M’ characterized by

d(¢oE) _ de
dp d(goE"1)’
where ¢ and ¢ are n.s.f. weights on V' and M/, respectively (see [24], [25], [38]).
The following generalizes Lemma 3.1 in [38] to the non-o-finite case.

LEMMA B.1. With the above notations E~'(ey) = L

Proof. Let & € L?(N, ¢) be a p-bounded vector (see [6]) regarded as an ele-
ment of L2(M, ¢ o E), namely such that the map R?(&) : n € (N, @) — n& €
L?(M, ¢ o E) extends to a bounded linear operator from L?(\/, ¢) to L?(M, ¢ o
E). Note that

Imé|l2 = [EGm*m)' 28|12 < [|R?@) | mll2,  m € MM, g oE).

Thus ¢ is a ¢ o E-bounded vector and the map R?°E(&) : m + m¢ is a bounded
operator in M.

It is clear that (I — ey )R?°E(&)ens = 0 for each ¢-bounded vector & €
L%(N, ). Let m € M(M, ¢ o E) such that E(m) = 0. Then (8| R¢°E(§)m>¢oE =
(BIE(m)¢) gyop = 0, for every p € L%(N, @). Therefore, we have RY°F(&)ey =
e RP°E(Z) and R?°F(8)enr| 12w, p) = RP(E)-

By Proposition 3 in [6], there exists a family {a },cs of @-bounded vectors

in L?(\V, ¢) such that
en = ZR(P )R (Z0)" ZR‘POE JRE (&) e
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Since MeyL2(M, 9o E) = span{m¢ : & € L2(N,¢p),m € M} is dense in
L*(M, ¢ o E), we have

Y RPE(C)RPH(Ea)" = L.

Therefore E~1(en) = L E 1 (R?(E)RP(E2)*) = L RP°E(&,)RPE(E,)* = I (see
14 14
Lemma 3.1 in [38] for more details on this part). 1

Let | be the modular conjugation associated with ¢ o E on the Hilbert space
L?(M, ¢ o E). By Theorem 4.2 from Chapter IX in [62] (or see [61]), Jen] = en-
The basic extension of M by ey is the von Neumann algebra generated by M and
ey ([30]), which coincides with JN']. For A € B(L2(M,@oE)),let j(A) = JA*].
Then E : A € JN'] — joE 10 j(A) € M is a ns.f. operator-valued weight.
By Lemma E(en’) = I. Moreover, the same arguments as in the proof of
Proposition 2.2 in [29] lead us to the following lemma.

LEMMA B.2. The projection ey is in the centralizer of ¢ := ¢ o E o E, namely

(T;P(EN) =ey, teR

Proof. By Lemma 1.3 in [38], E = (jo Eoj)~'. Thus
dp ~  dgoE
dpoj d(gpoEocj)
By Theorem 9 in [6] and Takesaki’s theorem (Theorem 4.2 Chapter IX in [62]) we
conclude (T;P(e/\/) = Ai;OEeNA;gE =eyn. 1

= Aok

Along the same line of arguments used in the proof of Proposition 3.3 in
[64], we have the following result on the structure of amalgamated free products
in the non-finite, non-c-finite setting (see Appendixfor their definition).

PROPOSITION B.3. Suppose that My 2 N C My are von Neumann algebras
with normal faithful conditional expectations E; : M; — N,i=1,2. Let

(M,E) = (M1,E1) * N (Mz, Ez)

be their amalgamated free product (see Definition and ¢ be a n.s.f. weight on N.
Fori=1,2, we use M; C M, to denote the set of analytic elements A € M, such

that 09°F (A) € MM, ¢ 0 E) "N(M,, 9 0 E;)*, z € C.

Let 9y be a strongly dense x-subalgebra of MMy which is globally invariant under

the modular automorphism group o}’ °E1 and such that E1(9) C 9My. Let 2A be a unital
von Neumann subalgebra of the centralizer (M) gok, such that:
(i) ¢ © E1|ownm, is semifinite;
(ii) there is a net U, of unitaries in A satisfying E1 (AUxB) — 0 in the strong operator
topology for all A, B € {I} UM,
Then any unitary V. € M satisfying VAV* C My must be contained in M. In
particular A' " M = A" N M.
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Analogous statements hold replacing M1, 9, %1 with Mo, My, ﬁz.

Proof. We assume that M acts on L2(M, ¢ o E) and take V as above. Let
J be the modular conjugation associated with ¢ o E and E=jo Ej\/%l o j be the
dual operator-valued weight from JM/] onto M, where E , is the conditional
expectation from M onto M defined as in the discussion after Proposition[A.4]
We use e, to denote the Jones projection from L2(M, ¢ o E) onto L>(My, 9o Ey ).
Note that epq, Tear, = Epq,(T)en,, T € M, and L2(My, ¢ o Eq) is a separating
setin L?(M, ¢ o E) (see Proposition and Lemma . Thus we only need to
show that (I —epy, ) Ve, V(I —epn,) = 0.

Note that VAV* € My, Vepq, V € &' N JM]|] and E(Vep, V*) = 1 thanks
to Lemma By taking spectral projections, it is sufficient to show that if F is a
projection in 2’ N JM} ] such that F < I — ey, and ||E(F)|| < +oo, then F = 0.

Let T = 9y NN, 972? = KerE1|97zl, M5 = KerEzlon, and 9 = N+
spanA(ﬁf, 9M3), where A(ﬁf, 93) is the set of all alternating words in ﬁi’ and
2M5. By Lemma 2.1 in [29], M is dense as a subspace of L?(M, ¢ o E). Let
Hy = span{Aey,B : A,B € 9M}. By Lemma and Theorem 4.7 in [24], Hy
is globally invariant under (T;p , where ¢ = ¢ o EoE is a n.s.f. weight on | M(T.
Therefore Hj is dense as a subspace of L?(JM}], ¢) by Lemma 2.1 in [29]

Let P €2’'NM; be a projection such that 0 <72 =¢(PFP). Let T—ZA e, Bi

€ Hy satisfying ¢(T*T)/?2 < 3v/2 and ¢((T—(PFP)"/2)*(T— (PFP)l/Z))l/2 <
/5. Moreover, we can assume that (I—exq, )T =T =T(I—epq,) by Lemma
and Lemma 3.18(i) from Chapter VIII in [62]. Therefore E 4, (A;) =0=Epy, (B; )

i=1,...,n,and we could assume that A;, B; €span(A (sm;, 9ﬁ2)\9ﬁ°).
For any U, as in our assumptions, we have

2
72 = [p(T* UaTU)| < [9((PFP)/2Un (PFP)/2U) = (T U TUS)| < L
Thus
5 n
Y <2 Y [¢(Bfen, Al UnAjens, BiUL)|
ij=1
n
=2 )" |poE(of*" (B))U;B; Enq, (AfUnA)))]
ij=1

<2(max B 1% (B))ll2) (I 1 Ean (4 Ue)l2).
L]

the second equality is due to Proposition 2.17 in [60]. Note that each operator in
AN, 9M3) \ MY can be written as Cé where C € {1} U] and ¢ is a reduced
word that starts with an operator in 90t;. Let C;6; and C,4; be two such words.
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By the fact ¢ o E(6;4;) < +oc0 and Proposition[A.4} we have

IEm, (61 C1UaC282) |l2 = [|Em, (67 E1 (C1ULC2)02) 2
< [[61 11 Ex (C1UaC2)d2 12 — O

Recall that A; € span(A(ﬁi’, m3) \ ﬁi’) The above estimation implies that v = 0
and F=0. 1

We conclude with two facts that are used in Section 3l

LEMMA B.4. Let @; be a n.s.f. weight on a von Neumann algebra M;, and let
N be a von Neumann subalgebra of M; such that @;|y;, is semifinite, i = 1, 2. Let
E; : M; — N be the normal faithful conditional expectation satisfying ¢; o E; = ¢;.
Ifp : M1 — My is a x-isomorphism such that p(N7) = Np and ¢1 = @3 0 p, then
po Ei=Eo 0.

Proof. Let m € M( My, ¢1). For every n € M(N1, ¢1]p; ), we have

@2(0 0 Ey(n"m)) = @1(n"E1(m)) = @1(n"m) = ga(p(n)"Ex(p(m))).
Thus Ex(p(m)) = p(Eq(m)). Since (M3, ¢1) is dense in M1, po E; = Eyop. 1

PROPOSITION B.5. Let My DO N C M, be von Neumann algebras. Suppose
that My and My are semifinite factors and that N is a discrete abelian von Neumann
algebra. Let {Ps}scs be the set of minimal projections of N'. Assume that Ty (Ps) =
To(Ps) < oo for every Ps, where Ty, T, are tracial weights on My and M, respectively.
If Psy M1 Psy =2 Py, M3 Py, then there exists a x-isomorphism p : My — My such that
0(Ps) = Psand p o Ey = E; o p, where Eq and Ej are the normal conditional expectations
satisfying Ty o Ey = 1y and 1p o Ep = 1.

Proof. Let Q; € M;, i =1, 2, be a subprojection of Ps, such that 73 (Q;) =
T7(Q2) and M; = QiM;Q; ® B(H). Since Q1 M1Q1 = Qo M2Qy, p = po ® 1d
is a x-isomorphism between M; and M3, where pg is a *-isomorphism from
Q1M;1Q; onto Qo M7Q5. By the uniqueness of the tracial state on Q1 M1Qq, we
have 71 |o, m,0, = T2|Q,M,Q, © p- Note that 7; = 7;|g, m,0, ® Tr. Thus 7y = 1 0 p.
Therefore there exists a unitary U € M such that Up(Ps)U* = Ps. Thus AdU o p
satisfies the conditions in Lemma 1
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