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1. INTRODUCTION

Interpolation is one of the main tools in parabolic differential equations and
in particular in semigroup theory, see [8], Section 1.13 of [40], and Chapter 2 of
[29]. Frequently interpolation is done between two Lp-spaces or between a Ba-
nach space and the domain of a power of the generator of a semigroup. The aim of
this paper is to consider abstractly interpolation of continuous semigroups, from
the viewpoint of category theory. In one of the main theorems of this paper, The-
orem 3.9, we show that the generator of the interpolation of two C0-semigroups
is the interpolation of the two generators. As a corollary this gives the following
theorem for complex interpolation.

THEOREM 1.1. Let (X,A, µ) be a σ-finite measure space and let p0, p1 ∈ [1, ∞).
Let S(p0) and S(p1) be bounded consistent C0-semigroups in Lp0 and Lp1 with generators
−Ap0 and −Ap1 , respectively. Let θ ∈ [0, 1] and let p ∈ [1, ∞) be such that 1

p =
1−θ
p0

+ θ
p1

. Let S(p) be the C0-semigroup on Lp which is consistent with S(p0). Let −Ap

be the generator of S(p). Then

[D(Ap0), D(Ap1)]θ = D(Ap).

The paper is organised as follows. In Section 2 we characterise consistency
of semigroups in terms of their resolvents and we obtain a useful expression for
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the intersection of the domain of the generators. In Section 3 we consider in-
terpolation functors and prove loosely speaking that semigroup generators and
interpolation functors commute. In Section 4 we give examples of our theorem in
Lp-spaces and distribution spaces for consistent semigroups. Finally in Section 5
we present an illustration in non-linear parabolic equations, where the appropri-
ate interpolation is not between two Lp-spaces or between a Banach space and a
power of a semigroup generator.

2. CONSISTENCY OF OPERATOR SEMIGROUPS

In this section we show that two C0-semigroups are consistent if and only if
the resolvents of the generators are consistent for large λ > 0. We start with the
definition of consistent operators.

DEFINITION 2.1. Let X and Y be two vector spaces. Let T0 : D(T0) → Y
and T1 : D(T1) → Y be two (linear) operators with domains D(T0) ⊂ X and
D(T1) ⊂ X. Then the operators T0 and T1 are called consistent if T0x = T1x for all
x ∈ D(T0) ∩ D(T1). Let X0 and X1 be two Banach spaces which are embedded in
a vector space X. Let S(0) and S(1) be semigroups in X0 and X1, respectively. Then
the semigroups S(0) and S(1) are called consistent if S(0)

t and S(1)
t are consistent for

all t > 0.

The following easy lemma gives a sufficient condition for two bounded op-
erators to be consistent.

LEMMA 2.2. Let (X0, X1) be an interpolation couple of Banach spaces. Let T0 and
T1 be bounded operators in X0 and X1, respectively. Let D ⊂ X0 ∩ X1 and suppose that
D is dense in X0 ∩ X1. Further, suppose that T0x = T1x for all x ∈ D. Then T0 and T1
are consistent.

The boundedness condition on the semigroups in the sequel is just for con-
venience.

LEMMA 2.3. Let (X0, X1) be an interpolation couple of Banach spaces. Let S(0)

and S(1) be bounded C0-semigroups in X0 and X1 with generators −A0 and −A1, re-
spectively. Then the following are equivalent:

(i) the semigroups S(0) and S(1) are consistent;
(ii) for all λ > 0 the resolvent operators (A0 + λ I)−1 and (A1 + λ I)−1 are consis-

tent.

Proof. (i)⇒ (ii) Let λ > 0 and x ∈ X0 ∩ X1. Then

(A0 + λ I)−1x =

∞∫
0

e−λt S(0)
t x dt =

∞∫
0

e−λt S(1)
t x dt = (A1 + λ I)−1x.
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(ii)⇒ (i) Let λ > 0 and x ∈ X0 ∩ X1. Then it follows by induction to n that
(A0 + λ I)−nx = (A1 + λ I)−nx for all n ∈ N. Now let t > 0 and x ∈ X0 ∩ X1.
Then the Euler formula gives

S(0)
t x = lim

n→∞

(
A0 +

t
n

I
)−n

x = lim
n→∞

(
A1 +

t
n

I
)−n

x = S(1)
t x,

as required.

REMARK 2.4. In Proposition 2.2 of [2] the following is proved: the set U of
all λ for which (A0 + λ I)−1 and (A1 + λ I)−1 are consistent, is open and closed
in ρ(−A0) ∩ ρ(−A1). From this it easily follows that if ρ(−A0) = ρ(−A1) and
this set is connected, then the consistency of (A0 + λ0 I)−1 and (A1 + λ0 I)−1 for
only one λ0 implies the consistency of all resolvent operators.

If the equivalent conditions in Lemma 2.3 are valid, then it is possible that
there exists a λ ∈ ρ(−A0) ∩ ρ(−A1) such that the resolvents (A0 + λ I)−1 and
(A1 + λ I)−1 are not consistent. An example has been given in Section 3 of [2].

PROPOSITION 2.5. Let (X0, X1) be an interpolation couple of Banach spaces. Let
S(0) and S(1) be bounded consistent C0-semigroups in X0 and X1 with generators −A0
and −A1, respectively. Then one has the following:

(i) the generators A0 and A1 are consistent;
(ii) D(A0) ∩ D(A1) = {x ∈ D(A0) ∩ X1 : A0x ∈ X1} = (A0 + I)−1(X0 ∩ X1).

Proof. (i) Let x ∈ D(A0) ∩ D(A1) and F ∈ (X0 + X1)
′. Then

F(A0x) = lim
t↓0

1
t

F((I − S(0))x) = lim
t↓0

1
t

F((I − S(1))x) = F(A1x).

Hence A0x = A1x.
(ii) Let x ∈ D(A0) ∩ D(A1). Then it follows from statement (i) that A0x =

A1x ∈ X1. So D(A0) ∩ D(A1) ⊂ {x ∈ D(A0) ∩ X1 : A0x ∈ X1}. Conversely,
suppose x ∈ D(A0) ∩ X1 and A0x ∈ X1. Let t > 0. Then for all F ∈ (X0 + X1)

′

one deduces that

F((I − S(1)
t )x) = F((I − S(0)

t )x) = F
( t∫

0

S(0)
s A0x ds

)
=

t∫
0

F(S(0)
s A0x)ds

=

t∫
0

F(S(1)
s A0x)ds = F

( t∫
0

S(1)
s A0x ds

)
.

So
1
t
(I − S(1)

t )x =
1
t

t∫
0

S(1)
s A0x ds

in X1. Hence

lim
t↓0

1
t
(I − S(1)

t )x = A0x
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in X1. Therefore x ∈ D(A1). This proves the first equality in statement (ii).
Next, let x ∈ D(A0) ∩D(A1). Then (A0 + I)x = (A1 + I)x ∈ X0 ∩ X1 again

by statement (i). So x ∈ (A0 + I)−1(X0 ∩ X1). Conversely, let x ∈ X0 ∩ X1. Then
obviously (A0 + I)−1u ∈ D(A0). Since (A0 + I)−1 and (A1 + I)−1 are consistent
by Lemma 2.3, it follows that (A0 + I)−1x = (A1 + I)−1x ∈ D(A1). Therefore
(A0 + I)−1x ∈ D(A0) ∩ D(A1).

3. INTERPOLATION OF CONSISTENT OPERATOR SEMIGROUPS

In this section we consider interpolation of semigroups and their generators.
In all what follows, we adopt the terminology of Section 1.2 of [40], with minor
modifications.

Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach spaces.
Recall from Subsection 1.2.2 of [40] that L((X0, X1), (Y0, Y1)) denotes the vector
space of all linear maps T : X0 + X1 → Y0 + Y1 such that T|X0 ∈ L(X0, Y0) and
T|X1 ∈ L(X1, Y1). If T ∈ L((X0, X1), (Y0, Y1)), then clearly the operators T|X0 and
T|X1 are consistent. There is a converse.

LEMMA 3.1. Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach
spaces, T0 ∈ L(X0, Y0) and T1 ∈ L(X1, Y1). Suppose that T0 and T1 are consistent.
Then there exists a unique T ∈ L((X0, X1), (Y0, Y1)) such that T|X0 =T0 and T|X1 =T1.

Moreover, the operator T is continuous from X0 + X1 into Y0 + Y1 and

‖T‖X0+X1→Y0+Y1 6 ‖T0‖X0→Y0 ∨ ‖T1‖X1→Y1 .

Proof. The first part is easy and the operator T ∈ L((X0, X1), (Y0, Y1)) is
given by T(x0 + x1) = T0x0 + T1x1 for all x0 ∈ X0 and x1 ∈ X1. Here we use that
T0 and T1 are consistent.

Next, let x ∈ X0 + X1. Let x0 ∈ X0 and x1 ∈ X1 be such that x = x0 + x1.
Then

‖Tx‖X0+X1 6‖T0x0‖X0 + ‖T1x1‖X1 6 (‖T0‖X0→Y0 ∨‖T1‖X1→Y1)(‖x0‖X0 + ‖x1‖X1).

So ‖Tx‖Y0+Y1 6 (‖T0‖X0→Y0 ∨ ‖T1‖X1→Y1)‖x‖X0+X1 . This proves the last asser-
tion.

Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach spaces. We
provide L((X0, X1), (Y0, Y1)) with the norm

‖T‖L((X0,X1),(Y0,Y1))
= ‖T|X0‖X0→Y0 ∨ ‖T|X1‖X1→Y1 .

Then L((X0, X1), (Y0, Y1)) is a Banach space. For the concept of interpolation
functor we refer to Subsection 1.2.2 of [40]. If F is an interpolation functor and
T ∈ L((X0, X1), (Y0, Y1)), then we denote by TF : F (X0, X1) → F (Y0, Y1) the
restriction of T to F (X0, X1). Note that TF is a bounded operator. Alternatively,
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since we are interested in consistent operators, we also introduce another nota-
tion. Let T0 ∈ L(X0, Y0) and T1 ∈ L(X1, Y1). Suppose that T0 and T1 are con-
sistent. By Lemma 3.1 there exists a unique T ∈ L((X0, X1), (Y0, Y1)) such that
T|X0 = T0 and T|X1 = T1. Then we define

F (T0, T1) = TF .

So F (T0, T1) is a bounded operator from F (X0, X1) into F (Y0, Y1). Since T0, T1
and F (T0, T1) = TF are all three restrictions of the same operator T on X0 + X1,
it is obvious that the three operators T0, T1 and F (T0, T1) = TF are pairwise
consistent.

LEMMA 3.2. Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach
spaces and F an interpolation functor. Then there exists an M > 0 such that

‖TF‖F (X0,X1)→F (Y0,Y1)
6 M ‖T‖L((X0,X1),(Y0,Y1))

for all T ∈ L((X0, X1), (Y0, Y1)).

Proof. The operator T 7→ TF from the Banach space L((X0, X1), (Y0, Y1))
into the Banach space L(F (X0, X1),F (Y0, Y1)) has a closed graph.

DEFINITION 3.3. We say that an interpolation functorF has Property (d) (for
dense) if for every interpolation couple (X0, X1) the subspace X0 ∩ X1 is dense in
the interpolation space F (X0, X1).

EXAMPLE 3.4. The complex interpolation has Property (d). With exception
of the limit values also the real interpolation has Property (d). For complex and
real interpolation, see Subsections 1.9.3 and 1.6.2 of [40].

EXAMPLE 3.5. The real interpolation with parameters the limit values does
not have Property (d), see Remark 1.18.3.5 of [40].

The next lemma is easy to prove.

LEMMA 3.6. Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach
spaces and F an interpolation functor which has Property (d). Let T0 ∈ L(X0, Y0),
T1 ∈ L(X1, Y1) and suppose that T0 and T1 are consistent. Then F (T0, T1) is the unique
extension of the operator T|X0∩X1 : X0 ∩ X1 → Y0 ∩ Y1 which is continuous from the
space F (X0, X1) into the space F (Y0, Y1).

Next we consider a functor on consistent semigroups.

PROPOSITION 3.7. Let F be an interpolation functor. Let (X0, X1) be an interpo-
lation couple of Banach spaces. Let S(0) and S(1) be consistent semigroups in X0 and X1,
respectively. Then one has the following:

(i) The family (F (S(0)
t , S(1)

t ))t>0 on F (X0, X1) is a semigroup which is consistent
with both S(0) and S(1).
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(ii) If both S(0) and S(1) are bounded semigroups, then the semigroup

(F (S(0)
t , S(1)

t ))t>0

is also bounded.
(iii) Suppose in addition that S(0) and S(1) are C0-semigroups and that the inter-

polation functor F has Property (d). Then the semigroup (F (S(0)
t , S(1)

t ))t>0 is a C0-
semigroup.

Proof. (i) This is straightforward.
(ii) This follows from Lemmas 3.1 and 3.2.
(iii) Without loss of generality we may assume that both S(0) and S(1) are

bounded semigroups. For all t > 0 write SFt = F (S(0)
t , S(1)

t ). Then also (SFt )t>0
is a bounded semigroup by statement (ii).

Because F (X0, X1) is an intermediate space for the interpolation couple
(X0, X1), there exists a c > 0 such that ‖x‖F (X0,X1)

6 c ‖x‖X0∩X1 for all x ∈
X0 ∩ X1. Let x ∈ X0 ∩ X1 and t > 0. Then

‖SFt x− x‖F (X0,X1)
6 c ‖SFt x− x‖X0∩X1 = c (‖S(0)

t x− x‖X0 + ‖S
(1)
t x− x‖X1).

Hence lim
t↓0
‖SFt x− x‖F (X0,X1)

= 0 and lim
t↓0

SFt x = x in F (X0, X1).

Finally, X0 ∩ X1 is dense in F (X0, X1) since the interpolation functor has
Property (d). So lim

t↓0
SFt x = x in F (X0, X1) for all x ∈ F (X0, X1).

We wish to determine the generator of the semigroup SF . We need a lemma.

LEMMA 3.8. Let F be an interpolation functor which has Property (d). Next,
let (X0, X1) be an interpolation couple of Banach spaces. Further, let S(0) and S(1) be
consistent C0-semigroups in X0 and X1 with generators −A0 and −A1, respectively.
Let SF = (F (S(0)

t , S(1)
t ))t>0 be the C0-semigroup in F (X0, X1) as in Proposition 3.7.

Let −B be the generator of SF . Then D(A0) ∩ D(A1) ⊂ D(B) and D(A0) ∩ D(A1) is
a core for B.

Proof. Without loss of generality we may assume that both S(0) and S(1) are
bounded semigroups. The resolvent

(B + I)−1 : F (X0, X1)→ D(B)

is a topological isomorphism. Moreover, the resolvent operators (B + I)−1 and
(A0 + I)−1 are consistent by Proposition 3.7(i) and Lemma 2.3. By Lemma 2.5(iii)
the restriction

(B + I)−1|X0∩X1 = (A0 + I)−1|X0∩X1 : X0 ∩ X1 → D(A0) ∩ D(A1)

is a bijection. Because X0 ∩ X1 ⊂ F (X0, X1), this implies immediately the as-
sertion D(A0) ∩ D(A1) ⊂ D(B). Since F has Property (d), the space X0 ∩ X1 is
dense in F (X0, X1). Hence D(A0) ∩ D(A1) is dense in D(B).
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We provide the domain of a generator with the graph norm. Note that with
the notation of the previous lemma, (D(A0), D(A1)) is an interpolation couple
and A0 ∈ L(D(A0), X0) and similarly A1 ∈ L(D(A1), X1). Now we are able to
prove the main theorem of this paper.

THEOREM 3.9. Let F be an interpolation functor which has Property (d). Let
(X0, X1) be an interpolation couple of Banach spaces. Further, let S(0) and S(1) be con-
sistent C0-semigroups in X0 and X1 with generators −A0 and −A1, respectively. Then
−F (A0, A1) is the generator of the semigroup (F (S(0)

t , S(1)
t ))t>0.

In particular,
D(F (A0, A1)) = F (D(A0), D(A1)).

Proof. Without loss of generality we may assume that both S(0) and S(1) are
bounded semigroups. Write SFt = F (S(0)

t , S(1)
t ) for all t > 0 and let −B be the

generator of the C0-semigroup SF . We know that D(A0) ∩ D(A1) ⊂ D(B) by
Lemma 3.8. Also Bx = A0x = AF x for all x ∈ D(A0) ∩ D(A1) by Proposi-
tion 2.5(i), where we set AF = F (A0, A1). The operator AF is bounded from
F (D(A0), D(A1)) into F (X0, X1). Hence there exists a c > 0 such that

‖AF x‖F (X0,X1)
6 c ‖x‖F (D(A0),D(A1))

for all x ∈ F (D(A0), D(A1)). If x ∈ D(A0) ∩ D(A1), then Bx = AF x and

‖Bx‖F (X0,X1)
6 c ‖x‖F (D(A0),D(A1))

.

Let x ∈ F (D(A0), D(A1)). Since D(A0) ∩ D(A1) is dense in F (D(A0), D(A1))
by Property (d), there exists a sequence (xn)n∈N in D(A0) ∩ D(A1) such that
lim xn = x in F (D(A0), D(A1)). Then (Bxn)n∈N is a Cauchy sequence in the
space F (X0, X1) and lim xn = x in F (X0, X1). Since B is a closed operator, it fol-
lows that x ∈ D(B) and Bx = lim Bxn = lim AF xn = AF x in F (X0, X1). Hence
B is an extension of AF .

It remains to show that D(B) ⊂ F (D(A0), D(A1)). The operator (A0 + I)−1

is bounded from X0 into D(A0) and the operator (A1 + I)−1 is bounded from X1
into D(A1). Moreover, the operators (A0 + I)−1 and (A1 + I)−1 are consistent by
Lemma 2.3. So by interpolation one obtains a bounded operator, denoted by C,
from F (X0, X1) into F (D(A0), D(A1)). Let c′ > 0 be such that

‖Cx‖F (D(A0),D(A1))
6 c′ ‖x‖F (X0,X1)

for all x ∈ F (X0, X1). If x ∈ X0 ∩ X1, then Cx = (A0 + I)−1x. Hence

‖(A0 + I)−1x‖F (D(A0),D(A1))
6 c′ ‖x‖F (X0,X1)

for all x ∈ X0 ∩ X1. Using Proposition 2.5(iii) it follows that

‖x‖F (D(A0),D(A1))
6 c′ ‖(A0 + I)x‖F (X0,X1)

= c′ ‖(B + I)x‖F (X0,X1)

for all x ∈ D(A0) ∩ D(A1). But D(A0) ∩ D(A1) is dense in D(B) by Lemma 3.8.
SinceF (D(A0), D(A1)) is complete, it follows that D(B) ⊂ F (D(A0), D(A1)).
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A similar statement is valid for the resolvents.

PROPOSITION 3.10. Let F be an interpolation functor which has Property (d).
Let (X0, X1) be an interpolation couple of Banach spaces. Further, let S(0) and S(1)

be consistent bounded C0-semigroups in X0 and X1 with generators −A0 and −A1,
respectively. Then

F ((A0 + I)−1, (A1 + I)−1) = (F (A0, A1) + I)−1.

Proof. Write SFt = F (S(0)
t , S(1)

t ) for all t > 0. Let x ∈ X0 ∩ X1. If F ∈
(X0 + X1)

′, then

F((F (A0, A1) + I)−1x) =
∞∫

0

e−t F(SFt x)dt =
∞∫

0

e−t F(S(0)
t x)dt

= F((A0 + I)−1x) = F(F ((A0 + I)−1, (A1 + I)−1)x).

So
(F (A0, A1) + I)−1x = F ((A0 + I)−1, (A1 + I)−1)x.

Moreover, the operator (F (A0, A1) + I)−1 is bounded from F (X0, X1) into itself.
Hence F ((A0 + I)−1, (A1 + I)−1) = (F (A0, A1) + I)−1 by Lemma 3.6.

4. EXAMPLE: Lp-SPACES

One of the commonly used theorems states that semigroups on L2-spaces,
which are induced by forms on L2, extrapolate consistently to the whole Lp-scale,
provided one knows Gaussian estimates for the L2-semigroup. We next describe
this situation.

Let Ω ⊂ Rd be a bounded domain and D ⊂ ∂Ω be closed. We define

C∞
D (Ω) = {ψ|Ω : ψ ∈ C∞(Rd) and supp ψ ∩D = ∅}.

For all p ∈ [1, ∞) let W1,p
D (Ω) be the closure of C∞

D (Ω) in the Sobolev space

W1,p(Ω). If q ∈ (1, ∞], then we denote by W−1,q
D (Ω) the antidual of the space

W1,q′

D (Ω), where q′ is the dual exponent of q. Let µ be a bounded, measurable,
elliptic function on Ω which takes its values in the set of real d× d-matrices, that
is, there exists a c > 0 such that

Re µ(x)κ · κ > c |κ|2

for all κ ∈ Cd and almost every x ∈ Ω. Define the sesquilinear form t : W1,2
D (Ω)×

W1,2
D (Ω)→ C by

t[ψ, ϕ] =
∫
Ω

µ∇ψ · ∇ϕ.
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Let A be the operator associated with t in L2(Ω) and letA : W1,2
D (Ω)→W−1,2

D (Ω)

be defined by 〈Aψ, ϕ〉 = t[ψ, ϕ] for all ψ, ϕ ∈ W1,2
D (Ω). Then −A and −A gener-

ate analytic semigroups S(2) and S̃(2) on L2(Ω) and W−1,2
D (Ω), respectively. For

all q ∈ [2, ∞) define the operator Ãq in W−1,q
D (Ω) by

(4.1) D(Ãq) = {ψ ∈W−1,q
D (Ω) ∩W1,2

D (Ω) : Aψ ∈W−1,q
D (Ω)}

and Ãq = A|D(Ãq)
.

In the following we frequently need the following assumption.

ASSUMPTION 4.1. (i) The boundary around any point x ∈ ∂Ω \ D admits
a bi-Lipschitzian boundary chart; i.e. for all x ∈ ∂Ω \ D there is an open neigh-
bourhood U and a bi-Lipschitz mapping Ψ from U onto the cube (−1, 1)d such
that Ψ(x) = 0 and Ψ(U ∩Ω) equals the lower half cube.

(ii) (•) The set D is a (d− 1)-set in the sense of Jonsson–Wallin ([26], Chap-
ter II) and

(•) the set Ω is a d-set in the sense of Jonsson–Wallin, or for almost all
x ∈ Ω the matrix µ(x) is symmetric.

THEOREM 4.2. (i) The semigroups S(2) and S̃(2) are consistent.
(ii) Adopt Assumption 4.1(i). Then the semigroup S(2) has a kernel with Gaussian

upper estimates. Moreover, the semigroup S(2) extends consistently to a C0-semigroup
S(p) on Lp(Ω) for all p ∈ [1, ∞). The semigroup S(p) is holomorphic.

Proof. (i) See Subsection 1.4.2 of [34].
(ii) The first assertion is proved in Theorem 3.1 of [15]. The second one

follows from the first by the second proof on p. 1160 of [2]. The holomorphy
follows from the Gaussian estimates in combination with Theorem 5.4 of [3].

It is desirable in various contexts to know the consistency of semigroups
on spaces like Lp(Ω) and W−1,q

D (Ω), as outlined in the beginning of this section.
Before we can prove such a result we establish the following lemma.

LEMMA 4.3. Let p ∈ [1, ∞) and q ∈ (1, ∞). Then C∞
c (Ω) is dense in the space

W−1,q
D (Ω) ∩ Lp(Ω).

Proof. First of all, W−1,q
D (Ω)∩ Lp(Ω) is dense in both W−1,q

D (Ω) and Lp(Ω),

since C∞
c (Ω) ⊂W−1,q

D (Ω) ∩ Lp(Ω). Therefore(
W−1,q
D (Ω) ∩ Lp(Ω)

)′
=
(
W−1,q
D (Ω)

)′
+
(

Lp(Ω)
)′
= W1,q′

D (Ω) + Lp′(Ω)

by Theorem 2.7.1 of [7]. Let F ∈ (W−1,q
D (Ω) ∩ Lp(Ω))′ = W1,q′

D (Ω) + Lp′(Ω) and
suppose that F(ψ) = 0 for all ψ ∈ C∞

c (Ω). Since F ∈ L1(Ω), it follows F = 0.
Then the statement is implied by the Hahn–Banach theorem.
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For all p ∈ [1, ∞) let S(p) be the semigroup on Lp(Ω) as in Theorem 4.2(ii)
(assuming Assumption 4.1(i) is satisfied).

THEOREM 4.4. Assume Assumption 4.1(i). Then the semigroup S̃(2) is consistent
with the semigroup S(p) for every p ∈ [1, ∞).

Proof. Let t > 0. If u ∈ C∞
c (Ω), then S̃(2)

t u = S(2)
t u = S(p)

t u by Theorem 4.2.
Now the result follows from Lemmas 2.2 and 4.3.

There is also a version for the operator Ãq in W−1,q
D (Ω) under slightly more

assumptions. Statement (i) of the next theorem is of direct interest in this section.
In the next section we need many more results for the operator Ãq in a non-linear
example in the special caseD = ∅. Since these results are of independent interest
for general (mixed) boundary conditions, and we do not wish to change back
and forth the boundary conditions in Section 5, we include the statements in this
section.

THEOREM 4.5. Suppose that Assumption 4.1 is valid. Let q ∈ [2, ∞). Then one
has the following:

(i) −Ãq generates a holomorphic semigroup on W−1,q
D (Ω) which is consistent with

the semigroup S(p) for all p ∈ [1, ∞);
(ii) Ãq + I is a positive operator in the sense of Triebel ([40], Section 1.14);

(iii) Ãq + I admits a bounded H∞-functional calculus on W−1,q
Γ (Ω), in particular, it

has bounded imaginary powers;
(iv) D

(
(Ãq + I)1/2) = Lq(Ω);

(v) W1,q
D ⊂ D(Ãq);

(vi) if W1,q
D = D(Ãq), then

Ãq + I : W1,q
D →W−1,q

D

is a topological isomorphism.

Proof. (i) It follows from Lemma 6.9(c) of [13] that −Ãq generates a holo-

morphic semigroup on W−1,q
D (Ω). Denote this semigroup by S̃(q). Then S̃(q) is

consistent with S̃(2) by the paragraph before Lemma 6.9 in [13]. Hence if t > 0
and u∈C∞

c (Ω), then S̃(q)
t ψ= S̃(2)

t ψ=S(p)
t ψ. Finally use again Lemmas 2.2 and 4.3.

(ii) This is proved in Theorem 11.5(i) of [4].
(iii) This is proved in Theorem 11.5(ii) of [4].
(iv) For all p ∈ [1, ∞) let −Ap be the generator of the semigroup S(p). The

operator ((Aq′ + I)1/2)′ : Lq(Ω) → W−1,q
D (Ω) is a topological isomorphism by

Theorem 5.1 of [4]. Moreover, D(A1/2
q ) = W1,q

D (Ω) and the operators Aq, Aq′ and
Ãq are consistent. Therefore D((Ãq + I)1/2) = Lq(Ω).

(v) This has been proved at the end of Section 5 in [13].
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(vi) Clearly the operator Ã+ I is injective, hence also Ãq + I is injective. It
follows from Lemma 6.9(c) of [13] that the operator Ãq + I is surjective.

Define the operator Aq : W1,q
D (Ω)→W−1,q

D (Ω) by

〈Aqψ, ϕ〉
W−1,q
D (Ω)×W1,q′

D (Ω)
=
∫
Ω

µ∇ψ · ∇ϕ,

where ψ ∈W1,q
D (Ω) and ϕ ∈W1,q′

D (Ω). Then Ãq is an extension of Aq. Moreover,

Aq is continuous. So if W1,q
D (Ω) = D(Ãq), then Aq = Ãq and Ãq + I is a contin-

uous bijection from W1,q
D (Ω) into W−1,q

D (Ω). By the open mapping theorem it is
then also a topological isomorphism.

REMARK 4.6. Unfortunately, one cannot expect in general for q > 2 the
equality W1,q

D = D(Ãq). The possible obstructions against a higher integrability
of the gradient are non-smooth domains (see Theorem A of [25]), mixed boundary
conditions, i.e. D 6= ∅ 6= ∂Ω \ D (cf. [37]), or the discontinuity of the coefficient
function µ (see the classical paper [32] or Section 4 of [14], for a striking example).
But in many cases, relevant in the applications, there exists a q > d such that the
equality W1,q

D = D(Ãq) is valid. This is always the case in two space dimensions
(see [21]) and was proved in case of three space dimensions in many cases in
[11]. This can then be used as the basis for the treatment of non-linear parabolic
equations in case of non-smooth data, as is carried out in [22] and [24].

The analysis of a prototypical example in the next section also will rest on
this.

We end this section with an invariance property for the equality W1,q
D (Ω) =

D(Ãq).

LEMMA 4.7. Let d ∈ {2, 3} and Ω ⊂ Rd be a Lipschitz domain. Further, let
D be a closed subset of the boundary and µ a bounded, elliptic coefficient function. Let
q ∈ [2, 6] and let Ãq be the corresponding operator. Suppose that W1,q

D (Ω) = D(Ãq).
Let ξ : Ω→ R be a uniformly continuous function which admits a positive lower bound.
Then the coefficient function ξ µ satisfies the ellipticity condition. Let Ãq be the operator

corresponding to ξ µ. Then D(Ãq) = W1,q
D (Ω).

For the proof see Lemma 6.2 of [11].

5. EXAMPLE: A NON-LINEAR PROBLEM

We conclude the paper with an illustration of the abstract setting arising
in non-linear parabolic equations, where the appropriate interpolation is not be-
tween two Lp-spaces or between a Banach space and the domain of a semigroup
generator which is acting on this space.
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Consider the quasilinear initial boundary value problem

(5.1) u′ −∇ · φ(u)∇u + u = |∇u|2, φ(u) ν · ∇u|∂Ω = f 6= 0, u(0) = u0.

on a bounded domain Ω ⊂ Rd, where φ : R → (0, ∞) is sufficiently regular and
d ∈ {2, 3}. Moreover, we suppose that the Neumann datum f is real-valued. In
case of non-smooth domains it is, in view of the quadratic gradient term on the
right hand side, a non-trivial problem to find a suitable Banach space X for the
treatment of this initial boundary value problem. Highly relevant examples of
parabolic equations (not necessarily quasilinear ones) from science which exhibit
a quadratic gradient term may be found in for example [5], [6] and [27].

REMARK 5.1. The inhomogeneous Neumann condition has to be consid-
ered in a weak form. We come back to this issue in the first remark after the proof
of Theorem 5.2.

If Ω is a Lipschitz domain then under a mild condition we use complex
interpolation to construct a suitable space X. We assume from now on that Ω is
a Lipschitz domain and use the notation as in Section 4. We choose from now on
D = ∅. Then Assumption 4.1 is valid. We write W1,q = W1,q

D (Ω) = W1,q
∅ (Ω). In

order to avoid confusion with the antidual of W1,q′
0 (which is usually denoted by

W−1,q in the literature) we denote the anti-dual of W1,q′ by W−1,q
∅ . If µ(x) = I for

all x ∈ Ω then we denote the corresponding operator Ãq by−∆̃q for all q ∈ [2, ∞).
In the next theorem we assume that there exists a q ∈ (d, 6) such that

D(∆̃q) = W1,q(Ω). This is satisfied if Ω is a Lipschitz graph domain by Corol-
lary 9.3 in [16] or Theorem 1.6 of [41]; and in the case of polyhedral (possibly
non-convex) Lipschitz domains in [20]. Then Theorem 4.5(vi) implies that ∆̃q + I
provides an isomorphism from W1,q(Ω) onto W−1,q

∅ (Ω).

THEOREM 5.2. Let d ∈ {2, 3} and let Ω ⊂ Rd be a bounded Lipschitz do-
main. Let q ∈ (d, 6) and suppose that D(∆̃q) = W1,q(Ω). Provide the boundary
∂Ω with the (d − 1)-dimensional Hausdorff measure. Let f ∈ L∞(∂Ω,R). Let δ ∈
(0, 1) and φ : R → [δ, ∞) be a C2-function. Fix θ ∈ ( q−2

q−1 , 1) and define the space

X = [Lq/2(Ω), W−1,q
∅ (Ω)]θ . We denote the restriction of ∆̃q to X by ∆ and assume

u0 ∈ D(∆) is real-valued. Then the problem

(5.2) u′ −∇ · φ(u)∇u + u = |∇u|2, φ(u) ν · ∇u|∂Ω = f , u(0) = u0

is well-posed on the interpolation space X, that is there exist T > 0 and real-valued
u ∈ C1((0, T); X)∩ C([0, T]; DX(∇ · φ(u0)∇)) which fulfills on (0, T) the quasilinear
equation (5.2).

For the proof we need some preparation. Adopt the notation and assump-
tions as in Theorem 5.2. For all ξ ∈ W1,q(Ω) it follows from the Sobolev embed-
ding theorem that ξ is bounded and Hölder continuous. Let Ãq,ξ be as in (4.1)
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with the choiceD = ∅ and µ(x) = ξ(x) I for all x ∈ Ω. For all p ∈ [1, ∞) let S(p,ξ)

be the C0-semigroup on Lp(Ω) as in Theorem 4.2(ii) and let −Ap,ξ denote the
generator of the semigroup S(p,ξ). Then the C0-semigroup generated by −Ãq,ξ is
consistent with the C0-semigroup S(q/2,ξ) by Theorem 4.5(i). Since q > d it follows
that Lq/2(Ω) ⊂ W−1,q

∅ (Ω). Hence Lq/2(Ω) ⊂ X ⊂ W−1,q
∅ (Ω) and the semigroup

on W−1,q
∅ (Ω) generated by −Ãq,ξ leaves X invariant and the restriction on X is

a C0-semigroup. Let −Aξ be the generator of this C0-semigroup on X, which is
nothing else but the restriction of −Ãq,ξ to X, see Theorem 3.9.

In the subsequent lemma we establish that Neumann inhomogeneities f ∈
L∞(∂Ω) in (5.2) can be interpreted as elements in X.

LEMMA 5.3. There is a natural embedding of L∞(∂Ω) in X.

Proof. Using Subsection 1.11.3 of [40] and Theorem 3.1 of [18] one deduces
that

X′ = [Lq/2(Ω), W−1,q(Ω)]′θ = [
(

Lq/2(Ω)
)′, (W−1,q(Ω)

)′
]θ

= [L(q/2)′(Ω), W1,q′(Ω)]θ = Hθ,r(Ω),

where 1
r = (1− θ)(1− 2

q ) + θ(1− 1
q ). The condition θ > q−2

q−1 implies that θ > 1
r

(actually, it is equivalent). Hence the trace map Tr : Hθ,r(Ω) → Lr(∂Ω) is well
defined and continuous by Section 1.5 of [19]. Therefore the map w 7→

∫
∂Ω

f Tr w

from X′ into C is continuous and f can be identified in a natural way with an
element of X.

Next we collect some properties of the operator Aξ .

LEMMA 5.4. Let ξ ∈W1,q(Ω,R) with ξ > δ.
(i) The operator Aξ + I is positive.

(ii) Let s = (1− θ) d
q + θ and α = 1+s

2 . Then D((Aξ + I)α) ⊂W1,q(Ω).
(iii) D(Aξ) = D(∆).

Proof. (i) Both Ap,ξ and Ãq,ξ are positive by Theorem 11.5(i) of [4], so Aξ is
positive by Proposition 3.10.

(ii) First note that Lq/2(Ω) ⊂ H−d/q,q
∅ (Ω), where the latter space denotes

the antidual to the Bessel potential space Hd/q,q′(Ω). So

(5.3) X ⊂ [H−d/q,q
∅ (Ω), W−1,q

∅ (Ω)]θ = H−s,q
∅ (Ω),

where we used Theorem 3.1 of [18] in the last step.
The function ξ is uniformly continuous by the Sobolev embedding. Hence

Lemma 4.7 implies that D(Ãq,ξ) = W1,q. Consequently

(5.4) Ãq,ξ + I : W1,q →W−1,q
∅
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is a topological isomorphism by Theorem 4.5(vi).
By Theorem 4.5(iii) the operator Ãq,ξ + I admits bounded imaginary pow-

ers. Using Theorem 1.15.3 of [40] and Theorem 4.5(iv) one deduces that

D((Ãq,ξ + I)(1−s)/2) = [W−1,q
∅ (Ω), D((Ãq,ξ + I)1/2)]1−s

= [W−1,q
∅ (Ω), Lq(Ω)]1−s = H−s,q

∅ (Ω),

where we used Theorem 3.1 of [18] in the last step. Together with (5.3) this gives
X ⊂ D((Ãq,ξ + I)(1−s)/2) or, equivalently, (Ãq,ξ + I)(1−s)/2 ∈ L(X, W−1,q

∅ ). Com-
bining this with the isomorphism property (5.4), one gets

(Ãq,ξ + I)−(1+s)/2 = (Ãq,ξ + I)−1(Ãq,ξ + I)(1−s)/2 ∈ L(X, W1,q).

Since Aξ is the restriction of Ãq,ξ to X, this implies that there exists a c > 0 such
that

‖(Aξ + I)−(1+s)/2ψ‖W1,q 6 c ‖ψ‖X

for all ψ ∈ X. This is equivalent with D((Aξ + I)(1+s)/2) ⊂W1,q.
(iii) This follows from Corollary 6.8 of [22].

Besides the preparations up to now, the proof of Theorem 5.2 heavily rests
on the following central result of the classical and pioneering paper [39] of Sobo-
levskii. (For other proofs and refinements see also [1] and [28].)

THEOREM 5.5. Let Y be a Banach space and B an operator in Y with dense, com-
pactly embedded domain D(B). Assume that there is a c > 0 such that B admits the
resolvent estimate

‖(B + λ)−1‖L(Y) 6
c

1 + |λ|
for all λ ∈ C with Re λ > 0. Fix β ∈ (0, 1) and u0 ∈ D(Bβ). Let α ∈ (0, β). Let
B : D(Bα) → L(D(B), Y) and g : D(Bα) → Y with B(u0) = B. Assume that for all
R > 0 there is a constant c(R) > 0 such that

‖B(v)−B(w)‖L(D(B),Y) 6 c(R) ‖Bαv− Bαw‖Y and(5.5)

‖g(v)− g(w)‖Y 6 c(R) ‖Bαv− Bαw‖Y(5.6)

for all v, w ∈ D(Bα) with ‖Bαv‖Y 6 R and ‖Bαw‖Y 6 R. Then there exist T > 0 and
u ∈ C1((0, T); Y) ∩ C((0, T]; D(B)) which fulfills on (0, T) the quasilinear parabolic
equation

u′ −B(u)u = g(u), u(0) = u0.

REMARK 5.6. There is a nasty missprint in formula (2.72) of [39], in which
the Q on the right hand side has to be replaced by ρ. See the Russian original
formula (2.72) of [38].

We need one more lemma. It can be proved by adapting the proof of Theo-
rem 5.5.3/1 in [35], but we give an independent proof.
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LEMMA 5.7. Let Ω be a Lipschitz domain. Let ψ ∈ C2(R) and q > d. Then
ψ ◦ u ∈ W1,q(Ω) for all u ∈ W1,q(Ω,R). Moreover, for all R > 0 there exists a
cR > 0 such that ‖ψ ◦ u− ψ ◦ v‖W1,q 6 cR ‖u− v‖W1,q for all u, v ∈W1,q(Ω,R) with
‖u‖W1,q 6 R and ‖v‖W1,q 6 R.

Proof. By the Sobolev embedding theorem there exists a c > 0 such that
‖u‖L∞ 6 c ‖u‖W1,q for all u ∈ W1,q(Ω,R). Let M = sup

|t|6cR
(|ψ′(t)|+ |ψ′′(t)|). Let

u, v ∈ W1,q(Ω,R) ∩ C∞(Ω) with ‖u‖W1,q 6 R and ‖v‖W1,q 6 R. If k ∈ {1, . . . , d},
then

|∂k(ψ ◦ u− ψ ◦ v)| 6 |ψ′ ◦ u| |∂ku− ∂kv|+ |ψ′ ◦ u− ψ′ ◦ v| |∂kv|
6 M |∂ku− ∂kv|+ M |u− v| |∂kv|.

So ‖ψ ◦ u− ψ ◦ v‖W1,q 6 2M d ‖u− v‖W1,q + M d ‖u− v‖L∞ R. By Theorem 1 of
[30] the map w 7→ ψ ◦ w is continuous from W1,q(Ω,R) into W1,q. Since Ω is a
Lipschitz domain, W1,q(Ω,R) ∩ C∞(Ω) is dense in W1,q(Ω,R), and the lemma
follows.

Proof of Theorem 5.2. Let α ∈ (0, 1) be as in Lemma 5.4(ii). Then u0 ∈ D(∆) ⊂
D((−∆ + I)α) ⊂ W1,q(Ω) by Lemma 5.4(ii). Hence φ ◦ u0 ∈ W1,q(Ω) by Theo-
rem 1 of [30]. Define B = Aφ◦u0 + I. Then D(B) = D(∆) = D(Aξ) for all
ξ ∈ W1,q(Ω,R) with ξ > δ by Lemma 5.4(iii). Since D(Bα) ⊂ W1,q(Ω) by
Lemma 5.4(ii) one can use again Theorem 1 of [30] and define the map B : D(Bα)
→ L(D(B), X) by B(v) = Aφ◦Re v. It follows from Lemma 6.7 of [22] that there
exists a c > 0 such that

‖Aξ u−Aηu‖X 6 c ‖ξ − η‖W1,q(Ω) ‖u‖D(B)

for all u ∈ D(B) and ξ, η ∈W1,q(Ω,R) with ξ > δ and η > δ. Hence

‖(B(v)−B(w))u‖X = ‖(Aφ◦Re v −Aφ◦Re w)u‖X

6 c ‖φ ◦ Re v− φ ◦ Re w‖W1,q(Ω) ‖u‖D(B)(5.7)

for all u ∈ D(B) and all v, w ∈ D(Bα). By Lemma 5.7 for all R > 0 there exists a
cR > 0 such that

(5.8) ‖φ ◦ Re v−φ ◦ Re w‖W1,q(Ω)6 cR ‖Re v− Re w‖W1,q(Ω)6 cR ‖v− w‖W1,q(Ω)

for all v, w ∈ W1,q(Ω) with ‖v‖W1,q(Ω) 6 R and ‖w‖W1,q(Ω) 6 R. The estimates
(5.7) and (5.8), combined with the embedding D(Bα) ⊂W1,q(Ω), give (5.5).

Next, if w ∈ D
(

Bα
)
, then w ∈ W1,q and ∇w ∈ Lq(Ω). Therefore |∇w|2 ∈

Lq/2 ⊂ X. So we can define g : D(Bα) → X by g(v) = |∇v|2 + f , where we
use Lemma 5.3 to identify f ∈ L∞(∂Ω) with an element in X. The local Lipschitz
condition (5.6) follows immediately from the continuity of the map v 7→ |∇v|
from D(Bα) into Lq(Ω) and the continuous embedding Lq/2 ⊂ X.
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Clearly D(B) is dense in X because −B generates a C0-semigroup in X.
Since W1,q(Ω) is compactly embedded in Lq(Ω) and Lq(Ω) ⊂ Lq/2(Ω) ⊂ X,
one deduces that the space D(B) is compactly embedded in X. Next note that
u0 ∈ D(∆) = D(B) ⊂ D(Bβ) for all β ∈ (α, 1), where we used Lemma 5.4(iii)
in the equality. Then follows from Theorem 5.5 of Sobolevskii that the modified
problem

(5.9) u′ −∇ · φ(Re u)∇u + u = |∇u|2, φ(u) ν · ∇u|∂Ω = f , u(0) = u0

admits a solution u with the regularity as asserted Theorem 5.2.
It remains to show that this solution is real-valued. Regard the problem

(5.10) v′ −∇ · φ(Re u)∇v + v = |∇u|2, φ(Re u) ν · ∇v|∂Ω = f , v(0) = u0.

Clearly, u is a solution of this. Due to the already known properties of u, this
problem is well-posed in the context of non-autonomous parabolic equations and
admits a unique solution v ∈ L2(J; W1,2) ∩W1,2(J; W−1,2

∅ ) by Section XVIII.3, Re-
mark 9 of [10]. Since the boundary function f and initial value u0 are real-valued,
also u is a solution of (5.10). Therefore u = u and u is real-valued. Then the
solution u of (5.9) is a solution of (5.2).

Let us finish with some further remarks.
(i) Since the space X is embedded in the space W−1,2

∅ one obtains that the so-
lution u is also a solution in the space W−1,2

∅ . Hence one may perform the duality
with any element ψ ∈ W1,2 and obtains that u is also a variational solution in the
spirit of Section XVIII.3 of [10]. For these variational solutions it is known that the
variational formulation of the inhomogeneous Neumann boundary condition is
equal to the classical meaning φ(u(t)) ν · ∇u(t) = f for almost all t and almost all
points x ∈ ∂Ω with respect to the boundary measure, if the domain Ω is a strong
Lipschitz domain.

(ii) If the inhomogeneous Neumann boundary condition in (5.1) is replaced by
a homogeneous one (that is f = 0) or if one has a homogeneous Dirichlet condi-
tion (that is u|∂Ω = 0), then Lp spaces are an adequate choice for X in order to treat
(5.1), see [31] and [24]. But in our case of inhomogeneous Neumann conditions
this is no longer true since Lp spaces enforce a homogeneous Neumann condi-
tion, see Section XVIII.4 of [10]. See also Section 1.2 of [9] and Subsection II.2.2 of
[17] for an instructive explanation in the elliptic case.

(iii) In contrast to the linear case, also the choice X = W−1,2
∅ (Ω) is inadequate

for the problem (5.1). Indeed, if X = W−1,2
∅ (Ω) then for each t > 0 the function

u(t, ·) is then, at best, an element of W1,2(Ω). Consequently |∇u(t, ·)|2 is then an
element of L1(Ω) and fails to be an element of X, as required by the differential
equation in (5.1).

(iv) One cannot choose X = W−1,q
∅ and apply Theorem 5.5 of Sobolevskii, since

the domain of the operator∇ · φ(u0)∇ in the space W−1,q
∅ is at best equal to W1,q.
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Even if one requires that this domain is equal to W1,q, then

D
(
(A+ I)α

)
= [W−1,q

∅ , W1,q]α = H2α−1,q
∅

by Subsection 1.15.4 of [40] and [18]. Hence if ψ ∈ D
(
(A+ I)α

)
, then |∇ψ|2 is in

general not well-defined.
(v) We emphasise that if p 6= q then the space X = [Lp(Ω), W−1,q

∅ (Ω)]θ is not

an interpolation space between the Banach space W−1,q
∅ (Ω) and the domain of

the operator −∇ · φ(u0)∇ considered on W−1,q
∅ (Ω).

(vi) The problem (5.1) is to be seen, although relevant in science, only as a toy
problem. In a quite similar way one can also treat parabolic problems where
the right hand side does depend on the gradient of the solution in a much more
sophisticated way. This has been done recently in [12] when investigating the
drift-diffusion equations for semiconductors with avalanche generation included
(see also [23], [33] and pages 111–112 of [36]).
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