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ABSTRACT. We prove a Beurling-type theorem for H∞-invariant spaces of
Lα(M, τ), where α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually
continuous norm with respect to τ, whereM is a von Neumann algebra with
a faithful, normal, semifinite tracial weight τ, and H∞ is an extension of Arve-
son’s noncommutative Hardy space. We use our main result to characterize
the H∞-invariant subspaces of a noncommutative Banach function space I(τ)
with the norm ‖ · ‖E onM, the crossed product of a semifinite von Neumann
algebra by an action β, and B(H) for a separable Hilbert spaceH.
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1. INTRODUCTION

Suppose that (X, Σ, ν) is a localizable measure space with the finite subset
property (i.e. a measure space is localizable if the multiplication algebra is max-
imal abelian, and has the finite subset property if for every A ∈ Σ such that
ν(A) > 0, there exists a B ∈ Σ such that B ⊆ A, and 0 < ν(B) < ∞). We let E be a
two-sided ideal of the set of complex-valued, Σ-measurable functions on X, such
that all functions equal almost everywhere with respect to ν are identified. If E
has a norm ‖ · ‖E such that (E, ‖ · ‖E) is a Banach lattice, then we call E a Banach
function space. (See the work of de Pagter in [23]).

We let M be a von Neumann algebra with a semifinite, faithful, normal
tracial weight τ. For every operator x ∈ M, we define dx(λ) = τ(e|x|(λ, ∞))

for every λ > 0 (where e|x|(λ, ∞) is the spectral projection of |x| on the interval
(λ, ∞)), and µ(x) = inf{λ > 0 : dx(λ) 6 t} for a given t > 0. Consider the
set I = {x ∈ M : x is a finite rank operator in (M, τ) and ‖µ(x)‖E < ∞} and
let ‖ · ‖I(τ) : I → [0, ∞) be such that ‖x‖I(τ) = ‖µ(x)‖E for all x ∈ I . It is
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known that ‖ · ‖I(τ) defines a norm on I (see [23]). Denote by I(τ) the closure
of I under ‖ · ‖I(τ). We briefly recall an extension of Arveson’s noncommutative
Hardy space for a semifinite von Neumann algebra. Let H∞ be a weak* closed
unital subalgebra ofM. Then D = H∞ ∩ (H∞)∗ is a von Neumann subalgebra
of M. Assume that there also exists a faithful, normal, conditional expectation
Φ : M→ D. Then H∞ is called a semifinite non-commutative Hardy space if (i) the
restriction of τ onD is semifinite; (ii) Φ(xy) = Φ(x)Φ(y) for every x, y ∈ H∞; (iii)
H∞ + (H∞)∗ is weak* dense in M; and (iv) τ(Φ(x)) = τ(x) for every positive
x ∈ M.

We want to ask the following question about the space I(τ).

PROBLEM 1.1. Consider a semifinite subdiagonal subalgebra H∞ ofM and
a closed subspace K of I(τ) such that H∞K ⊆ K. How can the subspace K be
characterized?

It can be shown that whenM is diffuse, and ‖ · ‖I(τ) is order continuous,
the norm ‖ · ‖I(τ) on I(τ) is in the family of unitarily invariant, locally ‖ · ‖1-
dominating, mutually continuous norms with respect to the tracial weight τ. (See
Definition 3.1.)

Our goal for this paper is to prove a Beurling-type theorem for a von Neu-
mann algebra with semifinite, faithful, normal tracial weight τ, and a unitarily
invariant, locally ‖ · ‖1-dominating, mutually continuous norm with respect to τ,
for example, the Banach function space I(τ) with the norm ‖ · ‖I(τ).

In 1937, J. von Neumann introduced the unitarily invariant norms on Mn(C)
as a way to metrize the matrix spaces [22]. He showed that the class of unitar-
ily invariant norms on Mn(C) is in correspondence with the class of symmetric
gauge norms on Cn. Specifically, he proved that for any unitarily invariant norm
α, there exists a symmetric gauge norm Ψ on Cn such that for every finite rank
operator A, then α(A) = Ψ(a1, a2, . . . , an), where {ai}16i6n is the spectrum of |A|.

Since von Neumann’s result, these norms have been extended and gener-
alized in different ways. Schatten defined unitarily invariant norms on 2-sided
ideals of the continuous operators on a Hilbert space, B(H) (for example, see
[29], [30]). Chen, Hadwin and Shen defined a class of unitarily invariant, ‖ · ‖1-
dominating, normalized norms on a finite von Neumann algebra [7]. Unitarily
invariant norms also play an important role in the study of non-commutative
Banach function spaces. For more information and history of unitarily invari-
ant norms see Schatten [29], Hewitt and Ross [14], Goldberg and Krein [10], or
Simon [32].

A. Beurling proved his classical theorem for invariant subspaces in 1949 [4].
We recall the classical Beurling theorem. We let T be the unit circle, and we let
µ be the measure on T such that dµ = 1

2π dθ. As is standard, we let L∞(T, µ)

be the commutative von Neumann algebra on T. We define L2(T, µ) to be the
‖ · ‖2-norm closure of L∞(T, µ), which is a Hilbert space with orthonormal basis
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{zn : n ∈ N}. We define the subspace H2 = span({zn : n > 0})‖·‖2 of L2(T, µ),
and define H∞ = H2 ∩ L∞(T, µ). It is clear that L∞(T, µ) has a representation
onto B(L2(T, µ)) given by the map φ → Mφ, where Mφ is given by Mφ( f ) =

φ f for every f ∈ L2(T, µ). Hence, L∞(T, µ) and H∞ act naturally by left (or
right) multiplication on L2(T, µ). The classical Beurling theorem may be stated
as follows (for more information, see [4]): Suppose thatW is a nonzero, closed, H∞

invariant subspace of H2 (namely zW ⊆ W). ThenW = φH2 for some φ ∈ H∞ such
that |φ| = 1 a.e. (µ).

The Beurling theorem has been extended in many ways (see [6], [11], [12],
[13], [15] and [33], among others). One example is as follows: we define Lp(T, µ)
to be the closure of L∞(T, µ) under the ‖ · ‖p-norm. Also define Hp = { f ∈
Lp(T, µ) :

∫
T

f (eiθ)einθdµ(θ) = 0 ∀ n ∈ N}. The Beurling theorem may be ex-

tended to H∞-invariant subspaces of the Hardy spaces Hp for 1 6 p 6 ∞. Some
further extensions of Beurling’s theorem can be found in [5] and [7].

Typical examples of noncommutative Banach functional spaces include so
called noncommutative Lp-spaces, Lp(M, τ), associated with semifinite von Neu-
mann algebras. SupposeM is a von Neumann algebra with a semifinite, faith-
ful, normal tracial weight τ. We consider I , the set of elementary operators on
M (when M is finite, M = I). We recall the construction of Lp(M, τ). When
0 < p < ∞ define a mapping ‖ · ‖p : I → [0, ∞) by ‖x‖p = (τ(|p|))1/p where
|x| =

√
(x∗x) for every x ∈ I . It is non-trivial to prove that ‖ · ‖p is a norm,

called the p-norm, when 1 6 p < ∞. We define the space Lp(M, τ) = I‖·‖p for
0 < p < ∞. When p = ∞, we set L∞(M, τ) = M, which acts naturally on
Lp(M, τ) by right or left multiplication.

In [7], Chen, Hadwin and Shen proved a Beurling-type theorem for unitarily
invariant norms on finite von Neumann algebras. A motivation for this paper is
to extend the result in [7] to the setting of unitarily invariant norms on semifinite
von Neumann algebras. We define the family of unitarily invariant, locally ‖ · ‖1-
dominating, mutually continuous norms on the von Neumann algebraM with
respect to the semifinite, faithful, normal tracial weight τ. Suppose thatM is a
von Neumann algebra with a semifinite, faithful normal tracial weight τ. We let
I be the set of finite rank operators in (M, τ). A norm α : I → [0, ∞) is a unitarily
invariant, locally ‖ · ‖1-dominating, mutually continuous norm with respect to τ
if α is a norm for which the following conditions hold:

(i) for any unitaries u, v ∈ M and x ∈ I , α(uxv) = α(x);
(ii) for every projection e ∈ M with τ(e) < ∞ and any x ∈ I , there exists

0 < c(e) < ∞ such that α(exe) 6 c(e)‖exe‖1;
(iii)

(a) if {eλ} is an increasing net of projections in I such that τ(eλx− x)→
0 for every x ∈ I , then α(eλx− x)→ 0 for every x ∈ I ;

(b) if {eλ} is a net of projections in I such that α(eλ)→0, then τ(eλ)→0.
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Chen, Hadwin and Shen’s family of norms in [7] is a subset of this family of
norms. We also show that the norm ‖ · ‖I(τ) on a Banach function space I(τ) is a
unitarily invariant, ‖ · ‖1-dominating, mutually continuous norm.

However, many of the methods used by Chen, Hadwin and Shen no longer
apply whenM is a semifinite von Neumann algebra. We use a similar method
to extend their theorem as in Sager’s work on Lp(M, τ)-spaces extending work
of Blecher and Labuschagne (see [26]). We therefore prove a series of density
lemmas for the Lα(M, τ)-spaces.

Following these results, we are able to prove a noncommutative Beurling–
Chen–Hadwin–Shen theorem for unitarily invariant, ‖ · ‖1-dominating, mutu-
tally continuous norms with respect to τ on a von Neumann algebra M with
a semifinite, faithful, normal tracial weight τ, and we can fully characterize K in
the case when K ⊆ Lα(M, τ) isM-invariant. Furthermore, whenM is a factor,
we can weaken the conditions on α.

Similar to Sager’s result in [26] for Lp-spaces, we prove a Beurling–Chen–
Hadwin–Shen theorem for the crossed product of a von Neumann algebraM by
a trace-preserving action β with a unitarily invariant, locally ‖ · ‖1-dominating,
mutually continuous with respect to the trace τ.

We are also able to prove a similar result to Sager’s corollary of the Beurling–
Blecher–Labuchagne theorem for crossed products, but for any α, a unitarily in-
variant, locally ‖ · ‖1-dominating, mutually continuous norm with respect to τ.

As B(H) is a factor and can be realized as the crossed product, we can also
weaken the conditions on α whenM = B(H). Additionally, we can fully charac-
terize the H∞ invariant subspaces.

Additionally, we prove a result for a Banach function space E with norm
‖ · ‖E(τ) and provide an answer for Problem 1.1.

We begin in Section 2 by discussing the background definitions and pre-
liminary results. In Section 3, we define the class of unitarily invariant, ‖ · ‖1-
dominating, mutually continuous norms, which we call the class of α-norms. We
discuss the non-commutative Banach function space setting and other applica-
tions of α-norms. In Section 4, we discuss Arveson’s non-commutative Hardy
space. We prove our main result, a Beurling–Chen–Hadwin–Shen theorem for α-
norms, in Section 5. We finally apply our main result to our examples and crossed
products in Section 6.

2. PRELIMINARIES AND NOTATION

In the following section, we give some useful and necessary defintions and
results for a von Neumann algebra with a faithful, normal, semifinite tracial
weight. We also discuss the space of operators affiliated with a von Neumann
algebra with a faithful, normal, semifinite tracial weight.
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2.1. WEAK* TOPOLOGY. LetM be a von Neumann algebra with a predualM#.
We recall that the weak* topology on M, σ(M,M#), is the topology on M in-
duced by the predual spaceM#. The following result on weak* topology conver-
gence is useful (see, for instance, Theorem 1.7.8 in [28]).

LEMMA 2.1. LetM be a von Neumann algebra. If {eλ}λ∈Λ is a net of projections
inM converging to I in the weak* topology, then eλx, xeλ, and eλxeλ converge to x in
the weak* topology for all x inM.

2.2. SEMIFINITE VON NEUMANN ALGEBRAS. LetM be a von Neumann algebra.
We letM+ be the positive part ofM. Recall the defintion of a tracial weight τ on
M: A mapping τ :M+ → [0, ∞] is a tracial weight onM if:

(i) τ(x + y) = τ(x) + τ(y) for x, y ∈ M+;
(ii) τ(ax) = aτ(x) for every x ∈ M+ and a ∈ [0, ∞]; and

(iii) τ(xx∗) = τ(x∗x) for every x ∈ M.
Such a τ is called normal if it is weak* topology continuous; faithful if, given

a ∈ M+, τ(a∗a) = 0 implies that a = 0; finite if τ(I) < ∞; and semifinite if for
any nonzero x ∈ M+, there exists a nonzero y ∈ M+ such that τ(y) < ∞, and
y 6 x. A von Neumann algebraM for which a faithful, normal, semifinite tracial
weight τ exists is called semifinite.

2.3. OPERATORS AFFILIATED WITHM. Given a von Neumann algebraMwith a
semifinite, faithful, normal tracial weight τ acting on a Hilbert spaceH, a measure
topology onM is given by the system of neighborhoods Uδ,ε = {a ∈ M : ‖ap‖ 6
ε and τ(p⊥) 6 δ for some projection p ∈ M} for any ε, δ > 0 (for more details
see [21]). We say that an is Cauchy in measure if, given ε and δ > 0, there exists an
n0 such that if n, m > n0, then an − am is in Uδ,ε.

DEFINITION 2.2. Let M̃ denote the algebra of closed, densely defined (pos-
sibly unbounded) operators onH affiliated withM.

REMARK 2.3. M̃ is also the closure ofM in the measure topology (see [21]
for more information).

3. UNITARILY INVARIANT NORMS AND EXAMPLES

In this section, we introduce a class of unitarily invariant, locally ‖ · ‖1-
dominating, mutually continuous norms on semifinite von Neumann algebras.
We also introduce interesting examples from this class.

3.1. Lα-SPACES OF SEMIFINITE VON NEUMANN ALGEBRAS. Suppose that M is
a von Neumann algebra with a semifinite, faithful, normal tracial state τ. We
then let

I = span{xey : x, y ∈ M, e ∈ M, e = e2 = e∗ with τ(e) < ∞}
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be the set of elementary operators of (M, τ) (see Remark 2.3 in [31]). For each
1 6 p < ∞ , we define the ‖ · ‖p-norm on I by

‖x‖p = (τ(|x|p))1/p for every x ∈ I .

It is a non-trivial fact that the mapping ‖ · ‖p defines a norm on I . We let Lp(M, τ)
denote the completion of I with respect to the ‖ · ‖p-norm.

DEFINITION 3.1. We call a norm α : I → [0, ∞) a unitarily invariant, locally
‖ · ‖1-dominating, mutually continuous norm with respect to τ on I if it satisfies the
following characteristics:

(i) α is unitarily invariant if for all unitaries u, v inM and every x in I , α(uxv) =
α(x);

(ii) α is locally ‖ · ‖1-dominating if for every projection e inM with τ(e) < ∞,
there exists 0 < c(e) < ∞ such that α(exe) > c(e)‖exe‖1 for every x ∈ I ;

(iii) α is mutually continuous with respect to τ; namely:
(a) if {eλ} is an increasing net of projections in I such that τ(eλx− x)→

0 for every x ∈ I , then α(eλx − x) → 0 for every x ∈ I ; or, equivalently, if
{eλ} is a net of projections in I such that eλ → I in the weak* topology, then
α(eλx− x)→ 0 for every x ∈ I ;

(b) if {eλ} is a net of projections in I such that α(eλ)→0, then τ(eλ)→0.

DEFINITION 3.2. LetM be a von Neumann algebra with a semifinite, faith-
ful, normal tracial weight τ. Suppose I = span{MeM : e = e2 = e∗ ∈
M such that τ(e) < ∞} is the set of all elementary operators in M. Suppose
α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm
with respect to τ on I . We define Lα(M, τ) to be the completion of I under α,
namely,

Lα(M, τ) = Iα
.

NOTATION 3.3. We will denote by [S]α the completion, with respect to the
norm α, of a set S inM.

LEMMA 3.4. Suppose M is a von Neumann algebra with a semifinite, faithful,
normal tracial weight τ, and let α be a unitarily invariant, locally ‖ · ‖1-dominating,
mutually continuous norm with respect to τ. Then for any x∈Lα(M, τ), and a, b∈M,

α(axb) 6 ‖a‖α(x)‖b‖.
Proof. The proof is included here for completeness. It suffices to show that

for any x ∈ I , and a, b ∈ M,

α(axb) 6 ‖a‖α(x)‖b‖.

Without loss of generality, we might assume that ‖a‖ < 1. By the Russo–
Dye theorem, there exist a positive integer n and unitary elements u1, . . . , un in
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M such that a = u1+···+un
n . Therefore,

α(ax) =
α((u1 + · · ·+ un)x)

n
6 α(x)

since α is unitarily invariant. So, α(ax) 6 ‖a‖α(x) for every a ∈ M.
It may be proved similarly that α(xb) 6 α(x)‖b‖ for every b ∈ M.

3.2. EXAMPLES OF UNITARILY-INVARIANT, LOCALLY ‖ · ‖1-DOMINATING, MUTU-
ALLY CONTINUOUS NORMS.

REMARK 3.5. It is trivial to show that the ‖ · ‖p-norms ofM with 1 6 p <
∞ for a semifinite von Neumann algebra M with a faithful, normal, semifinite
tracial weight τ are unitarily equivalent, ‖ · ‖1-dominating, mutually continuous
norms with respect to τ onM.

REMARK 3.6. It is also trivial to show that a continuous, unitarily invariant,
normalized, ‖ · ‖1-dominating norm on a finite von Neumann algebraM as given
in [7] is a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm
with respect to τ onM.

PROPOSITION 3.7. Suppose that M is a semifinite factor, and α : I → [0, ∞)
is a unitarily invariant norm satisfying that, if {eλ} is a net inM with eλ → I in the
weak* topology, then α(eλx − x) → 0 for each x ∈ I . Then α is a unitarily invariant,
locally ‖ · ‖1-dominating, mutually continuous norm with respect to τ.

Proof. By assumption, α is unitarily invariant.
Let e be a projection inM such that τ(e) < ∞. Let x = exe be an element

in eMe, which we denote byMe. As |x| 6 ‖x‖e, we have that α(x) = α(|x|) 6
‖x‖α(e). NoteMe is a finite factor with a tracial state τe, defined by τe(y) =

τ(y)
τ(e)

for all y ∈ Me. By the Dixmier approximation property, for every ε > 0, there

exist c1, c2, . . . , cn in [0, 1] with
n
∑

i=1
ci = 1 and unitaries u1, u2, . . . , un in eMe such

that
∥∥∥τe(|x|)e −

n
∑

i=1
ciuixu∗i

∥∥∥ < ε. Therefore, α
(

τe(|x|)e −
n
∑

i=1
ciuixu∗i

)
6 εα(e).

Thus,

‖x‖1 = τ(|x|) = τ(e)τe(|x|) =
τ(e)
α(e)

α(τe(|x|)e)

6
τ(e)
α(e)

[
α
(

τe(|x|)e−
n

∑
i=1

ciuixu∗i
)
+ α
( n

∑
i=1

ciuixu∗i
)]

6 ετ(e) +
τ(e)
α(e)

n

∑
i=1

α(ciuixu∗i ) 6 ετ(e) +
τ(e)
α(e)

α(x).

Letting ε→ 0, we find that τ(x) 6 τ(e)
α(e)α(x) for every x inMe. Namely,

(3.1) ‖exe‖1 6 cα(exe) for all x ∈ I .
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where c = τ(e)
α(e) . Thus, α is locally ‖ · ‖1-dominating.

We now show that α is mutually continuous with respect to τ. Actually, we
need only to show that, if {eλ} is a net of projections in I such that α(eλ) → 0,
then τ(eλ)→ 0. Assume, to the contrary, that there exist a positive number ε > 0
and a family {en} of projections in I such that α(en) <

1
n but τ(en) > ε for each

n ∈ N. AsM is a semifinite factor and α is unitarily invariant, we might assume
further that {en}n is a decreasing sequence of projections in I . Let e0 =

∧
n

en.

Then τ(e0) > ε and α(e0) = 0 as e0 6 en implies α(e0) 6 α(en) < 1
n for each

n. This is a contradiction. Therefore, if {eλ} is a net of projections in I such that
α(eλ)→ 0, then τ(eλ)→ 0.

3.2.1. NON-COMMUTATIVE BANACH FUNCTION SPACES. In this subsection, we
follow the notation of de Pagter in [23]. We suppose, as before, thatM is a von
Neumann algebra with a semifinite, faithful, normal tracial state τ. In this case,
we have the ideal of the distribution function dx, where x is a τ-measurable op-
erator inM. We define dx by

dx(λ) = τ(e|x|(λ, ∞)) for every λ > 0,

where e|x|(λ, ∞) is the spectral projection of |x| on (λ, ∞). It is easy to see that
dx is decreasing, right-continuous and dx(λ) → 0 as λ → ∞. This allows us to
define a generalized singular value function

µ(x; t) = inf{λ > 0 : dx(λ) 6 t} for a given t > 0 and for every x ∈ M.

DEFINITION 3.8. Suppose that (X, Σ, ν) is a localizable measure space with
the finite subset property. Let E be a two-sided ideal of the set of all complex-
valued, Σ-measurable functions on X with the identification of all functions equal
a.e. with respect to ν. If E has a norm ‖ · ‖E such that (E, ‖ · ‖E) is a Banach lattice,
then E is called a Banach function space.

We assume that E is a symmetric Banach function space on (0, ∞) with
Lebesgue measure (see Definition 2.6 in [23]).

Following [23], we let I = {x ∈ M : x is a finite rank operator in (M, τ),
and ‖µ(x)‖E < ∞} and define a Banach function space I(τ) equipped with a
norm ‖ · ‖I(τ) such that

‖x‖I(τ) = ‖µ(x)‖E for every x ∈ I .

Denote the closure of I under ‖ · ‖I(τ) by I(τ). We will use the following
lemma to show that the restriction of ‖ · ‖I(τ) on I is a unitarily invariant, locally
‖ · ‖1-dominating, mutually continuous norm with respect to τ.

LEMMA 3.9. Suppose that y0 is an element of I such that y0 =
n
∑

i=1
βi pi where

β1, β2, . . . , βn are nonnegative and p1, . . . , pn are projections inM such that τ(p1) =
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τ(p2) = · · · = τ(pn). Then

‖y0‖I(τ) >
‖p1 + · · ·+ pn‖I(τ)

τ(p1 + · · ·+ pn)
‖y0‖1.

Proof. Note that y0 is an element of I such that y0 =
n
∑

i=1
βi pi where τ(p1) =

τ(p2) = · · · = τ(pn). Now let βn+j = β j for all 1 6 j 6 n and yj =
n
∑

i=1
βi+j pi for

1 6 j 6 n. Then, by definition,
n
∑

k=1
yk = (β1 + · · ·+ βn)(p1 + · · ·+ pn), and also

‖yk‖I(τ) = ‖y0‖I(τ) for all 1 6 k 6 n. Therefore:

‖y0‖I(τ) >

∥∥∑n
k=1 yk

∥∥
I(τ)

n
>
( β1 + · · ·+ βn

n

)
‖p1 + · · ·+ pn‖I(τ)

=
τ(y0)

τ(p1 + · · ·+ pn)
‖p1 + · · ·+ pn‖I(τ) = ‖y0‖1

‖p1 + · · ·+ pn‖I(τ)
τ(p1 + · · ·+ pn)

.

PROPOSITION 3.10. Suppose that I(τ) is a Banach function space. Suppose that
M is a diffuse von Neumann algebra with a semifinite, faithful, normal tracial state τ
and with an order continuous norm ‖ · ‖I(τ). Then the restriction of ‖ · ‖I(τ) on I is a
unitarily invariant, locally ‖ · ‖1-dominating, mututally continuous norm with respect
to τ.

Proof. Note ‖ · ‖I(τ) : I → [0, ∞) is a norm. Now we will verify that ‖ · ‖I(τ)
satisfies the following conditions:

(i) ‖uxv‖I(τ) = ‖x‖I(τ) for all unitaries u, v inM, and every x in I ;
(ii) for every projection e inM with τ(e) < ∞, there exists c(e) < ∞ such that

‖exe‖I(τ) > c(e)‖exe‖1 for all x ∈ M;
(iii)

(a) if {eλ}λ∈Λ is a net inM such that eλ → I in the weak* topology, then
‖eλx− x‖I(τ) → 0 for every x ∈ I ;

(b) if {eλ}λ∈Λ is a net inM such that ‖eλ‖I(τ) → 0, then τ(eλ)→ 0.

(i) We begin by showing that ‖uxv‖I(τ) = ‖x‖I(τ).
Given any x and y in I , we know that if τ(|x|n) = τ(|y|n) for every n ∈ N,

then ‖x‖I(τ) = ‖y‖I(τ) from Definition 3.4 in [23]. We have that τ is unitarily
invariant by defintion, so for all unitaries u and v inM and x in I ,

τ(|uxv|n) = τ(v−n|x|nvn) = τ(|x|n) for every n ∈ N.

Hence ‖uxv‖I(τ) = ‖x‖I(τ), and ‖ · ‖I(τ) is unitarily invariant.
(iii)(a) We show that if {eλ} ⊆ I is an increasing net of projections such that

eλ → I in the weak* topology, then eλx → x in ‖ · ‖I(τ)-norm for each x ∈ I .
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Suppose that {eλ} ⊆ I is an increasing net of projections such that eλ → I
in the weak* topology. By definition, ‖ · ‖I(τ) is order continuous. So for ev-
ery x in I , ‖

√
x∗(I − eλ)x‖I(τ) → 0, and ‖(I − eλ)x‖I(τ) = ‖|(I − eλ)x|‖I(τ) =

‖
√

x∗(I − eλ)x‖I(τ) by (i). Therefore, ‖x − eλx‖I(τ) → 0 for every x in I , as
desired.

(b) We show that if {eλ} ⊆ I is a net of projections such that ‖eλ‖I(τ) → 0,
then τ(eλ)→ 0.

We suppose that {eλ} ⊆ I is a net of projections such that ‖eλ‖I(τ) → 0.
Suppose to the contrary, that τ(eλ) 9 0. There exist an ε0 > 0, a subsequence
{eλn} of {eλ}λ∈Λ such that for every n > 1, τ(eλn) > ε0. As ‖eλ‖I(τ) → 0,
‖eλn‖I(τ) → 0. Recall thatM has no minimal projection. By the properties of the
norm ‖ · ‖I(τ), we might assume that {eλn} is a decreasing sequence of projections
in I . Thus there exist an x =

∧
n

eλn inM such that 0 6 x 6 eλn for every n, and

ε0 6 τ(x) 6 τ(eλn). Moreover, we have that ‖eλn‖I(τ) > ‖x‖I(τ) for every n,
so therefore, ‖x‖I(τ) = 0. Hence x = 0, which contradicts with the fact that
ε0 6 τ(x).

(ii) We show that for a projection e ∈ M such that τ(e) < ∞ there exists

c(e) =
‖e‖I(τ)

τ(e) satisfying ‖exe‖I(τ) > c(e)‖exe‖1 for all x ∈ M.

Suppose that e = e2 = e∗ is a projection in M such that τ(e) < ∞. Let
x be a positive element in M. For any ε > 0, there exist nonnegative num-

bers β1, β2, . . . , βn and subprojections p1, p2, . . . , pn of e in M such that
∥∥∥exe −

n
∑

i=1
βi pi

∥∥∥
I(τ)

6
∥∥∥e−

n
∑

i=1
βi pi

∥∥∥‖e‖I(τ)< ε and
∥∥∥exe−

n
∑

i=1
βi pi

∥∥∥
1
6
∥∥∥e−

n
∑

i=1
βi pi

∥∥∥‖e‖1

< ε. We call
n
∑

i=1
βi pi = y0. For each m ∈ N and 1 6 i 6 n , we partition pi =

qi,1 + qi,2 + · · · + qi,ki
+ qi,ki+1 where ki is a positive integer and qi,1, qi,2, . . . , qi,ki

are projections in M such that τ(qi,1) = τ(qi,2) = · · · = τ(qi,ki
) = 1

m , and

0 6 τ(qi,ki+1) < 1
m . We can write y0 =

n
∑

i=1
βi

( ki+1
∑

j=1
qi,j

)
= z1 + z2, where

z1 =
n
∑

i=1
βi

( ki
∑

j=1
qi,j

)
and z2 =

n
∑

i=1
βiqki+1.

We let q =
n
∑

i=1

ki
∑

j=1
qi,j. Then, by Lemma 3.9,

‖y0‖I(τ) > ‖z1‖I(τ) >
‖q‖I(τ)

τ(q)
‖z1‖1.

Also, by the triangle inequality,

‖z1‖ > ‖y0‖1 − ‖z2‖1 > ‖y0‖1 −
∑n

i=1 βi

m
,
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which approaches ‖y0‖1 as m→ ∞. Furthermore, by (iii) we have

‖q‖I(τ)
τ(q)

>
‖e‖I(τ) −∑n

i=1 βi‖qi,ki+1‖I(τ)
τ(e)

→
‖e‖I(τ)

τ(e)
as m→ ∞.

Therefore,

‖y0‖I(τ) >
‖e‖I(τ)

τ(e)
‖y0‖1.

By the choice of y0, we conclude, for all x inM:

‖exe‖I(τ) >
‖e‖I(τ)

τ(e)
‖exe‖1.

3.3. EMBEDDING FROM Lα(M, τ) INTO M̃. We would like to show that there is a
natural embedding from Lα(M, τ) into M̃.

Suppose thatM is a von Neumann algebra with a semifinite, faithful, nor-
mal tracial weight τ, andH is a Hilbert space. Recall

I = span{xey : x, y ∈ M, e ∈ M, e = e2 = e∗ with τ(e) < ∞}

is the set of elementary operators of M. Define M̃ to be the algebra of closed,
densely defined operators on H affiliated with M. We recall that the measure
topology onM is given by the family of neighborhoods Uδ,ε = {a ∈ M : ‖ap‖ 6
ε and τ(p⊥) 6 δ for some projection p ∈ M} for any ε, δ > 0.

Suppose that α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually
continuous norm with respect to τ onM.

LEMMA 3.11. Let ε > 0 be given. There exists δ0 > 0 such that if e is a projection
in I with α(e) < δ0, then τ(e) < ε.

Proof. Suppose, to the contrary, that there exists an ε > 0 such that for every
δ0 > 0, there exists a projection eδ0 in I such that α(eδ0) < δ0, and τ(eδ0) > ε.
Let δ0 = 1

n for each n ∈ N. Then there exists a sequence {en}n∈N such that
for every n ∈ N, α(en) < 1

n , and τ(en) > ε. This is a contradiction, as α is
mutually continuous with respect to τ (see Definition 3.1). Therefore, the lemma
is proven.

LEMMA 3.12. Suppose a sequence {an} in I is Cauchy with respect to the norm
α. Then {an} is Cauchy in the measure topology.

Proof. To prove that {an} ⊆ I is Cauchy in the measure topology, it suffices
to show that for every ε, δ > 0, there exists an N ∈ N such that for n, m > N,
there exists a projection pm,n satisfying ‖|am − an|pm,n‖ < δ and τ((pm,n)⊥) < ε.
By Lemma 3.11, we know that there exists a δ0 > 0 such that

(3.2) if e is a projection in I with α(e) < δ0, then τ(e) < ε.
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For each m, n ∈ N, let {eλ(m, n)} be the spectral decomposition of |am − an| in

M. By the spectral decomposition theorem, we have |am − an| =
∞∫
0

λdeλ(m, n),

and τ(|am − an|) =
∞∫
0

λdτ(eλ(m, n)). Let λ0 = δ0. Hence λ0eλ0(m, n)⊥ 6 |am −

an|eλ0(m, n)⊥. So

(3.3) α(λ0eλ0(m, n)⊥) 6 α(|am − an|) for all m, n ∈ N.

Recall that {an} is Cauchy in α-norm. For ε1 = λ0δ0 > 0, there exists N ∈ N such
that for all m, n > N, α(am − an) < ε1. Combining with (3.3), we have that for
every m, n > N, λ0α(eλ0(m, n)⊥) < ε1. This implies that

α(eλ0(m, n)⊥) <
ε1

λ0
= δ0.

Because of (3.2), τ(eλ0(m, n)⊥) < ε for every m, n > N. Put pm,n = eλ0(m, n).
Then for every m, n > N we have the following and the proof is complete:

‖|am − an|pm,n‖ 6 λ0 = δ0, and τ((pm,n)
⊥) < ε.

Therefore, there is a natural continuous mapping from Lα(M, τ) into M̃.
Let e be a projection inM such that τ(e) < ∞, and letMe = eMe. Define a

faithful, normal, tracial state τe onMe by τe(x) = 1
τ(e)τ(x) for every x inMe.

It can be shown that τe is a finite, faithful, normal tracial state onMe. Sup-
pose that α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous
norm with respect to τ onM. Define αe = α|eMe. We define α′e : Me → [0, ∞]
by α′e(x) = sup{|τ(xy)| : y ∈ M, αe(y) 6 1} for every x inMe. It may be shown
that α′e is indeed a norm, and we call α′e the dual norm of αe (see [7] for more

information). We define Lα′e(Me, τ) =M α′e
e .

We may also define αe : L1(Me, τ) → [0, ∞] by αe(x) = sup{|τ(xy)| :
y ∈ M, α′e(y) 6 1} for every x in Me, and α′e : L1(Me, τ) → [0, ∞] by α′e =

sup{|τ(xy)| : y ∈ M, αe(y) 6 1} for every x inMe. Lαe(Me, τ) and Lα′e(Me, τ)

are defined to beM αe
e andM α′e

e , respectively.

LEMMA 3.13. Let α be a unitarily invariant, ‖ · ‖1-dominating, mutually contin-
uous norm with respect to τ. Then αe, α′e, α′e and αe are unitarily invariant norms on
Lα(M, τ).

Proof. Clearly, αe(uxv) = α(uxv) = α(x) = αe(x) for unitaries u and v and
an element x inMe ⊂M. Therefore, αe is a unitarily invariant norm.

Let u and v be unitaries, and x be an element of Lα′e(Me, τe). Then

α′e(uxv)=sup{|τ(uxvy)| : y∈M, αe(y)61}=sup{|τ(xuyv)| : y∈M, αe(y)61}
=sup{|τ(xy0)| : y0 ∈ M, αe(y0) 6 1} = α′e(x)

for every x ∈ Lα′e(Me, τe). Therefore, α′e is unitarily invariant.



A BEURLING THEOREM FOR SEMIFINITE VON NEUMANN ALGEBRAS 61

The proofs that αe and α′e are unitarily invariant are similar.

LEMMA 3.14. Suppose α is a unitarily invariant, locally ‖ · ‖1-dominating, mu-
tually continuous norm with respect to τ onM. Then:

(i) ‖x‖1 6 αe(x) for every x ∈ Lαe(Me, τ); and
(ii) ‖x‖1 6 α′e(x) for every x ∈ Lα′e(Me, τ).

Proof. (i) Suppose that x is in Lαe(Me, τ) ⊆ L1(Me, τ). Let x = uh be the
polar decomposition of x in L1(Me, τ), such that u is a unitary in Me, and h is
positive in L1(Me, τ). As αe is unitarily invariant (see Lemma 3.13),

(3.4) αe(x) = αe(uh) = αe(h).

By definition, αe(h) > |τ(h)| = ‖x‖1. Hence, combining with (3.4),

‖x‖1 6 αe(x).

The proof of (ii) is similar.

LEMMA 3.15. For every y ∈ Me and every z ∈ L1(Me, τ), α′e(yz) 6 ‖y‖α′e(z).
Proof. Suppose y ∈ Me such that ‖y‖ = 1, and let y = ω|y| be the polar

decomposition of y inMe, i.e. ω ∈ Me is unitary and |y| ∈ Me is positive. Define
v = |y|+ i

√
1− |y|2. Then by construction, v is unitary inMe, and |y| = v+v∗

2 .
Consider any z in L1(Me, τ). Then we have that

α′e(yz) = α′e(ω|y|z) = α′e

(vz + v∗z
2

)
6

α′e(vz) + α′e(v∗z)
2

for every z in L1(Me, τ), and y inMe such that ‖y‖ = 1. Thus α′e(yz) 6 ‖y‖α′e(z)
for every z in L1(Me, τ) and y inMe.

LEMMA 3.16. For every x ∈ Me, αe(x) = αe(x).

Proof. First, we show that αe(x) 6 αe(x) for every x inMe. By definition,
|τ(xy)| 6 αe(x)α′e(y) for every x and y inMe. Suppose α′e(y) 6 1. Then |τ(xy)| 6
αe(x)α′e(y) < αe(x) for every x inMe, and y inMe such that α′e(y) 6 1. Hence,
by definition,

(3.5) αe(x) = sup{|τ(xy)| : y ∈ Me, α′e(y) 6 1} 6 αe(x).

Next, we show that αe(x) > αe(x). Suppose x is inMe with αe(x) = 1. Then
by the Hahn–Banach theorem, there exists a ϕ in Lαe(Me, τ)# such that ϕ(x) =

αe(x) = 1, and ‖ϕ‖ = 1. Since ϕ is in Lαe(Me, τ)#, there exists ξ in Lα′e(Me, τ)
such that ϕ(x) = |τ(xξ)| = 1, and α′e(ξ) = ‖ξ‖ = 1. Let ξ = uh be the polar
decomposition of ξ in Lα′e(Me, τ), where u ∈ Me is unitary and h ∈ Lα′e(Me, τ)
is positive.

By Lemma 3.8 in [7], there exists a family {eλ} of projections in Me such
that ‖h− heλ‖1 → 0, and eλh = heλ ∈ Me for every 0 < λ < ∞. Also, u ∈ Me,
so uheλ ∈ Me. Thus α′e(uheλ) = α′e(uheλ) 6 α′e(uh)‖eλ‖ 6 α′e(uh) = α′e(ξ) = 1,
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as α′e(x) = α′e(x) for every x ∈ Me by Lemma 3.2 in [7]. So, αe(x)|τ(xξ)| =
|τ(xuh)| = lim

λ→∞
|τ(xuheλ)|6sup{|τ(xy)| : y∈Me, α′e(y)61}=αe(x). Therefore

(3.6) αe(x) 6 αe(x).

Hence from equations (3.5) and (3.6), αe(x) = αe(x), and the lemma is proven.

LEMMA 3.17. Lαe(Me, τ) = {x ∈ L1(Me) : αe(x) < ∞} is a complete space in
αe-norm.

Proof. It suffices to show that for every Cauchy sequence {bn} in Lαe(Me, τ),
there exists b in Lαe(Me, τ) such that bn → b in αe-norm. Suppose that {bn} is
a Cauchy sequence in Lαe(Me, τ). There exists M > 0 such that αe(bn) 6 M for
every n.

By Lemma 3.14,

‖bn − bm‖1 6 α(bn − bm) for all m, n > 1.

Therefore, {bn} is Cauchy in L1(Me, τ), which is complete. So there exists a b0 in
L1(Me, τ) such that ‖bn − b0‖1 → 0.

First, we claim that b0 is in Lαe(Me, τ). Let y ∈ Me such that α′e(y) 6 1. We
have that |τ(bny)− τ(b0y)| = |τ((bn − b0)y)| 6 ‖bn − b0‖1‖y‖∞ by Hölder’s in-
equality. However, ‖bn− b0‖1‖y‖∞ → 0. Also, by the definition of α, we also have
that |τ(b0y)| = lim

n→∞
|τ(bny)| 6 lim sup

n→∞
αe(bn)α′e(y) 6 M. Therefore, α(bx) 6 M,

and b0 ∈ Lαe(Me, τ).
Now, we show that αe(bn − b0) → 0. We know that {bn} is Cauchy in

Lα(Me, τ), so for every n > 1,

|τ((bn − b0)y)| = lim
m→∞

|τ((bm − bn)y)| 6 lim sup
m→∞

αe(bn − bm)α
′
e(y)

6 lim sup
m→∞

α(bm − bn).

Therefore, αe(bn − b0) 6 lim sup
m→∞

(bn − bm) for every n > 1, and since {bn} is

Cauchy in Lαe(Me, τ),

αe(bn − b0)→ 0 as n→ ∞,

and the lemma is proven.

Therefore Lαe(Me, τ) is a Banach space with respect to αe-norm.

LEMMA 3.18. Suppose that e ∈ M is a projection such that τ(e) < ∞. Suppose
{eane} ⊆ I is Cauchy in α-norm, and eane converges in measure to 0. Then:

(i) for every ε > 0, there exists a δ > 0 such that, if q is a projection in M with
τ(q) < δ, |τ(eaneq)| < ε for every n;

(ii) given δ > 0, ε > 0 and N ∈ N, there exists pn, a projection in M, such that
‖eanepn‖ 6 ε, and τ(p⊥n ) < δ for every n > N;

(iii) for every projection q in I , τ(eaneq)→ 0 as n→ ∞; and
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(iv) for every b inM, τ(eaneb)→ 0 as n→ ∞.

Proof. (i) Suppose that, as above, e ∈ M is a projection such that τ(e) < ∞
and {eane} is a Cauchy sequence in α-norm. Let ε > 0 be given. By assump-
tion, α is a locally ‖ · ‖1-dominating norm, so there exists c(e) such that α(exe) >
c(e)‖exe‖1 for every x ∈ M. Then, given ε

2 c(e), there exists N0 ∈ N such that for
all n, m > N0,

α(eane− eame) 6
ε

2
c(e).

Let δ = min
k6N0
{ ε

2‖eake‖∞
}. Suppose q is a projection in M such that τ(q) 6

δ. Then for every k 6 N0, |τ(eakeq)| 6 ‖eake‖‖q‖1 by Hölder’s inequality, and
τ(q)=‖q‖16δ. Hence |τ(eakeq)| 6 ‖eake‖δ < ε

2 for all k 6 N0 by our choice of δ.
For k > N0,

|τ(eakeq)| 6 |τ((eake− eaN0 e)q)|+ |τ(eaN0 eq)|
6 ‖eake− eaN0 e‖1‖q‖+ ‖eaN0 e‖‖q‖1 (by Hölder’s inequality)

6
1

c(e)
α(eake− eaN0 e)‖q‖+ ‖eaN0 e‖δ (by Definition 3.1)

<
ε

2
+

ε

2
= ε.

Hence, (i) is proven.
(ii) Suppose that {eane} is a Cauchy sequence in α-norm and eane → 0 in

measure. Then, by the definition of convergence in measure, for any ε > 0, δ > 0
and N ∈ N, there exists pn inM such that ‖eanepn‖ < ε and τ(p⊥n ) < δ for every
n > N.

(iii) Suppose that {eane} is a Cauchy sequence in α-norm such that eane→ 0
in measure. Then by (i), given ε > 0 and a projection q in I , there exists a δ1 > 0
such that if τ(q′) < δ1, then |τ(eaneq′)| < ε

2 . Let δ > 0 and ε1 = ε
2τ(q) . Then by

(ii), there exists N ∈ N such that ‖eanepn‖ < ε1, and τ(p⊥n ) < δ for every n > N.
Thus, for n > N and any projection q ∈ I ,

(3.7) τ(eaneq) = τ(eane(q− q ∩ pn)) + τ(eane(q ∩ pn)).

However, τ(q− q ∩ pn) = τ(q ∪ pn − pn) 6 τ(p⊥n ) < δ. Therefore,

(3.8) |τ(eane(q− q ∩ pn))| <
ε

2
.

from (i). Also,

|τ(eane(q ∩ pn))| = |τ(eanepn(q ∩ pn))| 6 ‖eanepn‖‖q ∩ pn‖1

6 ε1τ(q ∩ pn) < ε1τ(q) =
ε

2
.(3.9)

Then from equations (3.7), (3.8) and (3.9), |τ(eaneq)| < ε for any given ε > 0.
Therefore, τ(eane)→ 0 for every q ∈ M such that q is a projection and τ(q) < ∞.
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(iv) Suppose that {eane} is a Cauchy sequence in α-norm. Then there ex-
ists M > 0 such that τ(eane) 6 α(eane)

c(e) < M
c(e) . By considering ebe instead, we

might assume that b ∈ I . By the spectral decomposition theorem, b can be ap-
proximated by a finite linear combination of projections qi inM, i.e. there exist

qi ∈ I such that
∥∥∥b−

n
∑

i=1
qi

∥∥∥ < ε
c(e)
M for any given ε > 0. Therefore we have the

following and the lemma is proven:∣∣∣τ(eaneb)− τ
(

eane
n

∑
i=1

qi

)∣∣∣ = ∣∣∣τ(eane
(

b−
n

∑
i=1

qi

))∣∣∣
6 ‖τ(eane)‖1

∥∥∥b−
n

∑
i=1

qi

∥∥∥ 6 M
c(e)

ε
c(e)
M

< ε.

PROPOSITION 3.19. There exists a natural embedding from Lα(M, τ) into M̃.

Proof. By Lemma 3.12, there exists a natural mapping from Lα(M, τ) to M̃.
It suffices to show that this mapping is an injection. Suppose that {an} ⊆ I

is a Cauchy sequence in α-norm such that xn → 0 in measure. As Lα(M, τ) is
complete, there exists a ∈ Lα(M, τ) such that an → a in α-norm. Assume that
a 6= 0. There exists a projection e in M such that τ(e) < ∞ and eae 6= 0. Thus
{eane} is Cauchy in αe-norm, eane → 0 in measure and eane → eae 6= 0 in αe-
norm. By Lemma 3.18, τ(eaneb) → 0 for any b ∈ M. As, |τ(eaneb)− τ(eaeb)| 6
αe(eane− eae)α′e(b)→ 0, we have

τ(eaeb) = 0 for all b ∈ I .

On the other hand, by Lemma 3.16 and definition of αe, since eae 6= 0, there exists
some b0 ∈ Me such that α′e(b0) 6 1 and τ(eaeb0) >

α(eae)
2 . This is a contradiction.

Therefore, a = 0, and the mapping is an embedding.

4. ARVESON’S NON-COMMUTATIVE HARDY SPACE

In this section, we will extend Arveson’s classical definition of a non-com-
mutative Hardy space to Lα(M, τ). We assume, as before, thatM is a von Neu-
mann algebra with a semifinite, faithful, normal tracial weight τ, and we assume
that A ⊆ M is a weak* closed unital subalgebra ofM. We let D = A∩A∗, and
assume that Φ :M→ D is a faithful, normal conditional expection. Let

I = span{xey : x, y ∈ M, e ∈ M, e = e2 = e∗ with τ(e) < ∞}

be the set of elementary operators ofM.

DEFINITION 4.1. A weak* closed unital subalgebraA ofM is called a semi-
finite subdiagonal subalgebra, or a semifinite non-commutative Hardy space with
respect to (M, τ), if:
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(i) the restriction τ|D of τ to D = A∩A∗ is semifinite;
(ii) Φ(xy) = Φ(x)Φ(y) for every x and y in A;

(iii) A+A∗ is weak*-dense inM;
(iv) Φ is τ-preserving (i.e. τ(Φ(x)) = τ(x) for every positive operator x ∈ M).

We will, in this case, denote A by H∞.

DEFINITION 4.2. Let α : I → [0, ∞) be a unitarily invariant, locally ‖ · ‖1-
dominating, mutually continuous norm with respect to τ. We denote by Hα the
closure [A∩ Lα(M, τ)]α in α-norm.

REMARK 4.3. Considering the conditional expectation Φ : M → D from
Definition 4.1, we have that Φ extends to a projection from L1(M, τ) to L1(D, τ).
We still denote such an extension by Φ, and we have that

Φ(axb) = aΦ(x)b, ∀a, b ∈ D, x ∈ Lα(M, τ).

NOTATION 4.4. We denote ker(Φ) ∩ H∞ by H∞
0 , and ker(Φ) ∩ Hα by Hα

0 .

LEMMA 4.5. Suppose thatM is a von Neumann algebra with a semifinite, faith-
ful, normal tracial weight τ. Let A = H∞ be a semifinite subdiagonal subalgebra, as
described in Definition 4.1. Let e = e∗ = e2 ∈ D such that τ(e) < ∞. Then eH∞e,
denoted H∞

e , is a Hardy space ofMe.

For the proof see Lemma 3.1 of [2].

LEMMA 4.6. SupposeM is a semifinite von Neumann algebra with a semifinite,
faithful, normal tracial weight τ. Let H∞ be a semifinite, subdiagonal subalgebra ofM,
as described in Definition 4.1, namely that the restriction of τ to D = H∞ ∩ (H∞)∗

is semifinite. Let α : I → [0, ∞) be a unitarily invariant, locally ‖ · ‖1-dominating,
mutually continuous norm with respect to τ.

Then for every x ∈ Lα(M, τ) and for every e ∈ D such that τ(e) < ∞, there exist
h1, h3 ∈ eH∞e = H∞

e and h2, h4 ∈ eHαe = Hα
e such that:

(i) h1h2 = e = h2h1 and h3h4 = e = h4h3;
(ii) h1ex ∈ M, and exh3 ∈ M.

Proof. Let ex =
√

exx∗eu = |x∗e|u be the polar decomposition of (ex)∗ in
Lα(M, τ) where u is a partial isometry in M and |x∗e| is a positive operator in
Lα(M, τ). Note that |x∗e| is in eLα(M, τ)e = Lα(Me, τ). Since 0 < τ(e) < ∞,
we know thatMe is a finite von Neumann algebra with a faithful, normal tracial
state 1

τ(e)τ. By Lemma 4.5, we have that H∞
e is a finite subdiagonal subalgebra of

Me with [H∞
e ]α = Hα

e .
We have that |x∗e| ∈ Lα(Me, 1

τ(e)τ), and 0 < τ(e) < ∞. Then w = (e +

|x∗e|)−1 is an invertible operator in Me with w−1 ∈ Lα
(
Me, 1

τ(e)τ
)

. We know

thatMe is a finite von Neumann algebra with faithful, normal tracial state 1
τ(e)τ,

and αe on Me is a unitarily invariant, ε-‖ · ‖1-dominating, continuous norm on
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Me. Therefore, from Proposition 5.2 in [7], there exists a unitary v inMe, h1 ∈
H∞

e , and h2 ∈ Hα
e such that:

(i) h1h2 = e = h2h1; and
(iia) w = vh1.

By (iia), we get (iib) h1|x∗e| = v∗w|x∗e| = v∗(e + |x∗e|)−1|x∗e| ∈ Me ⊆ M.
Since u1 is a partial isometry inM, h1ex = h1|x∗e|u1 ∈ M. Therefore, (ii) holds.

The proof for h3 and h4 is similar.

The following lemma is also helpful.

LEMMA 4.7. Suppose M is a von Neumann algebra with a semifinite, faithful,
normal tracial weight τ. Let H∞ be a semifinite, subdiagonal subalgebra with respect
to (M, Φ), where Φ is a faithful, normal conditional expectation from M onto D =
H∞ ∩ (H∞)∗.

There exists a net {eλ}λ∈Λ of projections in D such that:
(i) eλ → I in the weak* topology onM, and τ(eλ) < ∞ for all λ ∈ Λ;

(ii) for every x ∈ Lα(M, τ),

lim
λ

α(eλx− x) = 0; lim
λ

α(xeλ − x) = 0; and lim
λ

α(eλxeλ − x) = 0.

Proof. We know that H∞ is a semifinite subdiagonal subalgebra ofM, there-
fore the restriction of τ to D is semifinite. From Lemma 2.2 in [26], there exists a
net of projections {eλ}λ∈Λ inD such that eλ → I in the weak* topology onD, and
τ(eλ) < ∞ for all λ ∈ Λ. Therefore,

lim
λ
|τ(eλz− z)| = 0 for every z ∈ L1(D, τ).

Also, for each y in L1(M, τ), we have that

lim
λ
|τ(eλy− y)| = lim

λ
|τ(Φ(eλy− y))| = lim

λ
|τ(eλΦ(y)−Φ(y))| = 0.

Namely, eλ → I in the weak* topology onM, and τ(eλ) < ∞ for every λ ∈ Λ. (i)
is satisfied.

Then from (i) and Definition 3.1, we may conclude that (ii) holds. Namely,
for every x ∈ Lα(M, τ), we have the following and the lemma is proven:

lim
λ

α(eλx− x) = 0; lim
λ

α(xeλ − x) = 0; and lim
λ

α(eλxeλ − x) = 0.

Finally, we recall the definition of a row sum of subspaces of Lα(M, τ).

DEFINITION 4.8. LetM be a von Neumann algebra with a semifinite, nor-
mal, faithful tracial weight τ. Suppose X is a closed subspace of Lα(M, τ), and
{Xi}i∈I are closed subspaces of Lα(M, τ). If:

(i) XjX∗i = {0} for every i, j ∈ I , i 6= j; and
(ii) X = [span{Xi : i ∈ I}]α,
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we call X the internal row sum of {Xi}i∈I , and denote it by X =
⊕
i∈I

rowXi. Also,

we denote span{Xi : i ∈ I} by ∑
i∈I

Xi.

5. BEURLING THEOREM FOR SEMIFINITE HARDY SPACES WITH NORM α

THEOREM 5.1. LetM be a von Neumann algebra with a faithful, normal semifi-
nite tracial weight τ, and H∞ be a semifinite subdiagonal subalgebra ofM. Let α be a
unitarily invariant, locally ‖ · ‖1-dominating, mutually continuous norm with respect to
τ. Let D = H∞ ∩ (H∞)∗. Assume that K is a closed subspace of Lα(M, τ) such that
H∞K ⊆ K.

Then, there exist a closed subspace Y of Lα(M, τ) and a family {uλ} of partial
isometries inM such that:

(i) uλY∗ = 0 for every λ ∈ Λ;
(ii) uλu∗λ ∈ D, and uλu∗µ = 0 for every λ, µ ∈ Λ with λ 6= µ;

(iii) Y = [H∞
0 Y]α;

(iv) K = Y
⊕row(

⊕row
λ∈Λ Hαuλ).

First, we prove some lemmas.

LEMMA 5.2. Suppose M is a von Neumann algebra with a faithful, normal,
semifinite tracial weight τ, and that H∞ is a semifinite, subdiagonal subalgebra of M.
Suppose also that α is a unitarily invariant, locally ‖ · ‖1-dominating, mutually contin-
uous norm with respect to τ. Assume that K is a closed subspace of Lα(M, τ) such that
H∞K ⊆ K. Then the following hold:

(i) K ∩M = K ∩Mw∗ ∩ Lα(M, τ);
(ii) K = [K ∩M]α.

Proof. (i) It is clear that

K ∩M ⊆ K ∩Mw∗ ∩ Lα(M, τ).

We will prove that

K ∩M = K ∩Mw∗ ∩ Lα(M, τ).

Assume, to the contrary, that K ∩M $ K ∩Mw∗ ∩ Lα(M, τ). Then there exists

an x ∈ K ∩Mw∗ ∩ Lα(M, τ), with x /∈ K ∩M. By the Hahn–Banach theorem,
there exists a ϕ ∈ Lα(M, τ)# such that ϕ(x) 6= 0, and ϕ(y) = 0 for every y ∈
K ∩M.

Since the restriction of τ to D = H∞ ∩ (H∞)∗ is semifinite, there exists a
family {eλ} of projections in D such that τ(eλ) < ∞ for every λ, and eλ → I
in the weak* topology. This implies that eλx → x in the weak* topology and in
α-norm by condition (iii)(a) of Definition 3.1.

Thus, there must exist a λ such that eλx /∈ K ∩M. Also, eλx ∈ eλLα(M, τ).
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Define ψ :M→ C by ψ(z) = ϕ(eλz) for every z ∈ M. Then ψ is a bounded
linear functional. We will show that ψ is normal, i.e. for an increasing net fµ of
projections in M such that fµ → I in weak∗ topology we have ψ( fµ) → ψ(I).
By condition (iii)(a) of Defintion 3.1, we get that α(eλ fµ − eλ I)→ 0, for a fixed λ.
Since ϕ ∈ Lα(M, τ)#, ϕ(eλ fµ)→ ϕ(eλ I). However

ϕ(eλ fµ) = ψ( fµ),

and ϕ(eλ I) = ψ(I). Thus, ψ( fµ) → ψ(I). Therefore, ψ is a normal, bounded
linear functional, namely, ψ ∈ L1(M, τ).

There exists a ξ ∈ L1(M, τ) such that ψ(z) = τ(zξ) for every z ∈ M. Note
that ψ(x) = ϕ(eλx) = τ(xξ) 6= 0. Thus, there exists a projection e ∈ D such
that τ(e) < ∞ so that ψ(ex) = ϕ(eλex) = τ(exξ) 6= 0, and ψ(ey) = ϕ(eλey) =
τ(eyξ) = 0 for every y ∈ K ∩M.

Recall that x ∈ K ∩Mw∗
. Therefore, there exists a sequence {yµ} in K∩M

such that yµ → x in the weak* topology. Note that ξe ∈ L1(M, τ). Hence,

τ(yµξe)→ τ(xξe).

However, τ(yµξe) = 0, so τ(xξe) = 0, which is a contradiction. Therefore (i) is
proven.

(ii) Clearly, K ∩M ⊆ K, and K is α-norm closed, so

[K ∩M]α ⊆ K.

We will show that
K = [K ∩M]α.

Suppose to the contrary, that [K ∩M]α $ K. There exists an x ∈ K such that
x /∈ [K ∩M]α. We know that D is semifinite, so there exists a family of projec-
tions {eλ}λ∈Λ such that τ(eλ) < ∞, and eλ → I in the weak* topology. By Defi-
nition 3.1, part (iii)(a), eλx → x in α-norm. So, there exists λ such that eλx ∈ K,
since x ∈ K, and eλx /∈ [K ∩M]α, as x /∈ [K ∩M]α.

By Lemma 4.6, there exist an h1 ∈ eλH∞eλ and an h2 ∈ eλHαeλ such that
h1eλx ∈ M, and h1h2 = eλ = h2h1. Thus, eλx = h2h1eλx, h1eλx ∈ M, and
h1eλx ∈ K, since H∞K ⊆ K. Also, h2 ∈ eλHαeλ, so there exists a sequence {an}
in H∞ such that an → h2 in α-norm. Hence, eλx = h2h1ex, anh1eλx ∈ K ∩M, and

anh1eλx → h2h1ex

in α-norm. Therefore, eλx ∈ [K ∩M]α, which is a contradiction. Thus, (ii) is
proven.

LEMMA 5.3. Suppose M is a von Neumann algebra with a faithful, normal,
semifinite tracial weight τ, and suppose that α is a unitarily invariant, locally ‖ · ‖1-
dominating, mutually continuous norm with respect to τ. Let H∞ be a semifinite, sub-
diagonal subalgebra of M. Assume that K is a weak* closed subspace of M such that
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H∞K ⊆ K. Then

K = [K ∩ Lα(M, τ)]α ∩M
w∗

.

Proof. First we must show that

K ⊆ [K ∩ Lα(M, τ)]α ∩M
w∗

.

Let x ∈ K ⊆ M. We know that τ restricted to D is semifinite, so there
exists a net of projections {eλ}λ∈Λ such that τ(eλ) < ∞ and eλ → I in the weak*
topology. Also, eλx → x in the weak* topology.

To show that
x ∈ [K ∩ Lα(M, τ)]α ∩M

w∗
,

it is sufficient to show that eλx ∈ [K ∩ Lα(M, τ)]α ∩M. We have that eλx is in
K, as x ∈ K and K is H∞-invariant. We also know ‖eλx‖α 6 ‖eλ‖α‖x‖ < ∞.
Therefore, eλx ∈ Lα(M, τ), and eλx ∈ K ∩ Lα(M, τ) ⊆ [K ∩ Lα(M, τ)]α. Thus,

x ∈ [K ∩ Lα(M, τ)]α ∩M
w∗

. Hence K ⊆ [K ∩ Lα(M, τ)]α ∩M
w∗

.
Next, we show that

[K ∩ Lα(M, τ)]α ∩M
w∗ ⊆ K.

It suffices to show that [K ∩ Lα(M, τ)]α ∩M ⊆ K since K is weak* closed.
Suppose, to the contrary, that [K ∩ Lα(M, τ)]α ∩M $ K. There exists an

x ∈ [K ∩ Lα(M, τ)]α ∩M such that x /∈ K. Since the restriction of τ to D is
semifinite, there exists a net {eλ}λ∈Λ of projections such that τ(eλ) 6 ∞ and
eλx → x in the weak* topology.

As x /∈ K, by the Hahn–Banach theorem, there exists a ϕ ∈ M# such that
ϕ(x) 6= 0 and ϕ(y) = 0 for all y in K. As x ∈ [K ∩ Lα(M, τ)]α ∩M and x /∈ K,
there exists a λ such that eλx ∈ [K∩ Lα(M, τ)]α ∩M and eλx /∈ K. Since ϕ ∈ M#,
there exists a ξ in L1(M, τ) such that ϕ(z) = τ(zξ) for every z ∈ M. It follows
that there exists a projection e ∈ D with τ(e) < ∞ so that τ(xξe) 6= 0, and
τ(yξe) = 0 for every y ∈ K.

We claim that there exists a z = ξe ∈ Me such that τ(xz) 6= 0 and τ(yz) = 0
for all y ∈ K.

Note that ξe ∈ L1(M, τ) since ξ ∈ L1(M, τ) and τ(e) < ∞. By Lemma 4.6,
there exist h3 ∈ eH∞e, and h4 ∈ eH1e such that h3h4 = e = h4h3 and ξeh3 ∈ M.
There exists {kn} in H∞ such that kn → h4 in ‖ · ‖1-norm. So,

lim
n→∞

|τ(exξ)− τ(xξeh3kn)| = lim
n→∞

|τ(xξeh3h4)− τ(xξeh3kn)|

6 lim
n→∞

‖x‖‖ξeh3‖‖h4 − kn‖1 = 0.

There exists an N ∈ N such that τ(xξeh3kN) 6= 0, since τ(xξ) 6= 0. We let z =
ξeh3kN ∈ M. Then, z = ze ∈ Me such that τ(xz) = τ(xξeh3kN) 6= 0, and
τ(yz) = τ(yξeh3kN) = τ((eh3kN)yξ) = 0 for every y ∈ K.

Since x ∈ [K ∩ Lα(M, τ)]α ∩M there exists {xn} in K ∩ Lα(M, τ) such
that xn → x in α norm, and exn → ex in α-norm. Note ey =

√
eyy∗ev =
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e
√

eyy∗eev. Therefore, exn → ex in ‖ · ‖1-norm, as ‖ey‖1 = ‖e
√

eyy∗ee‖1, α(ey) =
α(e
√

eyy∗ee), and α is locally ‖ · ‖1-dominating.
We also have that |τ(xz − xnz)| = |τ((x − xn)z)| 6 ‖e(xn − x)‖1‖z‖. Fi-

nally, since {xn} is in K ∩ Lα(M, τ) ⊆ K, τ(xnz) = 0. Hence, τ(xz) = 0,

which is a contradiction. Therefore, [K ∩ Lα(M, τ)]α ∩M
w∗ ⊆ K. Thus, K =

[K ∩ Lα(M, τ)]α ∩M
w∗

.

LEMMA 5.4. Suppose M is a semifinite von Neumann algebra with a faithful,
normal tracial weight τ, and suppose that α is a unitarily invariant, locally ‖ · ‖1-
dominating, mutually-continuous norm with respect to τ. Let H∞ be a semifinite, sub-
diagonal subalgebra ofM. Assume that S is a subset ofM such that H∞S ⊆ S. Then

[S ∩ Lα(M, τ)]α = [Sw∗ ∩ Lα(M, τ)]α.

Proof. Clearly, S∩ Lα(M, τ) ⊆ Sw∗ ∩ Lα(M, τ) so, [S∩ Lα(M, τ)]α ⊆ [Sw∗ ∩
Lα(M, τ)]α.

We will show that Sw∗ ∩ Lα(M, τ) ⊆ [S ∩ Lα(M, τ)]α. Let x ∈ Sw∗ ∩
Lα(M, τ). We know that there exists a net {eλ} in D of projections such that
τ(eλ) < ∞, and eλ → I in the weak* topology. Thus, eλx → x in the weak*
topology.

We will show that eλx ∈ [S ∩ Lα(M, τ)]α in order to show that x ∈ [S ∩
Lα(M, τ]α. By Lemma 5.2, we have that

[S ∩ Lα(M, τ)]α ∩M ⊆ [S ∩ Lα(M, τ)]α
w∗ ∩ Lα(M, τ).

Since x ∈ Sw∗ ∩ Lα(M, τ), there exists a net {xj} in S such that xj → x in the
weak* topology. Therefore eλxj → eλx in the weak* topology for every λ ∈ Λ.
We note that α(eλxj) 6 α(eλ)‖xj‖, and H∞S ⊆ S. Therefore eλxj ∈ S ∩ Lα(M, τ),

and eλxj ∈ [S ∩ Lα(M, τ)]α ∩M
w∗

. Thus, eλx ∈ [S ∩ Lα[M, τ)]α ∩M
w∗

. It is

clear that eλx ∈ Lα(M, τ). By Lemma 5.2, [S ∩ Lα(M, τ)]α ∩M
w∗ ∩ Lα(M, τ) =

[S ∩ Lα(M, τ)]α ∩M. So eλx ∈ [S ∩ Lα(M, τ)]α.

Therefore, x ∈ [S ∩ Lα(M, τ)]α, whence Sw∗ ∩ Lα(M, τ ⊆ [S ∩ Lα(M, τ)]α.
Hence,

[Sw∗ ∩ Lα(M, τ)]α = [S ∩ Lα(M, τ)]α.

Now, we prove Theorem 5.1.

Proof of Theorem 5.1. Let K1 = K ∩Mw∗
. K1 is a weak* closed subspace of

M such that H∞K1 ⊆ K1. Then by Theorem 4.5 in [26], there exist a weak* closed
subspace Y1 ⊆M and a family {uλ}λ∈Λ of partial isometries inM such that:

(a) uλY∗1 = 0 for every λ ∈ Λ;
(b) uλu∗λ ∈ D, and uλu∗µ = 0 for every λ, µ ∈ Λ such that λ 6= µ;

(c) Y1 = H∞
0 Y1

w∗ ;



A BEURLING THEOREM FOR SEMIFINITE VON NEUMANN ALGEBRAS 71

(d) K1 = Y1
⊕row(

⊕row
λ∈Λ H∞uλ).

Let Y = [Y1 ∩ Lα(M, τ)]α.
(i) We know that there exists {an} ⊆ Y∗1 such that an → a in α-norm for

some a ∈ Y∗1 . From (a), and the definition of Y1, anui → aui in α-norm. Thus, we
may conclude that uλY∗ = 0 for every λ ∈ Λ.

(ii) follows directly from (b).
(iii) We will show that Y = [H∞

0 Y]α. We have that:

Y = [Y1 ∩ Lα(M, τ)]α (by definition of Y)

= [H∞
0 Y1

w∗ ∩ Lα(M, τ)]α (by (c))

= [H∞
0 Y1 ∩ Lα(M, τ)]α (by Lemma 5.4)

= [H∞
0 ([Y1 ∩ Lα(M, τ)]α ∩M

w∗
) ∩ Lα(M, τ)]α (by Lemma 5.3)

⊆ [H∞
0 ([Y1 ∩ Lα(M, τ)]α ∩M)

w∗ ∩ Lα(M, τ)]α (by Theorem 1.7.8 in [28])

= [H∞
0 ([Y1 ∩ Lp(M, τ)]α ∩M) ∩ Lα(M, τ)]α (by Lemma 5.4)

= [H∞
0 (Y ∩M) ∩ Lα(M, τ)]α (by defintion of Y)

⊆ [H∞
0 Y]α ⊆ Y.

Hence, Y = [H∞
0 Y]α as desired.

(iv) Finally, we will show that K = Y
⊕row(

⊕row
λ∈Λ Hαuλ).

Recall that Y = [Y1 ∩ Lα(M, τ)]α. We claim that [H∞
0 Y1 ∩ Lα(M, τ)]α ⊆ [H∞

0 (Y1 ∩
Lα(M, τ)]α. Also, by Lemma 5.2, Hαuλ = [H∞uλ ∩ Lα(M, τ)]α for every λ ∈ Λ.
Now:

K = [K1 ∩ Lα(M, τ)]α

=
[
Y1 + ∑

λ∈Λ

H∞uλ

w∗
∩ Lα(M, τ)

]
α

(by definition of K1)

=
[
Y1 + ∑

λ∈Λ

H∞uλ ∩ Lα(M, τ)
]

α
(by Lemma 5.4)

=
[
Y1 ∩ Lα(M, τ) + ∑

λ∈Λ

H∞uλ ∩ Lα(M, τ)
]

α
(by (a) and (b))

=
[
Y + ∑

λ∈Λ

Hαuλ

]
α
= Y

⊕row (⊕row

λ∈Λ
Hαuλ

)
where the last equality comes from Definition 4.8.

COROLLARY 5.5. Suppose thatM is a von Neumann algebra with a faithful, nor-
mal, semifinite tracial weight τ. Let α be a unitarily invariant, locally ‖ · ‖1-dominating,
mutually continuous norm with respect to τ. LetK be a subset of Lα such thatMK ⊆ K.
Then there exists a projection q with K =Mq.
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Proof. We note thatM can be considered as a semifinite subdiagonal subal-
gebra ofM itself. Hence, we letM = H∞, and it follows that D =M and Φ is
the identity map onM. Also, H∞

0 = {0} and Hα = Lα(M, τ).
Let K be a closed subspace of Lα(M, τ) such that MK ⊆ K. From Theo-

rem 5.1,

K = Y
⊕row (⊕row

λ∈Λ
Hαuλ

)
,

where uλY∗ = 0 for every λ ∈ Λ, uλu∗λ ∈ D, and uλumu∗ = 0 for every λ, µ ∈ Λ
such that λ 6= µ, and Y = [H∞

0 Y]α.
It is clear that because H∞

0 = {0}, Y = 0. Also, since D =M, we have that

Hαuλ =Lα(M, τ)uλ =Lα(M, τ)uλu∗λuλ⊆Lα(M, τ)u∗λuλ⊆Lα(M, τ)uλ =Hαuλ.

Therefore, Hαuλ = Lα(M, τu∗λuλ). Specifically, we find that

K = Y
⊕row (⊕row

λ∈Λ
Hαuλ

)
=
(⊕row

λ∈Λ
Lα(M, τ)u∗λuλ

)
,

Lα(M, τ)
(

∑
λ∈Λ

u∗λuλ

)
= Lα(M, τ)q,

where we let ∑
λ∈Λ

u∗λuλ = q, and q is a projection inM. This ends the proof.

6. APPLICATIONS

6.1. INVARIANT SUBSPACES FOR NON-COMMUTATIVE BANACH FUNCTION

SPACES. We briefly recall our discussion of a non-commutative Banach function
space. Let E be a symmetric Banach function space on (0, ∞) with Lebesgue mea-
sure. As before, we letM be a von Neumann algebra with a faithful, normal tra-
cial state τ and I = {x ∈ M : x is a finite rank operator in (M, τ) and ‖µ(x)‖E
< ∞}. We may then define a Banach function space I(τ), and a norm ‖ · ‖I(τ) by
‖x‖I(τ) = ‖µ(x)‖E(0,∞) for every x ∈ I(τ). We let H∞ be a semifinite subdiag-
onal subalgebra ofM, as described earlier. The following is an easy corollary of
Theorem 5.1 and Proposition 3.10.

COROLLARY 6.1. Suppose that I(τ) is a Banach function space on the diffuse von
Neumann algebra M with order continuous norm ‖ · ‖I(τ). Let D = H∞ ∩ (H∞)∗.
Assume that K is a closed subspace of I(τ) such that H∞K ⊆ K.

Then, there exist a closed subspace Y of I(τ) and a family {uλ} of partial isometries
inM such that:

(i) uλY∗ = 0 for every λ ∈ Λ;
(ii) uλu∗λ ∈ D, and uλu∗µ for every λ, µ ∈ Λ with λ 6= µ;

(iii) Y = [H∞
0 Y]α;

(iv) K = Y
⊕row(

⊕row
λ∈Λ HI(τ)uλ).



A BEURLING THEOREM FOR SEMIFINITE VON NEUMANN ALGEBRAS 73

6.2. INVARIANT SUBSPACES FOR FACTORS. We also have the following corollary
from Theorem 5.1 and Proposition 3.7.

COROLLARY 6.2. SupposeM is a factor with a faithful, normal tracial weight τ.
Let α : I → [0, ∞), where I is the set of elementary operators in M, be a unitarily
invariant norm such that any net {eλ} inM with eλ ↑ I in the weak* topology implies
that α((eλ − I)x) → 0. Let H∞ be a semifinite subdiagonal subalgebra of Lα(M, τ).
Let D = H∞ ∩ (H∞)∗. Assume that K is a closed subspace of Lα(M, τ) such that
H∞K ⊆ K.

Then, there exist a closed subspace Y of Lα(M, τ) and a family {uλ} of partial
isometries inM such that:

(i) uλY∗ = 0 for every λ ∈ Λ;
(ii) uλu∗λ ∈ D, and uλu∗µ for every λ, µ ∈ Λ with λ 6= µ;

(iii) Y = [H∞
0 Y]α;

(iv) K = Y
⊕row(

⊕row
λ∈Λ Hαuλ).

6.3. INVARIANT SUBSPACES OF ANALYTIC CROSSED PRODUCTS. Suppose thatM
is a von Neumann algebra with a semifinite, faithful normal tracial state τ. We let
β be a ∗-automorphism ofM such that τ(β(x)) = τ(x) for every x ∈ M+ (i.e. β
is trace-preserving).

Let l2(Z) denote the Hilbert space which consists of the complex-valued
functions f on Z which satisfy ∑

m∈Z
| f (m)|2 < ∞. Let {en}n∈Z be the orthonor-

mal basis of l2(Z) such that en(m) = δ(n, m). We also denote the left regular
representation of Z on l2(Z) by λ : Z→ B(l2(Z)), where λ(n)(em) = em+n.

We letH = L2(M, τ)⊗ l2(Z), or equivalently, H =
⊕

m∈Z
L2(M, τ)⊗ em. The

representations Ψ ofM and Λ of Z may be defined by:

Ψ(x)(ξ ⊗ em) = (β−mξ)⊗ em for all x ∈ M, ξ ∈ L2(M, τ) and m ∈ Z,

Λ(n)(ξ ⊗ em) = ξ × (λ(n)em) for all n, m ∈ Z.

It is not hard to verify that

Λ(n)Ψ(x)Λ(−n) = Ψ(βn(x)) for all x ∈ M and n ∈ Z.

We may define the crossed product ofM by an action β, which we denote
by Moβ Z, to be the von Neumann algebra generated by Ψ(M) and Λ(Z) in
B(H). When there is no possibility of confusion, we will identify M with its
image Ψ(M) under Ψ inMoβ Z.

In Chapter 13 of [16], amongst others, it is shown that there exists a faithful,
normal conditional expectation, Φ, takingMoβ Z ontoM such that

Φ
( N

∑
n=−N

Λ(n)Ψ(xn)
)
= x0 where xn ∈ M for every − N 6 n 6 N.
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There also exists a semifinite, normal, extended tracial weight onMoβ Z, which
we still denote by τ, and which satisfies

τ(y) = τ(Φ(y)), for every postive y ∈ Moβ Z.

EXAMPLE 6.3. LetM = l∞(Z). ThenM is an abelian von Neumann alge-
bra with a semifinite, faithful, normal tracial weight, τ which is given by

τ( f ) = ∑
m∈Z

f (m), for every positive f ∈ l∞(Z).

We let β be an action on l∞(Z), which we define by

β( f )(m) = f (m− 1), for every f ∈ l∞(Z) and m ∈ Z.

It is known (see, for example Proposition 8.6.4 of [16]) that l∞(Z)oβ Z is a type
I∞ factor. Therefore, for some separable Hilbert spaceH, l∞(Z)oβ Z ' B(H).

The next result follows from our construction of crossed products. (See also
section 3 of [1].)

LEMMA 6.4. Consider the weak* closed, non-self-adjoint subalgebraMoβ Z+ of
Moβ Z which is generated by

{Λ(n)Ψ(x) : x ∈ M, n > 0}.

Then the following hold:
(i)Moβ Z+ is a semifinite subdiagonal subalgebra with respect to (Moβ Z, Φ).

We will denote such a semifinite subdiagonal subalgebra by H∞ and call H∞ an analytic
crossed product.

(ii) We denote by H∞
0 the space ker(Φ) ∩ H∞. Then H∞

0 is a weak* closed nonself-
adjoint subalgebra which is generated inMoβ Z by

{Λ(n)Φ(x) : x ∈ M, n > 0}

and satisfies
H∞

0 = Λ(1)H∞.

(iii) H∞ ∩ (H∞)∗ =M.

We are able to characterize the invariant subspaces of a crossed product of
a semifinite von Neumann algebraM by a trace-preserving action β.

COROLLARY 6.5. Suppose that M is a von Neumann algebra with a semifi-
nite, faithful, normal tracial weight τ. Let α be a unitarily invariant, locally ‖ · ‖1-
dominating, mutually continuous norm with respect to τ, and β be a trace-preserving,
∗-automorphism of M. Consider the crossed product of M by an action β, Moβ Z.
Still denote the semifinite, faithful, normal, extended tracial weight onMoβ Z by τ.

Denote by H∞ the weak* closed nonself-adjoint subalgebra in Moβ Z which is
generated by {Λ(n)Ψ(x) : x ∈ M, n > 0}. Then H∞ is a semifinite subdiagonal
sublagebra of oβZ.
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Let K be a closed subspace of Lα(Moβ Z, τ) such that H∞K ⊆ K. Then there
exist a projection q inM and a family {uλ}λ∈Λ of partial isometries inMoβ Z which
satisfy:

(i) uλq = 0 for all λ ∈ Λ;
(ii) uλu∗λ ∈ M and uλu∗µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(iii) K = (Lα(Moβ Z)q)
⊗row(

⊗row
λ∈Λ Hαuλ).

Proof. From Theorem 5.1, we know that

K = Y
⊕row (⊕row

λ∈Λ
Hαuλ

)
such that Y is a closed subspace of Moβ Z and a family of partial isometries,
{uλ}, inMoβ Z which satisfy:

(a) uλY∗ = 0 for all λ ∈ Λ;
(b) uλu∗λ ∈ M and uλu∗µ = 0 for all λ, µ ∈ Λ with λ 6= µ;
(c) Y = [H∞

0 Y]α.
By Lemma 6.4 and (c), it is clear that

Y = [H∞
0 Y]α = [Λ(1)H∞Y]α ⊆ Λ(1)Y.

We can show, by induction, that Λ(−n)Y ⊆ Y for any n in N. From the defintion
of H∞, we know that Λ(n)Y ⊂ Y for every n > 0, and ψ(x)Y ⊆ Y for every x ∈
M. Therefore, Y ⊆ Lα(Moβ Z) is leftMoβ Z-invariant, and from Corollary 5.5,
there exists a projection q ∈ M with Y = Lα(Moβ Z, τ)q. Therefore,

(i) uλq = 0 for all λ ∈ Λ;
(ii) uλu∗λ ∈ M and uλu∗µ = 0 for all λ, µ ∈ Λ with λ 6= µ;

(iii) K = (Lα(Moβ Z)q)
⊗row(

⊗row
λ∈Λ Hαuλ)

hold, and the corollary is proven.

6.4. INVARIANT SUBSPACES FOR B(H). LetH be an infinite dimensional separa-
ble Hilbert space with orthonormal base {em}m∈Z. We let τ =Tr be the usual trace
on B(H), namely

τ(x) = ∑
m∈Z
〈xem, em〉 for every x ∈ B(H) with x > 0.

With this τ, B(H) is a von Neumann algebra with a semifinite, faithful, normal
tracial weight τ.

We let
A = {x ∈ B(H) : 〈xem, en〉 = 0 ∀n < m}

be the lower triangular subalgebra of B(H).
Recall from Example 6.3 that the crossed product of l∞(Z) by an action β,

denoted l∞(Z)oβ Z, where the action β is determined by

β( f )(m) = f (m− 1) for every f ∈ l∞(Z), m ∈ Z

is another way to realize B(H).
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It is easy to see that A is l∞(Z)oβ Z+, a semifinite subdiagonal subalgebra
of l∞(Zoβ Z) (see Lemma 6.4).

The following corollary follows from (6.5).

COROLLARY 6.6. Suppose H is a separable Hilbert space with an orthonormal
base {em}m∈Z, and let

H∞ = {x ∈ B(H) : 〈xem, en〉 = 0, ∀n < m}

be the lower triangular subalgebra of B(H). Then D = H∞ ∩ (H∞)∗ is the diagonal
subalgebra of B(H). Suppose α : I → [0, ∞), where I is the set of elementary operators
inM, is an unitarily invariant norm such that any net {eλ} inM with eλ ↑ I in the
weak* topology implies that α((eλ − I)x)→ 0.

Assume that K is a closed subspace of Hα such that H∞K ⊆ K. Then there exists
a projection q in D and {uλ}λ∈Λ, a family of partial isometries in H∞ which satisfy:

(i) uλq = 0 for every λ ∈ Λ;
(ii) uλu∗λ ∈ D, and uλu∗µ = 0 for every λ, µ ∈ D with λ 6= µ;

(iii) K = (B(H)q)
⊕row(

⊕row
λ∈Λ Hαuλ).

The following is a corollary of Theorem 6.5 and Proposition 3.7.

COROLLARY 6.7. Suppose H is a separable Hilbert space with an orthonormal
base {em}m∈Z, and let

H∞ = {x ∈ B(H) : 〈xem, en〉 = 0, ∀n < m}

be the lower triangular subalgebra of B(H). Then D = H∞ ∩ (H∞)∗ is the diagonal
subalgebra of B(H). Suppose α : I → [0, ∞), where I is the set of elementary operators
inM, is an unitarily invariant norm such that any net {eλ} inM with eλ ↑ I in the
weak* topology implies that α((eλ − I)x)→ 0.

Assume that K is a closed subspace of Hα such that H∞K ⊆ K. Then there exists
{uλ}λ∈Λ, a family of partial isometries in H∞ which satisfy:

(i) uλu∗λ ∈ D and uλu∗µ = 0 for every λ, µ ∈ Λ such that λ 6= µ;
(ii) K =

⊕
λ∈Λ

rowHαuλ.

REMARK 6.8. The result is similar when H∞ is instead the upper triangular
subalgebra of B(H).

REMARK 6.9. Recall that any unitarily invariant norm α gives rise to a sym-
metric gauge norm Ψ on the spectrum of |A|, {an}16n6N , where A is a finite rank
operator. Then Corollary 6.7 holds for Ψ.
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