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ABSTRACT. Joint spectra of tuples of operators are subsets in complex projec-
tive space. We investigate the relationship between the geometry of the spec-
trum and the properties of the operators in the tuple when these operators are
self-adjoint. In the case when the spectrum contains an algebraic hypersur-
face passing through an isolated spectral point of one of the operators we give
necessary and sufficient geometric conditions for the operators in the tuple to
have a common reducing subspace. We also address spectral continuity and
obtain a norm estimate for the commutant of a pair of self-adjoint matrices in
terms of the Hausdorff distance of their joint spectrum to a family of lines.
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1. INTRODUCTION

When A1, . . . , An are N × N complex matrices, the determinant

(1.1) S(x1, . . . , xn) = det(x1 A1 + · · ·+ xn An)

is a homogeneous polynomial of degree N in the variables x1, . . . , xn, and zeros
of this polynomial determine a hypersurface in the projective space CPn−1. Con-
versely, given a hypersurface Γ of degree N in CPn−1, if there are N×N matrices
A1, . . . , An such that

Γ = {det(x1 A1 + · · ·+ xn An) = 0}
then the tuple (A1, . . . , An) is called a determinantal representation of Γ. A clas-
sical avenue of research in algebraic geometry with a long history, see e.g. [4], [9],
[10], [18], [25], [31], is determining when a given hypersurface admits a deter-
minantal representation, and classifying all such representations. We would like
to mention specifically self-adjoint determinantal representations of real curves,
and decomposable representations of reducible curves, since they are close to the
subject of this paper. The former produce hyperbolic polynomials are important
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in relation to the Lax conjecture, cf. [16], [20], [21]. The latter have special mean-
ing in operator theory, see [18].

The point of view from operator theory leads us to a second natural av-
enue of research, that seems to have attracted less attention in algebraic geome-
try: given that a hypersurface has a determinantal representation (or self-adjoint
representation), what does the geometry of the hypersurface say about mutual
relationships between the matrices A1, . . . , An? In this direction we would like to
mention the result of Motzkin and Taussky [24], which states that a real curve in
CP2 with a self-adjoint determinantal representation satisfies the condition: the
matrices of the corresponding tuple commute if and only if this curve is a union
of projective lines (in [24] the result is stated in equivalent but different terms).

In 2009 R. Yang [32] started an investigation of what can be called infi-
nite dimensional determinantal representations. Since well-known definitions
of spectra of a tuple of operators such as Taylor spectrum, cf. [12], [29], exist for
commuting tuples, Yang was looking for a good definition of joint spectrum for
non-commuting operators and introduced the notion of joint spectrum of a tuple
(A1, . . . , An) of operators acting on a Hilbert space H.

DEFINITION 1.1. The joint spectrum σ(A1, . . . , An) of A1, . . . , An consists of
all (x1, . . . , xn) ∈ Cn such that x1 A1 + · · ·+ xn An is not invertible on H. If An =
I, the identity operator, the proper part of the joint spectrum of A1, . . . , An−1 is
σp(A1, . . . , An−1) = σ(A1, . . . , An−1, I) ∩ {xn = −1}.

Joint spectra were further investigated in [1], [3], [27]. It is easily seen that
if (x1, . . . , xn) ∈ σ(A1, . . . , An), then the whole complex line {(cx1, . . . , cxn) : c ∈
C} lies in σ(A1, . . . , An), and, therefore, σ(A1, . . . , An) determines a set in CPn−1.
By analogy with the finite dimensional case, given a set Γ in CPn−1, if there are
operators A1, . . . , An acting on a Hilbert space H such that

Γ = {[x1 : · · · : xn] ∈ CPn−1 : x1 A1 + · · ·+ xn An is not invertible},

then it is natural to call the tuple (A1, . . . , An) a spectral representation of Γ. The
main difference compared to the classical matrix case is that this set is not nec-
essarily an analytic set. For example, if A1 and A2 are compact and of infinite
rank, and A3 is invertible, the whole line {[x1 : x2 : 0]} in CP2 is contained in
the joint spectrum and the spectrum is not an analytic set near each point of this
line. It was shown in [27] that if A1, . . . , An−1 are compact and An is invertible
(and, therefore, can be considered to be identity) the part of the joint spectrum
that lies in the chart {xn 6= 0} is an analytic set. When the operators A1, . . . , An−1
are trace class, that part of the joint spectrum is given by the equation

S(x1, . . . , xn−1) = det(x1 A1 + · · ·+ xn−1 An−1 − I) = 0,

and we obtain that in this case the spectral representation is a “true” determi-
nantal representation. In particular, when all the operators are of finite rank, the
joint spectrum is a classical determinantal hypersurface in CPn−1. Of course, for
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infinite rank operators the analyticity holds only on an open subset of CPn−1 and
that moves the problem of describing properties of the joint spectrum from the
area of projective geometry to analytic geometry.

The main goal of our paper is to investigate the relationship between the
geometry of the spectrum and the mutual behavior of the operators. There is a
recent result [5] which generalizes to the infinite dimensional case the Motzkin–
Taussky theorem mentioned above. It states that a tuple (A1, . . . , An) of self-
adjoint compact operators acting on a separable Hilbert space commute pairwise
if and only if their proper joint spectrum σp(A1, . . . , An) is a locally finite union
of affine hyperplanes (of course, local finiteness is not a condition but just a prop-
erty coming from compactness). This suggests one needs to understand further
the role that the degrees of the algebraic components of the joint spectrum play.
Clearly, if the operators A1, . . . , An have a common eigenvector with correspond-
ing eigenvalues λ1, . . . , λn, then the proper joint spectrum σp(A1, . . . , An) con-
tains a hyperplane {λ1x1 + · · ·+ λnxn = 1}. More generally, if these operators
have a common invariant subspace L of dimension k (so the corresponding tuple
is decomposable with one block having dimension k), then the proper spectrum
contains an algebraic hypersurface of degree k given by

det(x1(A1|L) + · · ·+ xn(An|L)− I) = 0.

It is natural to ask when the converse holds (especially since in general it fails:
taking for example

A1 =

 1 0 0
0 5 0
0 0 0

 and A2 =

 1 2 1
2 7 1
1 1 1

2

 ,

yields

σp(A1, A2) = {(x + y− 1)(5xy + 5y2 − 15y− 10x + 2) = 0}

but A1 and A2 have neither a common eigenvector nor a common two-dimensio-
nal invariant subspace). Our first main task is to give necessary and sufficient
geometric conditions for the presence of an algebraic hypersurface in the proper
joint spectrum to indicate decomposability, that is, the existence of a common
invariant subspace of dimension equal to the degree of the hypersurface. The
case of hypersurface of degree one turns out to be of fundamental importance
and we address it in Theorem 2.1. The general case can then be derived from
the degree one case and is addressed in Theorem 2.2 and Theorem 2.3. These
results establish that the geometry of joint spectra plays a fundamental role in
operator theory, and they have already found a very interesting application also
to representation theory, see [8].

In the last part of the paper we address another important aspect of the
geometry of joint spectra: the issue of spectral continuity, that is, if two hypersur-
faces are close in a neighborhood of a point, and both have self-adjoint spectral
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representation of which one is decomposable, how far from being decomposable
is the other? The specific question we are considering is: given that the proper
joint spectrum of two operators is close to a line in a neighborhood of one of
its points, does this mean that the operators have a common “almost eigenvec-
tor” (common “almost invariant” subspace)? Results in Sections 7 and 8 present
conditions that guarantee that this is true, and give some norm estimates, see
Theorem 2.4.

The structure of this paper is as follows. In Section 2 we give precise state-
ments of our main results. Section 3 is devoted to determining functions. In
Section 4 we derive key necessary conditions for an algebraic curve to be a com-
ponent of the proper joint spectrum of two operators. These conditions are ex-
pressed in terms of holomorphy of a sequence of certain operator-valued func-
tions. In Section 5 we prove Theorem 2.1. Theorems 2.2 and 2.3 are proved in
Section 6. Section 7 is devoted to spectral continuity. Theorem 2.4 is proved in
Section 8. Finally, Section 9 contains several concluding remarks and open ques-
tions.

2. STATEMENTS OF THE MAIN RESULTS

The first important case of the problem when an algebraic hypersurface in
the proper joint spectrum is associated with a common invariant subspace is the
case of a spectral affine hyperplane. This case turns out to be crucial for higher
order spectral algebraic hypersurfaces. The following result is proved in Section 5
(here, as well as in the rest of the paper, we denote by ∆ρ(x) the polydisk of radius
ρ centered at x ∈ Cn).

THEOREM 2.1. Let A1, . . . , An be self-adjoint, λ 6= 0 be an isolated point of
σ(A1), and suppose there exists ρ > 0 such that, up to multiplicity,

∆ρ(
1
λ , 0, . . . , 0) ∩ {λx1 + a2x2 + · · ·+ anxn = 1}

= ∆ρ(
1
λ , 0, . . . , 0) ∩ σp(A1, . . . , An).

The following are equivalent:
(i) the eigensubspace of A1 corresponding to eigenvalue λ is an eigensubspace for

each of the operators A2, . . . , An;
(ii) there exist an ε ∈ R, ε 6= 1, and ρ′ > 0 such that A1(ε, λ) is invertible and, up to

multiplicity,

∆ρ′(λ, 0, . . . , 0) ∩ { 1
λ x1 + a2x2 + · · ·+ anxn = 1}

= ∆ρ′(λ, 0, . . . , 0) ∩ σp(A1(ε, λ)−1, A2(ε, a2), . . . , An(ε, an)),

where A(ε, b) = (1 + ε)A− bεI.

The most important case here is the one of two operators. Theorem 2.2
below is obtained from this case by passing to tensor powers of operators and
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considering their action on the exterior power of the corresponding Hilbert space.

Here for an operator A acting on a Hilbert space H we write
n∧

A to indicate

that we consider the action of
n⊗

A on
n∧

H. We say that a self-adjoint operator
A on a separable Hilbert space H belongs to the class E(H) if A = K + aI for
some compact self-adjoint operator K and some a ∈ R. It is shown in Section 6
that for operators A and B in E(H) one can always use an appropriate change of
coordinates to reduce the search for common invariant subspaces to the “general
position” setting considered in our next main result.

THEOREM 2.2. Let A = K1 + aI and B = K2 + bI be self-adjoint operators in
the class E(H), with A invertible. Let Γ be an algebraic curve of degree k which is a
union of components of the proper joint spectrum σp(A, B), and which does not have
the line {ax + by = 1} as a reduced component. Suppose that the x-axis (respectively
the y-axis) intersects Γ in the k points (counted with multiplicity) 1

λ1
, . . . , 1

λk
(respec-

tively 1
µ1

, . . . , 1
µk

) such that each point ( 1
λi

, 0) belongs only to components of σp(A, B)
contained in Γ. Set λ = λ1 · · · λk and µ = µ1 · · · µk, and suppose that λ is an isolated

eigenvalue of multiplicity 1 in the spectrum of
k∧

A. The following are equivalent:
(i) the eigenspace for A corresponding to λ1, . . . , λk is invariant for B;

(ii) there exists ρ > 0 such that the line segments

{λx + µy = 1} ∩∆ρ(
1
λ , 0) and { 1

λ x + µy = 1} ∩∆ρ(λ, 0)

are contained in σp(
∧k A,

∧k B) and σp(
∧k A−1,

∧k B), respectively;
(iii) the lines

{λx + µy = 1} and { 1
λ x + µy = 1}

are contained in σp(
∧k A,

∧k B) and σp(
∧k A−1,

∧k B), respectively.

An extension of this result to a tuple of arbitrary length holds here as well,
and is derived from Theorem 2.2 exactly the same way as the result of Theo-
rem 2.1 is derived from the coresponding result for two operators. For this rea-
son its precise statement is omitted. Application to the classical setting when
A1, . . . , An are self-adjoint operators on CN yields the following theorem (here,
as explained in Section 6, for an invertible self-adjoint operator A we consider
N−k∧

A in a natural way as an operator on
k∧
CN , and again, we can always reduce

to the “general position” situation considered below).

THEOREM 2.3. Let C be a reducible real algebraic hypersurface of degree N in Cn,
and let Γ be a degree k hypersurface that is a union of components of C, such that for
each i the xi-axis intersects Γ in the k points 1

αi1
, . . . , 1

αik
, counted with multiplicities.

Let ai = αi1 · · · αik and suppose also that each point 1
α1j

belongs only to components of

C contained in Γ. Let a tuple (A1, . . . , An) consisting of self-adjoint operators on CN ,
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with A1 invertible, be a determinantal representation of C, and suppose that a1 is an

eigenvalue of multiplicity 1 for
k∧

A1.
This representation induces a determinantal representation of Γ if and only if the

hypersurface {
det

(
x1

k∧
A1 + · · ·+ xn

k∧
An − I

)
= 0

}
contains the hyperplane {a1x1 + · · ·+ anxn = 1}, and the hypersurface{

det
(

x1

N−k∧
A1 + x2

k∧
A2 + · · ·+ xn

k∧
An − I

)
= 0

}
contains the hyperplane {(det A1

a1
)x1 + a2x2 + · · ·+ anxn = 1}.

Finally, we turn to spectral continuity. For a positive ε we say that a vector
ξ is an ε-eigenvector of an operator A (almost eigenvector) if there exists λ such
that

‖Aξ − λξ‖ < ε‖ξ‖.
Our first result regarding spectral continuity, Theorem 7.2, states that, under some
natural assumptions, if the joint spectrum of a pair (A1, A2) of self-adjoint opera-
tors, with A1 invertible, is ε-close in the Hausdorff metric to a line {αx + βy = 1}
in a neighborhood of an isolated spectral point of A1, and the same is true for the
joint spectrum of the pair (A−1

1 , A2), then they have a common almost eigenvec-
tor of order

√
ε. If |β| = ‖A2‖, the condition on the joint spectrum of A−1

1 and A2
can be omitted. As a corollary to this result we obtain the following estimate for
the commutant of two self-adjoint matrices.

THEOREM 2.4. Let A1 and A2 be two self-adjoint N × N matrices with eigen-
values α1, . . . , αN and β1, . . . , βN respectively, satisfying |α1| > · · · > |αN | > 0 and
|β1| > · · · > |βN | > 0. Suppose that `1, . . . , `N is a family of lines,

`j = {αn(j)x + β jy = 1}, 1 6 j, n(j) 6 N,

such that:
(i) each of the points ( 1

αk
, 0), 1 6 k 6 N belongs to one of these lines;

(ii) there exist 0 < ρ < 1 and 0 < ε � ρ such that conditions (i) and (ii) of
Theorem 7.4 are true for σp(A1, A2) and each `j.

Then if ε is small enough, the norm of the commutant of A1 and A2 is at most of
order ε1/2N

.

3. DETERMINING FUNCTIONS

Let A1 and A2 be bounded operators on a Hilbert space H. Recall that the
proper part of the projective joint spectrum σ(A1, A2, I), or just the proper joint
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spectrum σp(A1, A2) is the following set:

σp(A1, A2) = {(x, y) ∈ C2 : (x, y,−1) ∈ σ(A1, A2, I)}.

It was shown in [27] that if A1 and A2 are compact, then σp(A1, A2) is an
analytic set of codimension one in C2. The following explicit construction of the
analytic function locally determining this set was given there. We present it for
tuples of self-adjoint operators: the setting we consider in this paper.

Suppose that A1, . . . , Am is a tuple of compact self-adjoint operators on a
Hilbert space H. Choose a small ε > 0 and finite rank self-adjoint operators

K1, . . . , Km such that ‖Aj − Kj‖ < ε. If (w1, . . . , wm) ∈ Cm satisfy
m
∑

j=1
|wj| < 1

ε ,

then the operator I −
m
∑

j=1
wj(Aj − Kj) is invertible and we have

m

∑
j=1

wj Aj − I =
m

∑
j=1

wjKj − I +
m

∑
j=1

wj(Aj − Kj)

=
(

I −
m

∑
j=1

wj(Aj − Kj)
)( m

∑
l=1

wl

(
I −

m

∑
j=1

wj(Aj − Kj)
)−1

Kl − I
)

.

Thus, (w1, . . . , wm) ∈ σp(A1, . . . , Am) if and only if the operator

m

∑
l=1

wl

(
I −

m

∑
j=1

wj(Aj − Kj)
)−1

Kl − I

is not invertible. Since
m
∑

l=1
wl

(
I −

m
∑

j=1
wj(Aj − Kj)

)−1
Kl is of finite rank, there is a

finite dimensional subspace L of H such that this operator vanishes on the com-
plement to this subspace and is represented by an n× n matrix on this subspace.
Therefore, this operator is not invertible if and only if

(3.1) det
( m

∑
l=1

wl

(
I −

m

∑
j=1

wj(Aj − Kj)
)−1

Kl − I
)
= 0.

The left-hand side of (3.1) is clearly an analytic function of w1, . . . , wm in the do-

main
{ m

∑
j=1
|wj| < 1

ε

}
and (3.1) determines σp(A1, . . . , Am) in this domain. We

call this function a determining function of the proper projective spectrum. Thus a
different choice of the finite rank approximations leads to a determining function

with the same divisor of zeros in
{
(w1, . . . , wm) ∈ Cm :

m
∑

j=1
|wj| < 1

ε

}
.

If A1 and A2 are not compact, the joint spectrum is not necessarily an ana-
lytic set. For example, if A1 = I is the identity operator, the joint spectrum is a
cone with vertex at (1, 0) that consists of lines {x + λy = 1}, λ ∈ σ(A2). Thus, if
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the cardinality of σ(A2) is infinite, the joint spectrum is not analytic at (1, 0). Nev-
ertheless, essentially the same argument we used above to show the analyticity
of the joint spectrum in the compact case, establishes the following local result.

Let A be a bounded operator acting on H, and let λ be an isolated spectral
point of A. Recall that λ is said to have multiplicity k if for a contour γ in the
resolvent set that contains λ as the only spectral point of A

(3.2) Pλ =
1

2πi

∫
γ

(wI − A)−1dw,

is a rank k projection (not necessarily orthogonal).

THEOREM 3.1. Let A1 and A2 be bounded operators on H, with A1 normal, and
λ 6= 0 be an isolated point of σ(A1) of finite multiplicity. Then σp(A1, A2) is an analytic
set in a neighborhood of ( 1

λ , 0).

Proof. The spectral decomposition of A1 is in the form

A1 = λP1 +
∫

σ(A1)\{λ}

zdE(z),

where the operator P1 is the finite rank orthogonal projection of H onto the eigen-
space of A1 with eigenvalue λ and dE is the spectral measure on the rest of σ(A1).
Since λ is an isolated spectral point of A1, if (x, y) is close to ( 1

λ , 0), the operator

Ã(x, y) = x
∫

σ(A1)\{λ}

zdE(z) + yA2 − I

is inverible. Therefore, such a point (x, y) belongs to the joint spectrum if and
only if the operator

B(x, y) = xP1 Ã(x, y)−1 − I

is not invertible. Since xP1 Ã(x, y) has finite rank n which is equal to the rank of
P1, the pairs (x, y) for which B(x, y) is not invertible are zeros of a determinant of
an n× n matrix, whose coefficients are analytic functions of (x, y), and the result
follows.

If the multiplicity of an isolated spectral point λ ∈ σ(A1) is equal to one,
the local analyticity of the joint spectrum holds even without A1 being normal.

THEOREM 3.2. Let A1 and A2 be operators on H and λ 6= 0 be an isolated spectral
point of A1 of multiplicity one. Then there exists ρ > 0 such that in ∆ρ(

1
λ , 0) the proper

joint spectrum σp(A1, A2) is a nonsingular analytic set.
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Proof. If ρ is small enough and (x, y) ∈ ∆ρ(
1
λ , 0), the operator A(x, y) =

xA1 + yA2 has an isolated spectral point λ(x, y) close to 1 that also has multiplic-
ity one, so the projection

P(x, y) =
1

2πi

∫
γ

(wI − A(x, y))−1dw

has rank one, cf. p. 13 of [14], and the range of P(x, y) consists of eigenvectors
of A(x, y) with eigenvalue λ(x, y). The joint spectrum of A1 and A2 consists of
those pairs (x, y) for which λ(x, y) = 1. Let e be the unit eigenvector of A1 with
eigenvalue λ. Then for (x, y) ∈ ∆ρ(

1
λ , 0) we have that P(x, y)e is close to e, and,

therefore, P(x, y)e 6= 0. Now, λ(x, y) = 1 if and only if A(x, y)P(x, y)e = P(x, y)e
and that happens if and only if

(3.3) 〈(A(x, y)P(x, y)− P(x, y))e, e〉 = 0.

Equation (3.3) determines σp(A1, A2) near the point ( 1
λ , 0) and it is easily seen

that the left-hand side is analytic in x and y. Now we write down explicitly the
Taylor decomposition of this function in terms of ∆x = x− 1

λ and y. We have

A(x, y)P(x, y)− P(x, y)

=
1

2πi

∫
γ

(w− 1)(wI − A(x, y))−1dw

=
1

2πi

∫
γ

(w−1)
(

wI− 1
λ

A1

)−1(
I−(∆xA1+yA2)

(
wI− 1

λ
A1

)−1)−1
dw

=
∞

∑
j=0

1
2πi

∫
γ

(w− 1)
(

wI − 1
λ

A1

)−1[
(∆xA1 + yA2)

(
wI − 1

λ
A1

)−1]j
dw

=
∞

∑
k,m=0

(∆x)kym
( 1

2πi

∫
γ

(w− 1)
(

wI − 1
λ

A1

)−1
Dk,m(w)dw

)
,

where

Dk,m(w) = ∑
α

k+m

∏
l=1
Sαl (w),

with summation taken over all sequences α = (α1, . . . , αk+m) of zeros and ones of
length (k + m) having k zeros and m ones, and

S0 = A1

(
wI − 1

λ
A1

)−1
, S1 = A2

(
wI − 1

λ
A1

)−1
.

Thus we have

σp(A1, A2) ∩∆ρ(
1
λ , 0) = {(x, y) ∈ ∆ρ(

1
λ , 0) : F (x, y) = 0},
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where

F (x, y) =
∞

∑
k,m=0

(
x− 1

λ

)k
ym
( 1

2πi

∫
γ

(w− 1)
〈(

wI − 1
λ

A1

)−1
Dk,m(w)e, e

〉
dw
)

.

Obviously, F (x, y) is a nontrivial analytic function, so the joint spectrum is
an analytic set in ∆ρ(

1
λ , 0). Further, it follows directly from the Taylor decompo-

sition above that
∂F
∂x
|x=1/λ,y=0 =

1
2πi

∫
γ

(w− 1)
〈(

wI − 1
λ

A1

)−1
A1

(
wI − 1

λ
A1

)−1
e, e
〉

dw

=
λ

2πi

∫
γ

dw
w− 1

= λ 6= 0,

and, therefore, the zero set of F is nonsingular near ( 1
λ , 0).

4. NECESSARY CONDITIONS FOR AN ALGEBRAIC CURVE IN THE JOINT SPECTRUM

Let A1 and A2 be self-adjoint operators and λ 6= 0 be an isolated point of
σ(A1) such that:

(a) σp(A1, A2) in a neighborhood ∆ρ(
1
λ , 0) of ( 1

λ , 0) is an algebraic curve given
by a polynomial equationR(x, y) = 0 of degree k, whereR is a polynomial with
real coefficients, that is

σp(A1, A2) ∩∆ρ(
1
λ , 0) = {(x, y) ∈ ∆ρ(

1
λ , 0) : R(x, y) = 0};

(b) ( 1
λ , 0) belongs to only one reduced component of this curve and is a non-

singular point on this reduced component;
(c) the axis {y = 0} is not tangent to this reduced component of the curve at

( 1
λ , 0).

Here for a curve, or more generally, for a hypersurface defined by a polyno-
mial G = Gr1

1 · · ·G
rm
m (with each polynomial Gi irreducible and Gi not associate

with Gj for i 6= j), the components of that hypersurface are defined by the poly-
nomials Gri

i (thus they are irreducible but not necessarily reduced), the reduced
components are defined by the polynomials Gi, and the exponent ri is called the
multiplicity of the reduced component defined by Gi.

REMARK 4.1. It is a standard exercise that when A1 and A2 are matrices and
Γ is a reduced component of σp(A1, A2) of multiplicity r, then at each nonsingular
point (x, y) of Γ the matrix xA1 + yA2 has eigenvalue 1 of multiplicity exactly r.

Now, we write

(4.1) R(x, y) =
k

∑
j=0

Rj(x, y), where Rj =
j

∑
m=0

rj
mxmyj−m, and R0 = −1.
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Passing to a smaller neighborhood if necessary, we may assume that:

(i) the reduced component containing ( 1
λ , 0) of the curve {R(x, y) = 0} has

no singular points in ∆ρ(
1
λ , 0);

(ii) there is 0 < ρ′ < ρ such that for (x, y) ∈ ∆ρ′(
1
λ , 0) the complex line

{(τx, τy) : τ ∈ C} has (up to multiplicity) exactly one point of intersection with
{R(x, y) = 0} that lies in ∆ρ(

1
λ , 0).

Let (x, y) ∈ ∆ρ′(
1
λ , 0) and (τx, τy) ∈ {R(x, y) = 0}. Then R(τx, τy) = 0,

and the equation in τ

τkRk(x, y) + τk−1Rk−1(x, y) + · · ·+ τR1(x, y)− 1 = 0

has exactly one root, τ(x, y), in a neighborhood of 1. The corresponding eigen-
value µ(x, y) = 1

τ(x,y) of the operator xA1 + yA2 satisfies the equation

(4.2) µk − µk−1R1(x, y)− · · · − Rk(x, y) = 0.

Of course, µ(x, y) is the only eigenvalue of xA1 + yA2 which lies at distance of or-
der ρ from 1 and is an isolated point of the spectrum σ(xA1 + yA2). It is also clear
that if λ is a multiple spectral point of A1, then µ(x, y) has the same multiplicity.

If both x and y are real, xA1 + yA2 is self-adjoint. Let ζ(x, y) be an eigenvec-
tor of xA1 + yA2 with eigenvalue µ(x, y). Then equation (4.2) implies

(4.3) [(xA1 + yA2)
k − R1(x, y)(xA1 + yA2)

k−1 − · · · − Rk(x, y)]ζ(x, y) = 0.

Let L(x, y) ⊂ H be the eigensubspace of xA1 + yA2 corresponding to µ(x, y), and
let P(x, y) : H → L(x, y) be the orthogonal projection. For 0 < δ < τ write
γ = {z ∈ C : |z− 1| < δ}. We have

(4.4) P(x, y) =
1

2πi

∫
γ

(wI − (xA1 + yA2))
−1dw.

It is readily seen that for m = 0, 1, 2, . . .

(4.5) (xA1 + yA2)
mP(x, y) =

1
2πi

∫
γ

wm(wI − (xA1 + yA2))
−1dw.

Equations (4.3) and (4.5) imply that for every (x, y) sufficiently close to ( 1
λ , 0) the

following identity holds:

1
2πi

∫
γ

[
wk −

k

∑
j=1

Rj(x, y)wk−j
]
(wI − (xA1 + yA2))

−1dw = 0.
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Write ∆x = x− 1
λ . If ∆x and y are sufficiently small, the last relation implies

1
2πi

∫
γ

[
wk −

k

∑
j=1

Rj(x, y)wk−j
](

wI − 1
λ

A1

)−1

×
∞

∑
m=0

[
(∆xA1 + yA2)

(
wI − 1

λ
A1

)−1]m
dw = 0.(4.6)

If ∆x = 0, the last relation turns into the following:

1
2πi

∫
γ

[
wk −

k

∑
j=1

wk−j
j

∑
n=0

rj
j−nynxj−n

1

]
(wI − x1 A1)

−1

×
∞

∑
m=0

ym
[

A2

(
wI − 1

λ
A1

)−1]m
dw = 0.

Rearranging terms in the last equation, we obtain:

k−1

∑
m=0

ym

2πi

∫
γ

{(
wI − 1

λ
A1

)−1
×
((

wk
k

∑
j=1

wk−j
rj

j

λj

)[
A2

(
wI − 1

λ
A1

)−1]m

−
m

∑
n=1

( k

∑
j=n

wk−j
rj

j−n

λj−n

)[
A2(wI − 1

λ
A1)

−1
]m−n)}

dw

+
∞

∑
m=k

ym

2πi

∫
γ

{(
wI− 1

λ
A1

)−1
×
((

wk−
k

∑
j=1

wk−j
rj

j

λj

)[
A2

(
wI− 1

λ
A1

)−1]k

−
k

∑
n=1

( k

∑
j=n

wk−j
rj

j−n

λj−n

)[
A2(wI − x1 A1)

−1
]k−n)

×
[

A2

(
wI − 1

λ
A1

)−1]m−k}
dw = 0.(4.7)

Since (4.7) holds for every y in a neighborhood of the origin, it implies

1
2πi

∫
γ

{
(wI − x1 A1)

−1
((

wk −
k

∑
j=1

wk−j
rj

j

λj

)[
A2

(
wI − 1

λ
A1

)−1]m

−
m

∑
n=1

( k

∑
j=n

wk−j
rj

j−n

λj−n

)[
A2

(
wI − 1

λ
A1

)−1]m−n)}
dw = 0,(4.8)
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for 1 6 m 6 k− 1, and

1
2πi

∫
γ

{(
wI − 1

λ
A1

)−1
×
((

wk −
k

∑
j=1

wk−j
rj

j

λj

)[
A2

(
wI − 1

λ
A1

)−1]k

−
k

∑
n=1

( k

∑
j=n

wk−j
rj

j−n

λj−n

)[
A2

(
wI − 1

λ
A1

)−1]k−n)
×
[

A2

(
wI − 1

λ
A1

)−1]m−k}
dw = 0(4.9)

for m > k. The integrands in (4.8) and (4.9) are operator-valued holomorphic
functions in the punctured disk {w ∈ C : 0 < |w − 1| < δ} with poles at one.
We denote these integrands by Ψm(w), m > 1. Thus, (4.8) and (4.9) imply the
following result.

THEOREM 4.2. Suppose that A1 and A2 are self-adjoint operators acting on a
separable Hilbert space H, with λ ∈ σ(A1) an isolated point, and an algebraic curve
determined by a polynomial equation (4.1) lies in σp(A1, A2) and satisfies conditions
(a)–(c) above. Then the integrands Ψm(w) of (4.8) and (4.9) satisfy the equation

1
2πi

∫
γ

Ψm(w)dw = 0, m > 1,

which is equivalent to

(4.10) Resw=1(Ψm) = 0, m > 1.

REMARK 4.3. If the operators A1 and A2 are not self-adjoint, in general, the
result of Theorem 4.2 does not hold since the range of the operator (4.4) does not
necessarily consist of eigenvectors of xA1 + yA2. However, if λ is an isolated
spectral point of A1 of multiplicity one, then for (x, y) sufficiently close to ( 1

λ , 0),
the operator P(x, y) is a rank one projection (not necessarily orthogonal), and its
range is an eigensubspace of xA1 + yA2, so the result of Theorem 4.2 is valid in
this case too.

It follows directly from (4.8) and (4.9) that Ψm has a pole of order at most
m + 1 at w = 1. We will now obtain the expression of the residue of Ψm at 1. Let

(4.11) A1 = λP1 +
∫

σ(A1)\{λ}

zdE(z)

be the spectral decomposition of A1 with P1 being the orthogonal projection on
the eigenspace of A1 corresponding to eigenvalues λ. If δ is small enough, we
have (

wI − 1
λ

A1

)−1
=

1
w− 1

P1 +
∫

σ(A1)\{λ}

dE(z)
w− (z/λ)
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=
1

w− 1
P1 −

∫
σ(A1)\{λ}

( ∞

∑
m=0

( λ

z− λ
)m+1(w− 1)m

)
dE(z)

=
1

w− 1
P1 −

∞

∑
m=0

(w− 1)m
( ∫

σ(A1)\{λ}

( λ

z− λ

)m+1
dE(z)

)
.(4.12)

Write

(4.13) T(A1) = T =
∫

σ(A1)\{λ}

λ

z− λ
dE(z),

then ∫
σ(A1)\{λ}

( λ

z− λ

)m+1
dE(z) = Tm+1,

so (4.12) can be written as(
wI − 1

λ
A1

)−1
=

1
w− 1

P1 −
∞

∑
m=0

(w− 1)mTm+1, and(4.14)

A2

(
wI − 1

λ
A1

)−1
=

1
w− 1

A2P1 −
∞

∑
m=0

(w− 1)m A2Tm+1.(4.15)

The following result follows from Theorem 4.2 and equations (4.14) and
(4.15).

THEOREM 4.4. Under the conditions of Theorem 4.2 the associated integrands
Ψm(λ) determined by (4.8) and (4.9) are holomorphic in {w ∈ C : |w− 1| < δ}.

Proof. It follows from (4.8) and (4.9) that

Ψm(w)=Ψm−1(w)
[

A2

(
wI− 1

λ
A1

)−1]
−
( k

∑
j=m

wk−j
rj

j−m

λj−m

)(
wI− 1

λ
A1

)−1
,

26m6k,

Ψm(w) = Ψm−1(w)
[

A2

(
wI − 1

λ
A1

)−1]
, m > k + 1.(4.16)

Relations (4.14), (4.15), and (4.16) imply that if Ψm−1 is holomorphic, then Ψm has
pole of order at most one at λ = 1, and, therefore, by (4.10) Ψm is holomorphic.
Thus, it suffices to show that Ψ1(w) is holomorphic at w = 1. We have

Ψ1(w) =
(

wI − 1
λ

A1

)−1(
wk −

k

∑
j=1

wk−j
rj

j

λj

)[
A2

(
wI − 1

λ
A1

)−1]

−
( k

∑
j=1

wk−j
rj

j−1

λj−1

)(
wI − 1

λ
A1

)−1
= Ψ̃1(w) + ˜̃Ψ1(w).(4.17)
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Observe that P(w) = wk −
k
∑

j=1
wk−j rj

j

λj satisfies P(1) = −R( 1
λ , 0) = 0, and, there-

fore, P(w) = (w− 1)Q(w), where Q is a polynomial of degree k− 1. Now rela-

tions (4.14) and (4.15) show that both Ψ̃1 and ˜̃Ψ2 have poles of order at most one
at w = 1, and relation (4.10) implies that Ψ1 is holomorphic at w = 1.

5. LINE IN THE SPECTRUM

Now, suppose that, as in the previous section, A1 and A2 are self-adjoint,
that λ 6= 0 is an isolated spectral point of A1, and that σp(A1, A2) ∩∆( 1

λ , 0) coin-
cides, up to multiplicity, with a line segment {(x, y) ∈ ∆ρ(

1
λ , 0) : λx + ay = 1}

where a 6= 0. Passing to A1
λ and A2

a if necessary, we may assume that λ = a = 1,
that is,

{x + y = 1} ∩∆ρ(1, 0) = σp(A1, A2) ∩∆ρ(1, 0)

up to multiplicity. Coming back to relation (4.1), here we have k = 1, r0
1 = r1

1 =
1, µ1 = 1, x1 = 1. Let us write down the functions Ψ1 and Ψ2 in this particular
case. Equations (4.9), (4.14), and (4.15) imply

Ψ1(w) =
( 1

w− 1
P1 −

∞

∑
m=0

(w− 1)mTm+1
)(

(w− 1)
[ 1

w− 1
A2P1

−
∞

∑
m=0

(w− 1)m A2Tm+1
]
− I
)

,(5.1)

Ψ2(w) = Ψ1(w)
[

A2(wI − A1)
−1
]

=
( 1

w− 1
P1 −

∞

∑
m=0

(w− 1)mTm+1
)(

(w− 1)
[ 1

w− 1
A2P1

−
∞

∑
m=0

(w− 1)m A2Tm+1
]
− I
)[ 1

w− 1
A2P1 −

∞

∑
m=0

(w− 1)m A2Tm+1
]
.(5.2)

It follows from (4.10), (5.1), and (5.2) that

Resλ=1(Ψ1)=P1 A2P1 − P1 = 0,(5.3)

Resλ=1(Ψ2)=P1 A2TA2P1−P1(A2P1− I)A2T−T(A2P1− I)A2P1=0.(5.4)

The last two equations imply

(5.5) P1 A2TA2P1 = 0.

REMARK 5.1. Coming back to the beginning of this section, suppose that

{λx + ay = 1} ∩∆ρ(
1
λ , 0) = σp(A1, A2) ∩∆ρ(

1
λ , 0)
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up to multiplicity. Then the operators A1
λ and A2

a satisfy (5.3) and (5.4). Since the
projections Pj and the operator T for A1 and A1

a are the same, we obtain

(5.6) P1 A2P1 = aP1.

Equation (5.5) stays the same.

Now we use (5.5) to establish necessary and sufficient conditions for a com-
mon eigenvector in the case when at least one of the operators A1, A2 is invertible.

LEMMA 5.2. Let A1, A2 be self-adjoint, 1 be an isolated spectral point of A1, and
assume that A1 is invertible. If there is ρ > 0 such that

{x + y = 1} ∩∆ρ(1, 0) = σp(A1, A2) ∩∆ρ(1, 0)

up to multiplicity, then the following are equivalent:
(i) A1 and A2 have an n-dimensional common eigensubspace, where n = rank(P1),

and the whole line {x + y = 1} is in σp(A1, A2);
(ii) there is ρ′ > 0 such that the line segment {x + y = 1} ∩ ∆ρ′(1, 0) agrees with

σp(A−1
1 , A2) ∩∆ρ′(1, 0) up to multiplicity;

(iii) there is ρ′′ such that the plane segment {x + y + z = 1} ∩ ∆ρ′′(1, 1, 0) agrees
with σp(A1, A−1

1 , A2) ∩∆ρ′′(1, 1, 0) up to multiplicity.

Proof. The implications (i) ⇒ (ii), (i) ⇒ (iii), and (iii) ⇒ (ii) are obvious.
Thus, it suffices to prove (ii)⇒ (i).

Suppose that (ii) holds. Let L1 be the eigensubspace of A1 with eigenvalue
one. Choose an orthonormal basis of L1: e1, . . . . Equation (4.13) implies that in
our case for every ξ ∈ H

T(A1)ξ = Tξ =
∫

σ(A1)\{1}

1
z− 1

dE(z)(ξ).

Therefore, using that A2 is self-adjoint we have for every j

P1 A2TA2P1ej = ∑
m

( ∫
σ(A1)\{1}

1
z− 1

〈dE(z)A2ej, A2em〉
)

em

= ∑
m

( ∫
σ(A1)\{1}

1
z− 1

〈dE(z)A2ej, dE(z)A2em〉
)

em.

Equation (5.5) implies that for every pair j, m∫
σ(A1)\{1}

1
z− 1

〈dE(z)A2ej, dE(z)A2em〉 = 0.

In particular, when j = m we obtain

(5.7)
∫

σ(A1)\{1}

1
z− 1

∥∥dE(z)A2ej
∥∥2

= 0.
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We now apply all preceding considerations to the pair (A−1
1 , A2). First we ob-

serve that

A−1
1 = P1 +

∫
σ(A1)\{1}

1
z

dE(z).

Hence,
P1 A2T̃A2P1 = 0,

where

(5.8) T̃ = T(A−1
1 ) =

∫
σ(A1)\{1}

z
1− z

dE(z).

In a similar way the last two relations yield

(5.9)
∫

σ(A1)\{1}

z
1− z

∥∥dE(z)A2ej
∥∥2

= 0.

Adding (5.7) and (5.9) we obtain∫
σ(A1)\{1}

∥∥dE(z)A2ej
∥∥2

= 0.

This means that A2ej ∈ L1 for every j. Thus, L1 is invariant under A2. Since
the restriction of A1 to L1 is the identity operator, the joint spectrum of A2|L1

and the identity of L1 contains a cone with vertex at (1, 0) that contains every
line of the family {x + y

a = 1 : a ∈ σ(A2|L1)}, and, of course, this cone lies in
σp(A1, A2). Since the intersection of σp(A1, A2) with a neighborhood of (1, 0) is
a line segment, we conclude that the spectrum of A2|L1 consists of a single point,
and, since A2 is self-adjoint, this means that L1 is an eigenspace for A2.

Since eigenvectors of an operator A and its scalar multiple are the same, the
following result is a straightforward corollary to Lemma 5.2.

LEMMA 5.3. Let A1, A2 be self-adjoint, λ 6= 0 be an isolated point of σ(A1),
and A1 be invertible. If there exist a 6= 0 and ρ > 0 such that, up to multiplicity,
{λx + ay = 1} ∩∆ρ(

1
λ , 0) = σp(A1, A2)∩∆ρ(1, 0), then the following are equivalent:

(i) A1 and A2 have a common eigensubspace of dimension equal to the rank of P1;
(ii) there is ρ′ such that, up to multiplicity,

σp(A−1
1 , A2) ∩∆ρ′(λ, 0) =

{ x
λ
+ ay = 1

}
∩∆ρ′(λ, 0);

(iii) there is ρ′′ > 0 such that, up to multiplicity,{
λx +

y
λ
+ az = 1

}
∩∆ρ′′(λ, 1

λ , 0) = σp(A1, A−1
1 , A2) ∩∆ρ′′(λ, 1

λ , 0).

We will use the result of Lemma 5.3 to give a necessary and sufficient con-
dition for a common eigenvector for an arbitrary pair of self-adjoint operators.
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To this end, for any self-adjoint operator A we consider the following family of
perturbations:

(5.10) A(ε, λ) = (1 + ε)A− λεI, ε ∈ R, ε 6= −1.

REMARK 5.4. It is easily seen that for every ε, λ ∈ R the operator A(ε, λ) is
self-adjoint. Furthermore, if λ is an isolated spectral point of A, then it is an iso-
lated spectral point of A(ε, λ) for every ε 6= −1; and the line segment {λx + ay =

1} ∩ ∆ρ(
1
λ , 0) is in σp(A1, A2) if and only if it is in σp(A1(ε, λ), A2(ε, a)). It is

also straightforward that the eigensubspace of A(ε, λ) corresponding to eigen-
value λ is either empty or is the same for all ε 6= −1. We further remark that
if λ 6= 0, then there exists ε such that A(ε, λ) is invertible. Indeed, the spec-
tral mapping theorem, cf. Chapter 7, Section 3, Theorem 11 of [11], implies that
σ(A(ε, λ)) = (1 + ε)σ(A) − λε. Thus 0 ∈ σ(A(ε, λ)) if and only if λε

1+ε ∈ σ(A).
Since λ is an isolated point of σ(A), if ε ∈ R and |ε| is big enough, zero is not in
the spectrum of A(ε, λ), that is A(ε, λ) is invertible.

Before we proceed further, we pause to observe an elementary result about
the general behavior of joint spectra under linear change of coordinates. Let

C =

 c11 · · · c1n
...

...
cn1 · · · cnn


be a complex-valued matrix. For operators A1, . . . , An write

(5.11) Bk = ck1 A1 + · · ·+ ckn An, k = 1, . . . , n.

We have the following proposition.

PROPOSITION 5.5. σp(A1, . . . , An) ⊇ CTσp(B1, . . . , Bn).

The proof is straightforward.

COROLLARY 5.6. If C is invertible, then

(5.12) σp(A1, . . . , An) = CTσp(B1, . . . , Bn).

Thus, coming back to our pair of self-adjoint operators A1 and A2 from
the beginning of this section, by making a linear change of coordinates (which
amounts to replacing A2 by A2 + δA1 for a sufficiently small real δ) we can al-
ways reduce to the case when a 6= 0, hence the following result is an immediate
corollary to Lemma 5.3.

THEOREM 5.7. Let A1, A2 be self-adjoint operators on H, let λ be an isolated
spectral point of σ(A1), and suppose that in some neighborhood ∆ρ(

1
λ , 0) of ( 1

λ , 0) the
joint spectrum σp(A1, A2) coincides up to multiplicity with a line segment {(x, y) ∈
∆ρ(

1
λ , 0) : λx + ay = 1}. The following are equivalent:
(i) the eigenspace of A1 corresponding to the eigenvalue λ is also an eigensubspace

for A2;
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(ii) there exist ε ∈ R, ε 6= −1 and ρ′ > 0 such that A1(ε, λ) is invertible and the
line segment {(x, y) ∈ ∆ρ′(λ, 0) : x

λ + ay = 1} coincides up to multiplicity with
σp((A1(ε, λ))−1, A2(ε, a)) ∩∆ρ′(λ, 0);

(iii) there exist ε ∈ R, ε 6= −1 and ρ′′ > 0 such that A1(ε, λ) is invertible and
the plane segment {(x, y, z) ∈ ∆ρ′′(

1
λ , λ, 0) : λx + 1

λ y + az = 1} coincides with
σp(A1(ε, λ), A1(ε, λ)−1, A2(ε, a)) ∩∆ρ′′(

1
λ , λ, 0) up to multiplicity.

As a direct corollary to Theorem 5.7 we obtain the following result for an
n-tuple of self-adjoint operators.

THEOREM 5.8. Let A1, . . . , An be self-adjoint, let λ 6= 0 be an isolated point of
σ(A1), and suppose there exists ρ > 0 such that, up to multiplicity,

{λx1 + a2x2 + · · ·+ anxn = 1} ∩∆ρ(
1
λ , 0, . . . , 0)

= σp(A1, . . . , An) ∩∆ρ(
1
λ , 0, . . . , 0).

The following are equivalent:
(i) the eigensubspace of A1 corresponding to eigenvalue λ is an eigensubspace for

each of the operators A2, . . . , An;
(ii) there exist an ε ∈ R, ε 6= 1 and ρ′ > 0 such that A1(ε, λ) is invertible and

{ 1
λ x1 + a2x2 + · · ·+ anxn = 1} ∩∆ρ(λ, 0, . . . , 0)

= σp(A1(ε, λ)−1, A2(ε, a2), . . . , An(ε, an)) ∩∆ρ′(λ, 0, . . . , 0),

up to multiplicity.

Proof. Obviously (i) implies (ii).
Suppose that (ii) holds. Since the line segments {(x1, xj) ∈ ∆ρ(

1
λ , 0) : λx1 +

ajxj = 1} and {(x1, xj) ∈ ∆ρ(λ, 0) : 1
λ x1 + ajxj = 1} coincide with the sets

σp(A1(ε, λ), Aj(ε, aj)) ∩ ∆ρ(
1
λ , 0) and σp(A1(ε, λ)−1, Aj(ε, aj)) ∩ ∆ρ′(λ, 0) respec-

tively for all j = 2, . . . , n, it follows from Theorem 5.7 that the eigenspace of A1
that corresponds to the eigenvalue λ is an eigenspace of Aj for all j = 2, . . . , n,
and (i) holds.

6. SPECTRAL ALGEBRAIC CURVES, EXTERIOR POWERS, COMMON REDUCING SUBSPACES

It is clear that if operators A1 and A2 have a common reducing subspace of
dimension n, the joint spectrum σp(A1, A2) contains an algebraic curve of order
n. Our example from the Introduction shows that in general the converse is not
true. In this section we use results of the previous section to establish necessary
and sufficient conditions under which the presence of an algebraic curve in the
joint spectrum implies the existence of a common reducing subspace. As our
conditions are expressed in terms of joint spectra of exterior products, we begin
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by recalling some basic facts about exterior products of Hilbert spaces. For more
details we refer the reader to Chapter V.1 of [30] and Chapter X.7 of [28].

For any n > 1 the nth tensor power
n⊗

H of a Hilbert space H has inner
product given by

〈x1 ⊗ · · · ⊗ xn, y1 ⊗ · · · ⊗ yn〉 = 〈x1, y1〉 · · · 〈xn, yn〉.

The nth exterior power
n∧

H of H is defined as the quotient of
n⊗

H modulo the
subspace generated by all elements of the form

x1 ⊗ · · · ⊗ x⊗ x⊗ · · · ⊗ xn.

The image of a simple tensor x1 ⊗ · · · ⊗ xn in
n∧

H is denoted by x1 ∧ · · · ∧ xn. We

consider
n∧

H as a subspace of
n⊗

H via the canonical “antisymmetrizing map”

x1 ∧ · · · ∧ xn 7−→
1√
n!

∑
σ∈Sn

sign(σ)xσ(1) ⊗ · · · ⊗ xσ(n).

In particular,
n∧

H inherits via this map a Hilbert space structure from
n⊗

H, and
it is straightforward to compute that its inner product satisfies

〈x1 ∧ · · · ∧ xn, y1 ∧ · · · ∧ yn〉 = det

 〈x1, y1〉 · · · 〈x1, yn〉
...

...
〈xn, y1〉 · · · 〈xn, yn〉

 .

Therefore if {e1, . . . , en, . . . } is an orthonormal basis of H we obtain that the set

{ei1 ∧ · · · ∧ ein : 1 6 i1 < · · · < in} is an orthonormal basis of
n∧

H.

When A is a linear operator on H it induces a linear operator
n∧

A on
n∧

H

via the formula
[ n∧

A
]
(v1 ∧ · · · ∧ vn) = Av1 ∧ · · · ∧ Avn. Thus

n∧
A is just the

restriction of
n⊗

A to
n∧

H considered as a subspace of
n⊗

H. It is immediate that if

A is of finite rank or self-adjoint then so is
n∧

A; and when A is a bounded we get∥∥∥ n∧
A
∥∥∥ 6 ‖A‖n. In particular, compactness of A implies compactness of

n∧
A.

When A is self-adjoint and compact and λ1, . . . are the eigenvalues of A,
with e1, . . . being a corresponding eigenbasis, then the orthogonal set {ei1 ∧ · · · ∧
ein : 1 6 i1 < · · · < in} is an eigenbasis with {λi1 · · · λin} as the corresponding

multiset of eigenvalues for the compact self-adjoint
n∧

A.

DEFINITION 6.1. Let A be a self-adjoint operator. We say that a finite multi-
set L = {λ1, . . . , λn} is a spectral multiset for A if each λi is an isolated point in the
spectrum of A of finite multiplicity, and the number of times it occurs in L is at
most its multiplicity as an eigenvalue of A. We say that a spectral multiset for A

is generic if λ = λ1 · · · λn is isolated and of multiplicity 1 in the spectrum of
n∧

A.
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REMARK 6.2. A straightforward consequence of the definition is that if L =
{λ1, . . . , λn} is a generic spectral multiset for a self-adjoint operator A, then each
eigenvalue λi of A has multiplicity equal to the number of times it occurs in L.

REMARK 6.3. Suppose A is a self-adjoint operator with countable spectrum,
and L = {λ1, . . . , λn} is a spectral multiset for A such that each eigenvalue λi of
A has multiplicity equal to the number of times it occurs in L. Then there is an
open subset U ⊂ R such that R \U is countable, and such that for every δ ∈ U
the operator A + δI is invertible and has L + δ = {λ1 + δ, . . . , λn + δ} as a generic
spectral multiset. Indeed, since A + δI is invertible for δ ∈ R \ −σ(A), and since

the spectrum of
n∧
(A + δI) is a subset of the spectrum of

n⊗
(A + δI), it suffices to

show that for every δ in the set

{δ ∈ R : (λ1 + δ) · · · (λn + δ) 6= (µ1 + δ) · · · (µn + δ)

for µi ∈ σ(A) such that {µ1, . . . , µn} 6= L as multisets}

the point (λ1 + δ) · · · (λn + δ) is isolated in the spectrum of
n⊗
(A + δI). But,

as the spectrum of a tensor product of operators is the product of their spectra,
cf. [2], and each λi + δ is isolated in the spectrum of A + δI, this follows from the
compactness of spectra by a standard argument.

The assumptions in the following theorem describe what we consider to be
a “general position” setting.

THEOREM 6.4. Let A1, A2 be self-adjoint operators with A1 invertible. Consider
a generic spectral multiset L = {λ1, . . . , λn} for A1, and let λ = λ1 · · · λn. Suppose
also that for some a 6= 0 and ρ > 0 the line segments

{λx + ay = 1} ∩∆ρ(
1
λ , 0) and { 1

λ x + ay = 1} ∩∆ρ(λ, 0)

are inside σp(
∧n A1,

∧n A2) and σp(
∧n A−1

1 ,
∧n A2), respectively.

Then the eigenspace of A1 corresponding to the eigenvalues λ1, . . . , λn is invariant
under A2.

Proof. Since λ is isolated and simple in the spectrum of
n∧

A1 it follows that
the joint spectrum σp(

∧n A1,
∧n A2) is nonsingular at the point ( 1

λ , 0), in partic-
ular this point belongs to no component other than the line λx + ay = 1. By

Lemma 5.3 the operators
n∧

A1 and
n∧

A2 have a common unit eigenvector v (of

eigenvalue λ for
n∧

A1 and eigenvalue a for
n∧

A2). Since L is generic v must be of
the form v = e1 ∧ · · · ∧ en, where each ei is a unit eigenvector for A1 of eigenvalue
λi. Now we show that span(e1, . . . , en) is invariant under A2. Indeed, let e be any
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other eigenvector for A1, and consider the column vector

w =

 〈A2e1, e〉
...

〈A2en, e〉

 .

For i = 1, . . . , n set vi = e1 ∧ · · · ∧ ei−1 ∧ e ∧ ei+1 ∧ · · · ∧ en and note that each vi is

orthogonal to v. As
n∧

A2(v) = av, it follows that

a =
〈 n∧

A2(v), v
〉
= 〈A2e1 ∧ · · · ∧ A2en, e1 ∧ · · · ∧ en〉

and therefore det Y = a 6= 0, where Y is the matrix

Y =

 〈A2e1, e1〉 · · · 〈A2e1, en〉
...

...
〈A2en, e1〉 · · · 〈A2en, en〉

 .

In particular the linear system of equations

Y

 x1
...

xn

 = w

has a unique solution given, according to Cramer’s rule, by the formula

xi =
det Yi(w)

a
for each i = 1, . . . , n, where Yi(w) is obtained by replacing with w the ith column
of the matrix Y. But since

det Yi(w) =
〈 n∧

A2(v), e1 ∧ · · · ∧ e ∧ · · · ∧ en

〉
= a〈v, vi〉 = 0

we see that xi = 0 for each i, and therefore w = 0.

Recall that a self-adjoint operator A on an infinite dimensional separable
Hilbert space H belongs to the class E(H) when A = K + aI with K a compact
self-adjoint operator on H. In this case every point in σ(A) \ a is isolated of finite
multiplicity, and the point a is either an accumulation point, or isolated of infinite
multiplicity.

For operators in the class E(H) we are now ready to address the question
of when the presence of an algebraic curve in the proper joint spectrum indicates
the existence of a common reducing subspace. Consider two self-adjoint opera-
tors A = K1 + aI and B = K2 + bI in E(H), and suppose that Γ is an algebraic
curve of degree k which is a union of components of the proper joint spectrum
σp(A, B). Note that the line {ax + by = 1} is always in σp(A, B) and therefore
carries no information about common reducing subspaces. We will refer to this
line as the accumulation line of the joint spectrum. Thus, without loss of generality



GEOMETRY OF JOINT SPECTRA AND DECOMPOSABLE OPERATOR TUPLES 101

we can assume that it is not a reduced component of Γ. Therefore, by making a
linear change of coordinates if necessary (which amounts to replacing A and B
by appropriate linear combinations of A and B with real coefficients, hence does
not affect the presence and degrees of algebraic curves or common reducing sub-
spaces and their dimensions) we may also assume that Γ intersects the x-axis in k
points (counted with multiplicities) 1

λ1
, . . . , 1

λk
and the y-axis in k points 1

µ1
, . . . , 1

µk
,

and that each point ( 1
λi

, 0) belongs only to components of σp(A, B) contained in
Γ; in particular, the multiset L = {λ1, . . . , λk} is a spectral mutiset for A and each
eigenvalue λi of A has multiplicity equal to the number of times it occurs in L.
Therefore, by Remark 6.3, if needed, we can make an additional suitable linear
fractional change of coordinates of the form

u =
x

1 + δx
, v =

y
1 + δx

(which amounts to replacing A by A + δI) and also assume that A is invertible,
and that L is a generic spectral multiset for A. Thus, for operators in the class
E(H) we can always reduce the search for a common invariant subspace to the
“general position” case considered in the following theorem, which is one of the
main results in this paper.

THEOREM 6.5. Let A = K1 + aI and B = K2 + bI be self-adjoint operators in the
class E(H), with A invertible. Let Γ be an algebraic curve of degree k which is a union of
components of the proper joint spectrum σp(A, B), and which does not have the accumu-
lation line {ax + by = 1} as a reduced component. Suppose that the x-axis (respectively
the y-axis) intersects Γ in the k points (counted with multiplicity) 1

λ1
, . . . , 1

λk
(respec-

tively 1
µ1

, . . . , 1
µk

) such that each point ( 1
λi

, 0) belongs only to components of σp(A, B)
contained in Γ, and the multiset L = {λ1, . . . , λk} is a generic spectral multiset for A.
Set λ = λ1 · · · λk and µ = µ1 · · · µk. The following are equivalent:

(i) the eigenspace for A corresponding to λ1, . . . , λk is invariant for B.
(ii) there exists ρ > 0 such that the line segments

{λx + µy = 1} ∩∆ρ(
1
λ , 0) and

{ 1
λ

x + µy = 1
}
∩∆ρ(λ, 0)

are contained in σp(
∧k A,

∧k B) and σp(
∧k A−1,

∧k B), respectively.
(iii) the lines

{λx + µy = 1} and
{ 1

λ
x + µy = 1

}
are contained in σp(

∧k A,
∧k B) and σp(

∧k A−1,
∧k B), respectively.

Proof. The implications (i)⇒ (iii)⇒ (ii) are straightforward, and (ii) implies
(i) by Theorem 6.4.

The case when H is a finite-dimensional Hilbert space is of classical interest
in algebraic geometry. In that setting every linear operator is bounded and of
finite rank, hence we can take E(H) to be the space of all linear operators on H.
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Now the statement of our last theorem can be somewhat simplified and slightly
expanded as follows.

Suppose that dimC H = N, and let H∗ denote the space dual to H. Then we
have the canonical isomorphism

k∧
H∗ −→

N−k∧
H ⊗

N∧
H∗,

which, together with the inner product induced isomorphism
k∧

H →
k∧

H∗, al-

lows us to consider in a natural way
N−k∧

A as acting on the space
k∧

H for any
linear operator A on H. In particular, we can consider the proper joint spectrum
σp(

∧N−k A,
∧k B). When A is self-adjoint, a standard exercise in multilinear alge-

bra shows that the Sylvester expansion formula for the determinant transforms

into the equality
( N−k∧

A
)( k∧

A
)
= (det A)I. Thus, for an invertible self-adjoint

A we have
N−k∧

A = det(A)
k∧

A−1, and therefore Theorem 6.5 implies immedi-
ately the following result.

THEOREM 6.6. With assumptions and notation as in Theorem 6.5, suppose in
addition that a = b = 0 and dimC H = N. The following are equivalent:

(i) the eigenspace for A corresponding to λ1, . . . , λk is invariant for B;
(ii) for some ρ > 0 the line segments

{λx + µy = 1} ∩∆ρ(
1
λ , 0) and

{ 1
λ

x + µy = 1
}
∩∆ρ(λ, 0)

are contained in σp(
∧k A,

∧k B) and σp(
∧k A−1,

∧k B), respectively;
(iii) for some ρ > 0 the line segments

{λx + µy = 1} ∩∆ρ(
1
λ , 0) and

{det A
λ

x + µy = 1
}
∩∆ρ(

λ
det A , 0)

are contained in σp(
∧k A,

∧k B) and σp(
∧N−k A,

∧k B), respectively;
(iv) the lines

{λx + µy = 1} and
{det A

λ
x + µy = 1

}
are contained in σp(

∧k A,
∧k B) and σp(

∧N−k A,
∧k B), respectively.

Finally, we note that Theorem 2.3 from Section 2 is obtained from the result
above in the same way that Theorem 5.8 is obtained from Theorem 5.7.

7. SPECTRAL CONTINUITY AND COMMON “ALMOST EIGENVECTORS”

Spectral continuity is well-known in the classical spectral theory, see [7]. In
our case it implies that if A1,n → A1 and A2,n → A2 in operator norm topology
as n → ∞, where all A1,n, A2,n, A1, A2 are in E(H), then σp(A1,n, A2,n) converges
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to σp(A1, A2) in Hausdorff topology uniformly on compact subsets of C2. In
particular, this implies that if A1 and A2 have a common eigenvector, A1,n and
A2,n have a common “almost eigenvector” (we define it below) and σp(A1,n, A2,n)
contains an irreducible component that converges to a line in Hausdorff topology
uniformly on compacts as n → ∞. In this section we prove results that establish
the converse: under certain natural assumptions local closeness of σp(A1, A2) to
a line implies existence of a common almost eigenvector.

DEFINITION 7.1. We say that a non-zero vector ξ is an ε-eigenvector (almost
eigenvector) of an operator A if there is λ ∈ C such that ‖Aξ − λξ‖ 6 ε‖ξ‖.

Since the distance from the vector Aξ to the line {λξ : λ ∈ C} is equal to∥∥∥Aξ − 〈Aξ,ξ〉
‖ξ‖2 ξ

∥∥∥, we come to an equivalent definition of an ε-eigenvector: ξ is an
ε-eigenvector of A if

(7.1)
∥∥∥Aξ − 〈Aξ, ξ〉

‖ξ‖2 ξ
∥∥∥ 6 ε‖ξ‖.

It immediately follows from (7.1) that ξ is an eigenvector of A in the traditional
sense, if and only if it is an ε-eigenvector for all ε > 0. More generally, if λ ∈ σ(A),
then for every ε > 0 there exists an ε-eigenvector ξ such that ‖Aξ − λξ‖ 6 ε‖ξ‖.

Of course, every vector ξ is an ε-eigenvector with the appropriate choice of ε
to be equal to the lefthand side of (7.1), but this is quite meaningless. The notion of
an ε-eigenvector is meaningful when ε is small. In this case being an ε-eigenvector
means that Aξ lies in a small aperture cone that has the line {λξ : λ ∈ C} as the
symmetry axis.

Our next result is a generalization of Theorem 5.7 to the case of common
almost eigenvectors for compact operators. Let Γ be an analytic curve that passes
through (x, y) ∈ C2 and let ρ > 0. We will use the following notation:

Γρ(x, y) = Γ ∩∆ρ(x, y).

If ε is close to zero and A1(ε) and A2(ε) are close to A1 and A2 respectively, then
spectral continuity implies that locally σp(A1, A2) is close to σp(A1(ε), A2(ε)). For
this reason in the next theorem without loss of generality we may assume that A1
is invertible. To simplify the notation we will also use rescaling, if necessary, so
that the point (1, 0) is in the joint spectrum, of A1 and A2 and A1 is invertible.
Finally, recall that the operator A belongs to the class E(H), if it is represented as
A = K + αI where K is compact and α ∈ R.

THEOREM 7.2. Let A1, A2 ∈ E(H) such that 1 ∈ σ(A1), and, therefore, the point
(1, 0) belongs to σp(A1, A2) and to σp(A−1

1 , A2). Suppose that 1 is not an accumulation
point of σ(A1) and (1, 0) is not a singular point of either σp(A1, A2), or σp(A−1

1 , A2).
Let σp(A1, A2) and σp(A−1

1 , A2) near (1, 0) be zeros of analytic functions f1(x, y) and
f2(x, y), respectively. If there exist 0 < ρ < 1 and 0 < ε� ρ such that:

(i) d = 1− (1− ρ)‖A1‖ − ε
√

2‖A2‖ > 0;
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(ii) the Hausdorff distances from σp(A1, A2)ρ(1, 0) and σp(A−1
1 , A2)ρ(1, 0) to the

line {x + βy = 1} are less than ε (β is a real number);

(iii)
∂ f j
∂x + β

∂ f j
∂y 6= 0 in ∆ρ(1, 0), j = 1, 2;

then A1 and A2 have a common δ-eigenvector, where δ = D
√

ε, and D is a constant
independent of β.

Proof. First we observe that conditions (i) and (ii) imply that |β| has an up-
per bound expressed in terms of ρ, ε and the norms of A1 and A2. Indeed, suppose
that |β| > 1. Without loss of generality we may assume that β > 0. It is shown
below that there is a point (1− ρ, τ) ∈ σp(A1, A2). The distance from this point

to {x + βy = 1} is equal to |βτ−ρ|√
1+β2

. Condition (ii) implies

ρ

β
− ε

√
1 +

1
β2 6 τ 6

ρ

β
+ ε

√
1 +

1
β2 ,

so that

|τ| 6 ρ

β
+ ε
√

2.

Since the operator (1− ρ)A1 + τA2 − I is not invertible, we have

1 6 ‖(1− ρ)A1 + τA2‖ 6 (1− ρ)‖A1‖+ |τ|‖A2‖

6 (1− ρ)‖A1‖+
( ρ

β
+ ε
√

2
)
‖A2‖.

This implies

(7.2) β 6
ρ‖A2‖

1− (1− ρ)‖A1‖ − ε
√

2‖A2‖
=

ρ‖A2‖
d

.

Now we approximate the compact parts of A1 and A2 by finite rank operators
with simple spectra (that is every non-zero eigenvector has multiplicity one) re-
sulting in operators Ã1 and Ã2. We can find τ ∈ R as close to zero as we want,
such that Â1 = Ã1 + τ I is invertible. Since Â1 and Ã2 are close to A1 and A2
respectively, the spectral continuity implies that σp(Â1, Ã2) is close to σp(A1, A2)

in the bidisk {|x − 1| 6 ρ, |y| 6 ρ}. Also if Â1 and Ã2 are close enough to A1
and A2 respectively, then δ-eigenvectors for Â1 and Ã2 are 2δ-eigenvectors for
A1 and A2. It is clear that σp(Â1, Ã2) and σp(Â−1

1 , Ã2) are algebraic sets. Finally,
the points of intersection of σp(Â1, Ã2) and σp(Â−1

1 , Ã2) with the x-axis that are
close to one, are regular points, and the distances between the line {x + βy = 1}
and σp(Â1, Ã2) and σp(Â−1

1 , Ã2) is less than 2ε. We denote the polynomials that
determine σp(Â1, Ã2) and σp(Â−1

1 , Ã2) by R(x, y) and S(x, y). As the rank of
the approximating operators increases and τ approaches zero, the polynomials
R and S approach f1 and f2, respectively; this follows from the direct expression
of the defining function given by equation (3.1). Thus, the condition (ii) holds for
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these polynomials with ε1 = 2ε. Again rescaling with a coefficient close to one
we may assume that both σp(Â1, Ã2) and σp(Â−1

1 , Ã2) pass through (1, 0).
Next we note that since ε � ρ, the orthogonal projection in C2 onto {x +

βy = 1} of each curve σp(Â1, Ã2) and σp(Â−1
1 , Ã2) contains the disk of radius

ρ√
2

centered at (1, 0). Indeed, again we may assume β > 0. Let us change the
coordinates to

(7.3) u =
x− 1√
1 + β2

+
βy√

1 + β2
, v =

β(x− 1)√
1 + β2

− y√
1 + β2

.

It is easily seen that the bidisk {|x− 1| 6 ρ, |y| 6 ρ} contains the bidisk ∆ρ(β) ={
|u| 6 ρ

√
1+β2

1+β , |v| 6 ρ
√

1+β2

1+β

}
. Since

√
1+β2

1+β > 1√
2

, the bidisk ∆ρ =
{
|u| 6

ρ√
2

, |v| 6 ρ√
2

}
is in {|x − 1| 6 ρ, |y| 6 ρ}. In the (u, v)-coordinates σp(Â1, Ã2)

and σp(Â−1
1 , Ã2) are zeros of the polynomials R̃(u, v) = R

(
u+βv√

1+β2
+ 1, βu−v√

1+β2

)
and S̃(u, v) = S

(
u+βv√

1+β2
+ 1, βu−v√

1+β2

)
, respectively. Suppose (u0, v0) ∈ ∆ρ and

R̃(u0, v0) = 0, that is (u0, v0) ∈ σp(Â1, Ã2). The distance from this point to the
line {x + βy = 1} = {u = 0} is equal to |u0|. Hence, |u0| 6 2ε. Consider
the functions φv(u) = R̃(u, v). Since φv0(u0) = 0, Hurwitz’s theorem (see, for
example, p. 231 of [13]) implies that if v1 is close to v0, φv1 has zero u1 close to
u0. Since |u0| 6 2ε � ρ√

2
, we conclude that |u1| < ρ√

2
, and, therefore, (u1, v1) ∈

∆ρ, and (0, v1) belongs to the projection of σp(Â1, Ã2) onto {u = 0}. A similar
argument applied to σp(Â−1

1 , Ã2) finishes the proof of the claim.
We now return to relations (4.16) and (4.17) to express residues of Ψ1 and Ψ2

explicitedly in terms of derivatives of the determining polynomial. It is easy to
check that in our case these relations for σp(Â1, Ã2) yield

ResΨ1(λ)|λ=1 =
∂R
∂x
|(1,0)P1 Ã2P1 −

∂R
∂y
|(1,0)P1 = 0,(7.4)

ResΨ2(λ)|λ=1 = −∂R
∂x
|(1,0)P1 Ã2TÃ2P1 −

1
2

(∂2R
∂x2

( ∂R
∂y
∂R
∂x

)2

(7.5)

− 2
∂2R
∂x∂y

( ∂R
∂y
∂R
∂x

)2

+
∂2R
∂y2

)
|(1,0)P1 = 0,

where, as in Section 3, P1 is the orthogonal projection on the eigenspace of Â1
corresponding to the eigenvalue one, and T is defined by (4.13).

Equation (7.4) together with condition (iii) of this theorem give ∂R
∂x |(1,0) 6= 0,

and, hence, this derivative does not vanish in a neighborhood of (1, 0). By the
implicit function theorem the relation R(x, y) = 0 determines x as an analytic
function of y in a neighborhood of (1, 0). In terms of this function x(y) equations
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(7.4) and (7.5) can be written as

P1 Ã2P1 = −x′(0)P1,(7.6)

P1 Ã2TÃ2P1 = − x′′(0)
2

P1.(7.7)

As it was done before, we denote by e1, e2, . . . an orthonormal eigenbasis for Â1
with Â1(e1) = e1, Â1(ej) = µjej, µj 6= 1, j = 2, . . . and Pj being the orthogonal pro-
jection onto a subspace spanned by ej. In this basis relation (7.7) can be written as

(7.8)
∞

∑
j=2

|〈Ã2e1, ej〉|2

µj − 1
= − x′′(0)

2
.

Our next step is to show that x′′(0) is small. Let us once again pass to the
coordinates (7.3). We have ∂R̃

∂u = 1√
1+β2

∂R
∂x + β√

1+β2
∂R
∂y 6= 0 for every (u, v) ∈{

|u| 6 ρ√
2

, |v| 6 ρ√
2

}
. Applying the implicit function theorem we see that equa-

tion R̃(u, v) = 0 determines u as an analytic function of v in a neighborhood

of every point v ∈
{
|v| 6 ρ√

2

}
. Since this function is globally continuous in{

|v| 6 ρ√
2

}
, by the monodromy theorem, see p. 161 of [13], u is holomorphic in

the whole disk
{
|v| 6 ρ√

2

}
. The above argument showed that |u(v)| 6 2ε for

every v ∈
{
|v| 6 ρ√

2

}
. Now the Cauchy theorem implies that

|u′(0)| 6 4ε

ρ
,(7.9)

|u′′(0)| 6 4
√

2ε

ρ2 .(7.10)

A straightforward computation shows that

(7.11)
d2x
dy2 =

(1 + β2)3/2 d2u
dv2

(1− β du
dv )

3
.

Equations (7.2), (7.9), (7.10), and (7.11) yield

(7.12) |x′′(0)| 6 Cε

where

(7.13) C =
4
√

2(1 + ( ρ‖A2‖
d )2)3/2ρ

(ρ− 4ρ‖A2‖
d ε)3

is a constant independent of β. Now equations (7.8) and (7.12) give

(7.14)

∣∣∣∣∣ ∞

∑
j=2

|〈Ã2e1, ej〉|2

µj − 1

∣∣∣∣∣ 6 C
2

ε.
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Applying a similar argument to the pair Â−1
1 , Ã2 and using (5.8) we obtain

(7.15)

∣∣∣∣∣ ∞

∑
j=2

µj|〈Ã2e1, ej〉|2

µj − 1

∣∣∣∣∣ 6 C
2

ε.

Equations (7.14) and (7.15) result in

∞

∑
j=2
|〈Ã2e1, ej〉|2 6 Cε.

Set λ = 〈Ã2e1, e1〉. The last relation implies

(7.16) ‖Ã2e1 − λe1‖ 6
√

Cε,

which means that e1 is δ̃-eigenvector of Ã2, where δ̃ =
√

Cε. Thus, e1 is a com-
mon δ̃-eigenvector of Â1 and Ã2. Therefore, as it was mention above, e1 is a
δ-eigenvector of A1 and A2 with δ = 2δ̃. We are done.

It was mentioned in the proof of Theorem 7.2 that the polynomial R deter-
mining the spectrum of Â1 and Ã2 converges uniformly on compacts in a neigh-
borhood of (1, 0) to the function f determining σp(A1, A2) as the finite rank ap-
proximations of compact parts converge to those of A1 and A2. Thus, we have
the following corollary to the proof of Theorem 7.2.

COROLLARY 7.3. Suppose that A1, A2 ∈ E(H), with (1, 0) ∈ σp(A1, A2). Sup-
pose further that f (x, y) is an analytic function that determines σp(A1, A2) near (1, 0)

and ∂ f
∂x |(1,0) 6= 0. If P1 is the orthogonal projection onto the eigensubspace of A1 corre-

sponding to λ = 1 and T is given by (4.13), then

P1 A2P1 = −x′(0)P1,(7.17)

P1 A2TA2P1 = − x′′(0)
2

P1,(7.18)

where x(y) is the implicit function near y = 0 determined by f (x, y) = 0, x(0) = 1.

If in Theorem 7.2 the norm of A2 is equal to |β|, then no condition on
σp(A−1

1 , A2) is necessary for the existence of a common almost eigenvector.

THEOREM 7.4. Let A1, A2 be compact and ‖A2‖ = |β|. Suppose that α 6= 0 and
( 1

α , 0) belongs to σp(A1, A2). If there exist ρ > 0 and 0 < ε� ρ such that:
(i) the Hausdorff distance from σ(A1, A2)ρ(

1
α , 0) to the line {αx + βy = 1} does not

exceed ε;
(ii) α

∂ f
∂x + β

∂ f
∂y 6= 0 in the bidisk {|x − 1

α | 6 ρ : |y| 6 ρ}, where f is an analytic
function that determines σp(A1, A2);

then there is an eigenvector of A1 that is
(√

8|β|(1+β2)
ρ−4βε

√
ε
)

-eigenvector of A2.
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Proof. As we mentioned before, we can replace A1 with A1
α , so that α = 1.

Also, as in Theorem 7.2 using an arbitrary small perturbation we may assume
that eigenvalue λ = 1 of A1 has multiplicity one. Condition (ii) implies that in the
bidisk {|x − 1| 6 ρ : |y| 6 ρ} the joint spectrum σp(A1, A2) is nonsingular and,
therefore, is a smooth analytic curve Γ. Using condition (i) and the argument with
passing to the coordinates (7.3) similar to the one that was used in the proof of

Theorem 7.2 and the fact that dx
dy =

du
dv +β

β du
dv−1

we show that | − x′(0)− β| 6 4(1+β2)ε
ρ−4βε .

Thus, if e1 is a unit eigenvector of A1 with eigenvalue λ = 1, the relation (7.17)
implies

|〈A2e1, e1〉| = |x′(0)| > |β| −
4(1 + β2)ε

ρ− 4βε
.

Hence,

‖A2e1 − 〈A2e1, e1〉e1‖2 = ‖A2e1‖2 − |〈A2e1, e1〉|2

6 β2 −
(
|β| − 4(1 + β2)ε

ρ− 4βε

)2
6

8|β|(1 + β2)ε

ρ− 4βε
.(7.19)

REMARK 7.5. The condition ‖A2‖ = |β| can obviously be replaced with

|‖A2‖ − |β|| < δ. In this case there exists a common
√

2βδ + δ2 + 8β(1+β2)ε
ρ−4βε -

eigenvector.

8. NORM ESTIMATES FOR THE COMMUTANT OF A PAIR OF MATRICES

Under the assumptions of Theorem 7.4 we will now define a new opera-
tor close to A2 that has a common eigenvector with A1. Let as above e1 be an
eigenvector of A1 with λ = 1. Write

Â2 = P1 A2P1 + (I − P1)A2(I − P1).

Of course, e1 is a common eigenvector of A1 and Â2.
Let ξ be a unit vector orthogonal to e1, that is ‖ξ‖ = 1, (I − P1)ξ = ξ. We

have

‖A2ξ − Â2ξ‖ = ‖P1 A2ξ‖ = |〈A2e1, ξ〉| = |〈(A2e1 − 〈A2e1, e1〉e1), ξ〉| 6 C
√

ε,

where C =

√
8‖A2‖(1+‖A2‖2)

ρ−4‖A2‖ε
. For ζ = ce1 +

√
1− |c|2ξ with ‖ξ‖ = 1, (I − P1)ξ =

ξ the last relation yields

(8.1) ‖(A2−Â2)ζ‖6 |c|‖A2e1−〈A2e1, e1〉e1)‖+
√

1−|c|2‖A2ξ−Â2ξ‖6
√

2C
√

ε,

and, therefore,
‖A2 − Â2‖ 6

√
2C
√

ε.
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This gives us the following estimate for the norm of the commutant [A1, A2]:

‖[A1, A2]‖6‖[A1, (A2−Â2]‖+‖[A1, Â2]‖6
√

2C
√

ε‖A1‖+‖[A
(1)
1 , A(1)

2 ]‖,(8.2)

where A(1)
1 = (I− P1)A1(I− P1), A(1)

2 = (I− P1)A2(I− P1) are the compressions
of A1 and A2 to the orthocomplement to e1.

REMARK 8.1. If the the point ( 1
α , 0) is not a singular point of the proper

joint spectrum of A1 and A2 with ‖A2‖ = |β|, and σp(A1, A2)ρ(
1
α , 0) is at less

than ε Hausdorff distance from the line {αx + βy = 1}, the inequality (8.2) still
holds. This follows from the fact that the pair ( A1

α , A2) satisfies the conditions of
Theorem 7.4.

Now we will use the relation (8.2) to estimate in Theorem 2.4 the norm of
the commutant of a pair of self-adjoint N × N matrices in terms of the Hausdorff
distance from the joint spectrum to a set of lines that imitates a joint spectrum
of a pair of commuting matrices. Since our result is stable with respect to small
perturbations, we assume that both matrices have simple spectra and the absolute
values of their eigenvalues are different. Since the commutant of A1 and A2 is the
same as the commutant of A1 + αI and A2 + βI for every α, β, we also assume
that A1 and A2 are invertible, that is all their eigenvalues are nontrivial.

Let f (z) be analytic in the closed disk ∆ρ(a) = {|z− a| 6 ρ} and its deriva-
tive does not vanish there. Then f is locally univalent in ∆ρ(a). Write

(8.3) δ̃(w)=sup{r : f is univalent in ∆r(w)}, δ( f , ρ, a)=min{δ̃(w) : w∈∆ρ(a)}.

REMARK 8.2. The above definition of δ( f , ρ, a) is slightly reminiscent of
Bloch’s constant B, cf. [23], but, of course, they are very different.

We are now ready to give the proof of Theorem 2.4.

Proof of Theorem 2.4. By Theorem 7.4 the eigenvector en(1) of A1 that corre-

sponds to eigenvalues αn(1) is a
√

8|β1|(1+|β1|2)
ρ−4|β1|ε

ε -eigenvector of A2, and relation

(8.2) holds with P1 being replaced with Pn(1). Write ε1 = ε. We want to estimate

ε2 such that the compression of A(1)
1 and A(1)

2 to span{ek : k = 1, . . . , N, k 6= n(1)}
satisfy conditions (i) and (ii) of the present theorem with ε2, ρ

2 .
It follows from (7.19) that in the eigenbasis e1, . . . , eN of the matrix A1 every

entry of the n(1)-th row (and column) of the matrix A2 except for the one on
the main diagonal has absolute value that does not exceed C1

√
ε1, where C1 =√

8|β1|(1+|β1|2)
ρ−4|β1|ε1

. Let

P(x, y) = det [xA1 + yA2 − I] , P1(x, y) = det[xA(1)
1 + yA(1)

2 − I],



110 M.I. STESSIN AND A.B. TCHERNEV

and let

(8.4) d = min
{∣∣∣αn(j)

∂P
∂x

+ β j
∂P
∂y

∣∣∣ :
∣∣∣x− 1

αn(j)

∣∣∣ 6 ε, |y| 6 ε, 1 6 j 6 N
}

.

Of course, the determining polynomials P and P1 satisfy

(8.5) P(x, y) = (αn(1)x + β1y− 1)P1(x, y) +Q(x, y),

whereQ is a polynomial of degree N whose coefficients in absolute values do not
exceed NC1|β1|N−1√ε1. Write

M = max
{∣∣∣ 1

αj

∣∣∣+ ρ + 1
}

.

We obviously have

|P(x, y)| 6 (|αn(j1)|+ |β1|+ 1)M|P1(x, y)|+ NC1|β1|N−1MN√ε1.

Now, let (x, y) ∈ σp(A(1)
1 , A(1)

2 ) ∩ {|x − 1
αn(m)
| 6 ρ

2 , |y| 6 ρ
2} for some 2 6 m 6

N. Then |P(x, y)| 6 NC1|β1|N−1MN√ε1. Write f (t) = P(x + tαn(m), y + tβm).
Equation (8.4) implies that

(8.6) | f ′(t)| > d > 0

for |t| 6 ρ
2 , and, therefore, f (t) is locally univalent in the disk {|t| 6 ρ

2}. By (8.3)
f is univalent in the disk of radius τ = min{δ(Fx,y, ρ, 0) : |x− 1

αm
| 6 ρ

2 , |y| 6 ρ
2},

where Fx,y(w) = P(x + wαn(m), y + wβm), so that this radius does not depend
on the point (x, y). By (8.6) | f ′(0)| > d, so Koebe’s 1

4 theorem, cf. p. 150 of [19],
implies that if ε1 is small enough so that NC1|β1|N−1MN√ε1 < dτ

4 , the function
f has a zero in {|t| 6 4NC1|β1|N−1MN√ε1}, and, hence, the distance from

σp(A(1)
1 , A(1)

2 ) ∩
{∣∣∣x− 1

αn(m)

∣∣∣ 6 ρ

2
, |y| 6 ρ

2

}
to σ(A1, A2) does not exceed 4NC1|β1|N−1MN√ε1, and, therefore, the distance
from

σp(A(1)
1 , A(1)

2 ) ∩
{∣∣∣x− 1

αm

∣∣∣ 6 ρ

2
, |y| 6 ρ

2

}
to the line {αn(m)x + βmy = 1} does not exceed ε2 = 5NC1|β1|N−1MN√ε1.

The fact that the eigenvalues of A(1)
2 differ from those of A2 by a magni-

tude of order
√

ε1 follows directly from (8.1) and the fact that for two compact
normal operators the distance between their spectra does not exceed the distance
between them in the operator norm topology, cf. Proposition 1 of [15].

Fanally, it follows from (8.5) that the difference between αn(k)
∂P1
∂x + βk

∂P1
∂y ,

k 6= 1 and αn(k)
∂P
∂x + βk

∂P
∂y is of order of ε2, and, therefore, the (N − 1)× (N − 1)-

dimensional matrices A(1)
1 and A(1)

2 satisfy the conditions of this theorem with ε2
and ρ

2 . Continuing inductively we arrive at the claimed estimate.



GEOMETRY OF JOINT SPECTRA AND DECOMPOSABLE OPERATOR TUPLES 111

9. CONCLUDING REMARKS

Here we want to state and discuss three problems immediately related to
the material of the preceding sections.

1. It was mentioned that, according to [27], if A1, . . . , An are compact, then on ev-
ery compact subset of Cn the joint spectrum σp(A1, . . . , An) has a global defining
function. Our first problem is the following.

PROBLEM 9.1. Describe those globally defined in Cn analytic sets that have spec-
tral representation. In particular, which real globally defined analytic sets (that is, zeros
of entire functions with real Taylor coefficients) have self-adjoint spectral representation?

In the case of matrices the similar problem for general matrices was solved
by Dickson [9] and for self-adjoint matrices by Helton and Vinnikov [17].

2. It is natural to ask whether a complete analog of Theorem 2.2 for algebraic
curves of order higher than 1 is valid. More precisely, we are compelled to pose
the following problem.

PROBLEM 9.2. Suppose that A and B are self-adjoint, A is invertible, and the joint
spectrum σp(A, B) contains a real algebraic curve Γ of order k that meets the x- and y-
axes at points (α1, 0), . . . , (αk, 0) and (0, β1), . . . , (0, βk), respectively. Also suppose that
all these points of intersection of Γ with the coordinate axes are isolated spectral points of
the corresponding operators. If σp(A−1, B) contains an algebraic curve Γ1 of the same or-
der k that meets the coordinate axes at points ( 1

α1
, 0), . . . , ( 1

αk
, 0) and (0, β1), . . . , (0, βk)

respectively, does this imply that A and B have a common k-dimensional reducing sub-
space?

3. The last problem we would like to mention is related to the norm estimate of
the commutant of two matrices, or more generally two compact operators. The
estimate given by Theorem 2.4 seems to be rather rough. Besides, this estimate
does not allow any extension of the result of Theorem 2.4 to an infinite dimen-
sional case. One possible way of improving the estimate is to consider that the
proper spectrum is close to a set of lines not locally, but on a big compact sub-
set of C2. Alternatively, we might impose the condition that the joint projective
spectrum in CP2 is close to the set of projective lines in Fubini study metric. This
leads us to the following problem.

PROBLEM 9.3. Let A and B be self-adjoint compact operators acting on a separable
Hilbert space H. Suppose that the distance from σ(A, B, I) to a set of projective lines that
contains {[x : y : 0]} and satisfies the following condition:

(C) the intersection of this set of lines with the lines {[0 : y : z]} and {[x : 0 : z]}
coincides with the inverse spectra σ(A)−1 and σ(B)−1, counting multiplicities;

does not exceed ε in the Fubini study metric. Estimate the norm of the commutant
[A, B] in terms of ε.
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