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ABSTRACT. We will characterize topological conjugation for two-sided topo-
logical Markov shifts (XA, σA) in terms of the associated asymptotic Ruelle
C∗-algebra RA and its commutative C∗-subalgebra C(XA) and the canonical
circle action. We will also show that the extended Ruelle algebra R̃A, which is
a unital and purely infinite version of RA, together with its commutative C∗-
subalgebra C(XA) and the canonical torus action γA is a complete invariant
for topological conjugacy of (XA, σA). The diagonal action of γA has a unique
KMS-state on R̃A, which is an extension of the Parry measure on XA.
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1. INTRODUCTION

A Smale space (X, φ) is a hyperbolic dynamical system having a local prod-
uct structure (cf. [2], [35]). A two-sided topological Markov shift (XA, σA) gives
a typical example of Smale space. D. Ruelle in [33], [34] introduced C∗-algebras
for a Smale space (X, φ). After Ruelle’s work, I. Putnam in [22], [23] initiated the
study of the structure of these C∗-algebras by using groupoid technique (for fur-
ther studies, see [13], [24], [25], [26], [36], etc.). For a Smale space (X, φ), Putnam
considered three kinds of C∗-algebras S(X, φ), U(X, φ) and A(X, φ) and their
crossed products S(X, φ)oZ, U(X, φ)oZ and A(X, φ)oZ induced by the origi-
nal homeomorphisms φ, respectively. The algebras S(X, φ), U(X, φ) and A(X, φ)
are the C∗-algebras of the groupoids of the stable equivalence relation on X, the
unstable equivalence relation on X and the asymptotic equivalence relation on
X, respectively. I. Putnam has pointed out that if the Smale space (X, φ) is a
two-sided topological Markov shift (XA, σA) defined by an irreducible matrix A,
the C∗-algebras S(X, φ), U(X, φ) are isomorphic to AF-algebrasFA⊗K,FAt ⊗K,
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and S(X, φ)oZ, U(X, φ)oZ are isomorphic to OA ⊗K,OAt ⊗K where OA,FA
are the Cuntz–Krieger algebra, the canonical AF-subalgebra of OA, respectively
for the matrix A, and FAt ,OAt are those ones for the transposed matrix At of A,
and K is the C∗-algebra of compact operators on a separable infinite dimensional
Hilbert space `2(N).

In [18], the author has introduced notions of asymptotic continuous orbit
equivalence and asymptotic conjugacy of Smale spaces, and studied relationship
with the crossed product A(X, φ) o Z of the asymptotic Ruelle C∗-algebra. In
this paper, we will restrict our interest to Smale spaces that arize from two-sided
topological Markov shifts. Let A be an N×N irreducible non-permutation matrix
with entries in {0, 1}. The shift space XA of the two-sided topological Markov
shift (XA, σA) is defined to be the compact metric space of bi-infinite sequences
(xi)i∈Z satisfying A(xi, xi+1) = 1, i ∈ Z with shift transformation σA((xi)i∈Z) =
(xi+1)i∈Z, where the metric d on XA is defined by

d((xn)n∈Z, (yn)n∈Z) =


0 if (xn)n∈Z = (yn)n∈Z,
1 if x0 6= y0,
(λ0)

k+1 if k = max{|n| : xi = yi for all i with |i| 6 n},

for some fixed real number 0 < λ0 < 1. Let Ga
A be the asymptotic étale groupoid

for (XA, σA) defined by the asymptotic equivalence relation

Ga
A =

{
(x, z) ∈ XA × XA : lim

n→∞
d(σn

A(x), σn
A(z)) = lim

n→∞
d(σ−n

A (x), σ−n
A (z)) = 0

}
.

There are natural groupoid operations on Ga
A and a topology which makes the

groupoid Ga
A étale (see [22], [23]). For the general theory of étale groupoids, see

[1], [27], [28], [29], etc. As in [23], the C∗-algebra A(XσA , σA)oZ is realized as the
C∗-algebra C∗(Ga

A oZ) of the étale groupoid

Ga
A oZ = {(x, n, z) ∈ XA ×Z× XA : (σk

A(x), σl
A(z)) ∈ Ga

A, n = k− l}.

The C∗-algebra of Ga
A o Z is denoted by RA and called the asymptotic Ruelle

algebra in this paper. Let dA : Ga
A oZ → Z be the groupoid homomorphism de-

fined by dA(x, n, z) = n. As the unit space (Ga
A oZ)◦ of Ga

A oZ is homeomorphic
to XA, the commutative C∗-algebra C(XA) can in a natural way be regarded as a
subalgebra ofRA. As the algebraRA is a crossed product A(XσA , σA)oZ, it has
the dual action ρA

t of t ∈ T. In [18], an extended version Gs,u
A oZ2 of the groupoid

Ga
A oZ was introduced by setting

Gs,u
A oZ2 = {(x, p, q, z) ∈ XA ×Z×Z× XA : (σp

A(x), z) ∈ Gs
A, (σq

A(x), z) ∈ Gu
A}

where

Gs
A =

{
(x, z) ∈ XA × XA : lim

n→∞
d(σn

A(x), σn
A(z)) = 0

}
,

Gu
A =

{
(x, z) ∈ XA × XA : lim

n→∞
d(σ−n

A (x), σ−n
A (z)) = 0

}
.
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There are natural groupoid operations on Gs,u
A oZ2 and a topology which makes

Gs,u
A oZ2 étale (see [18]). Let cA : Gs,u

A oZ2 → Z2 be the groupoid homomor-
phism defined by cA(x, p, q, z) = (p, q). The groupoid C∗-algebra C∗(Gs,u

A oZ2) is
denoted by R̃A (it was denoted byRs,u

A in [18]). Since the unit space (Gs,u
A oZ2)◦

of Gs,u
A o Z2 is {(x, 0, 0, x) ∈ Gs,u

A o Z2 : x ∈ XA}, which is homeomorphic to
XA, the algebra R̃A includes C(XA) as a subalgebra in natural way. There is a
projection EA in the tensor product OAt ⊗OA such that R̃A is naturally isomor-
phic to EA(OAt ⊗OA)EA. Hence the algebra R̃A might be regarded as a bilateral
Cuntz–Krieger algebra. The tensor product αAt

r ⊗ αA
s of the gauge actions αAt

r
on OAt and αA

s on OA gives rise to an action γA
(r,s) of (r, s) ∈ T2 on R̃A. It has

been shown in [18] that the fixed point algebra (R̃A)
δA

of R̃A under the diagonal
action δA

t = γA
(t,t), t ∈ T is isomorphic toRA.

In [8] (cf. [6]), Cuntz–Krieger proved that the stabilized Cuntz–Krieger al-
gebra OA ⊗K with its diagonal C∗-subalgebra DA ⊗ C of OA ⊗K, where C de-
notes the maximal abelian C∗-subalgebra of K consisting of diagonal operators
on `2(N), and the stabilized gauge action αA ⊗ id, is invariant under topologi-
cal conjugacy of the two-sided topological Markov shift (XA, σA) for irreducible
non-permutation matrix A. T.M. Carlsen and J. Rout have recently proved in [5]
that the converse also holds even for more general matrices without irreducibil-
ity and non-permutation. As a consequence, the stabilized Cuntz–Krieger alge-
bra OA ⊗ K with its diagonal C∗-subalgebra DA ⊗ C and the stabilized gauge
action αA ⊗ id is a complete invariant of the topological conjugacy of the two-
sided topological Markov shift. Inspired by this fact, we will in this paper show
that the Ruelle algebraRA with its subalgebra C(XA) and the dual action ρA is a
complete invariant of the topological conjugacy class of the two-sided topological
Markov shift (XA, σA). We will also see that the C∗-algebra R̃A with its subal-
gebra C(XA) and the action γA of T2 is a complete invariant of the topological
conjugacy class of (XA, σA). We will show the following theorem.

THEOREM 1.1. Let A, B be irreducible, non-permutation matrices with entries in
{0, 1}. The following six conditions are equivalent:

(i) the topological Markov shifts (XA, σA) and (XB, σB) are topologically conjugate;
(ii) the topological Markov shifts (XA, σA) and (XB, σB) are asymptotically conju-

gate;
(iii) there exists an isomorphism ϕ : Ga

A oZ → Ga
B oZ of étale groupoids such that

dB ◦ ϕ = dA;
(iv) there exists an isomorphism ϕ̃ : Gs,u

A oZ2 → Gs,u
B oZ2 of étale groupoids such

that cB ◦ ϕ̃ = cA;
(v) there exists an isomorphism Φ : RA → RB of C∗-algebras such that Φ(C(XA))

= C(XB) and Φ ◦ ρA
t = ρB

t ◦Φ for t ∈ T;
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(vi) there exists an isomorphism Φ̃ : R̃A → R̃B of C∗-algebras such that Φ̃(C(XA))

= C(XB) and Φ̃ ◦ γA
(r,s) = γB

(r,s) ◦ Φ̃ for (r, s) ∈ T2.

The equivalences among (ii), (iii) and (v) come from [18]. The main asser-
tion is the implication (ii)⇒ (i) which will be proved in Theorem 3.3. The other
implications are not difficult and will be proved in Section 4.

Since the algebra R̃A is a unital, simple, purely infinite, nuclear C∗-algebra
satisfying UCT, its isomorphism class is completely determined by its K-theory
data by a general classification theorem ([15], [21], [31]). It follows from the Kün-
neth formulas and the universal coefficient theorem that

K0(R̃A) ∼= KK1(OAt ,OA), K1(R̃A) ∼= KK(OAt ,OA).

It follows from Theorem 1.1 that the group K0(R̃A) and the position of the class
[1R̃A

] of the unit 1R̃A
of R̃A in K0(R̃A) is invariant under topological conjugacy of

(XA, σA). We see that (K0(R̃A), [1R̃A
]) is isomorphic to (K0(OAt ⊗OA), [EA]) and

the class [EA] of the projection EA actually lives in the group K0(OAt)⊗ K0(OA).

We set the vector ei =
[
0, . . . , 0,

i
1, 0, . . . , 0

]
∈ ZN for i = 1, . . . , N. We have the

following theorem.

THEOREM 1.2. Suppose that A is an N× N irreducible, non-permutation matrix
with entries in {0, 1}. The position [EA] of the projection EA in K0(OAt)⊗ K0(OA) is
N
∑

i=1
[ei]⊗ [ei] in the group ZN/(id− A)ZN ⊗ ZN/(id− At)ZN . Hence it is invariant

under topological conjugacy of the two-sided topological Markov shift (XA, σA).

We put

eA =
N

∑
i=1

[ei]⊗ [ei] in ZN/(id− A)ZN ⊗ZN/(id− At)ZN .

We will actually see that the pair (ZN/(id− A)ZN ⊗ ZN/(id− At)ZN , eA) is a
shift equivalence invariant (Proposition 5.4, Proposition 5.7). We will present
an example of pairs of matrices A = [A(i, j)]Ni,j=1, B = [B(i, j)]Mi,j=1 such that

K0(OA) ∼= K0(OB), det(id − A) = det(id − B), but the invariants (ZN/(id −
A)ZN ⊗ ZN/(id− At)ZN , eA) and (ZM/(id− B)ZM ⊗ ZM/(id− Bt)ZM, eB) are
different (Proposition 5.5). Hence the invariant (ZN/(id − A)ZN ⊗ ZN/(id −
At)ZN , eA) is strictly stronger than the Bowen–Franks group ZN/(id− A)ZN and
not invariant under flow equivalence of (XA, σA).

J. Cuntz in [7] studied the homotopy groups πn(End(OA⊗K)) of the space
End(OA ⊗ K) of endomorphisms of the C∗-algebra OA ⊗ K. He proved that
natural maps εn : πn(End(OA ⊗ K)) → KKn(OA,OA) yield isomorphisms,
and defined an element denoted by ε1(λ

A) in Ext(OA)⊗ K0(OA), where λA de-
notes the gauge action αA on OA. His observation shows that the element ε1(λ

A)
is nothing but the above element eA under the natural identification between



TOPOLOGICAL CONJUGACY OF TOPOLOGICAL MARKOV SHIFTS AND RUELLE ALGEBRAS 257

Ext(OA) ⊗ K0(OA) and ZN/(id− A)ZN ⊗ ZN/(id− At)ZN . He already states
in [7] that the position ε1(λ

A) in ZN/(id− A)ZN ⊗ZN/(id− At)ZN is invariant
under topological conjugacy of the topological Markov shift (XA, σA).

We will finally study KMS states for the diagonal action δA
t = γA

(t,t) on R̃A,
and prove the following theorem.

THEOREM 1.3. Assume that the matrix A is aperiodic. A KMS state on R̃A for the
action δA at the inverse temperature log γ exists if and only if γ is the Perron–Frobenius
eigenvalue β of A. The admitted KMS state is unique. The restriction of the admitted
KMS state to the subalgebra C(XA) is the state defined by the Parry measure on XA.

The Parry measure is the measure of maximal entropy (cf. [37]). Since log β

is the topological entropy of the Markov shift (XA, σA), the inverse tempera-
ture expresses the entropy. This exactly corresponds to the result obtained by
Enomoto–Fujii–Watatani in [10] on KMS states for the gauge action on the Cuntz–
Krieger algebras OA.

Throughout the paper, we denote by Z+ the set of nonnegative integers and
by N the set of positive integers.

This paper is a continuation of the paper [18].

2. PRELIMINARIES

We fix an irreducible, non-permutation matrix A = [A(i, j)]Ni,j=1 with entries
in {0, 1}. Let OA and OAt be the Cuntz–Krieger algebras for the matrices A and
its transpose At, respectively. We may take generating partial isometries Si, i =
1, . . . , N of OA and Ti, i = 1, . . . , N of OAt such that

N

∑
i=1

SiS∗i = 1, S∗i Si =
N

∑
j=1

A(i, j)SjS∗j ,(2.1)

N

∑
i=1

TiT∗i = 1, T∗i Ti =
N

∑
j=1

At(i, j)TjT∗j .(2.2)

In the C∗-algebra OAt ⊗OA of the tensor product, let us denote by EA the projec-
tion defined by

(2.3) EA =
N

∑
i=1

T∗i Ti ⊗ SiS∗i .

By using the relations (2.1) and (2.2), it is easy to see that EA =
N
∑

i=1
TiT∗i ⊗ S∗i Si.

The C∗-algebra R̃A is defined as the groupoid C∗-algebra C∗(Gs,u
A oZ2) which is

realized as the C∗-algebra ([18])

R̃A = EA(OAt ⊗OA)EA.
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The C∗-algebra R̃A was denoted byRs,u
A in [18]. Since both the algebras OAt ,OA

are simple and purely infinite, and R̃A ⊗K is isomorphic to OAt ⊗OA ⊗K, the
C∗-algebra R̃A is simple and purely infinite under the condition that A is irre-
ducible and non-permutation (cf. Proposition 5.5 of [26]).

Let Bn(XA) be the set of admissible words in XA of length n. Let us de-

note by B∗(XA) the set
∞⋃

n=0
Bn(XA), where B0(XA) denotes the empty word.

For a word ξ = (ξ1, . . . , ξk), µ = (µ1, . . . , µm) ∈ B∗(XA), we denote by ξ =

(ξk, . . . , ξ1) ∈ Bk(XAt) and set Tξ = Tξk · · · Tξ1 and Sµ = Sµ1 · · · Sµm . Let αA, αAt

be the gauge actions of OA and OAt , respectively, which are defined by

αA
t (Si) = exp(

√
−1t)Si, αAt

t (Ti) = exp(
√
−1t)Ti, i = 1, . . . , N

for t ∈ R/2πZ = T. The fixed point algebras (OA)
αA

, (OAt)αAt
of OA,OAt under

the gauge actions αA, αAt
are known to be AF-algebras, which are denoted by

FA,FAt , respectively.
We first note the following facts which were seen in [18].

PROPOSITION 2.1. (i) The groupoid C∗-algebra C∗(Ga
A) of the groupoid Ga

A is
isomorphic to the C∗-subalgebra of FAt ⊗FA defined by

C∗( Tξ T∗η ⊗ SµS∗ν ∈ OAt ⊗OA :

µ = (µ1, . . . , µm), ν = (ν1, . . . , νn) ∈ B∗(XA),

ξ = (ξk, . . . , ξ1), η = (ηl , . . . , η1) ∈ B∗(XAt),

A(ξk, µ1) = A(ηl , ν1) = 1, k = l, m = n ).

(ii) The C∗-algebraRA is isomorphic to the C∗-subalgebra of OAt ⊗OA defined by

C∗( Tξ T∗η ⊗ SµS∗ν ∈ OAt ⊗OA :

µ = (µ1, . . . , µm), ν = (ν1, . . . , νn) ∈ B∗(XA),

ξ = (ξk, . . . , ξ1), η = (ηl , . . . , η1) ∈ B∗(XAt),

A(ξk, µ1) = A(ηl , ν1) = 1, k− l = n−m ).

(iii) The C∗-algebra R̃A is isomorphic to the C∗-subalgebra of OAt ⊗OA defined by

C∗( Tξ T∗η ⊗ SµS∗ν ∈ OAt ⊗OA :

µ = (µ1, . . . , µm), ν = (ν1, . . . , νn) ∈ B∗(XA),

ξ = (ξk, . . . , ξ1), η = (ηl , . . . , η1) ∈ B∗(XAt),

A(ξk, µ1) = A(ηl , ν1) = 1 ).

We note that for i = 1, . . . , N the identity

Ti ⊗ S∗i =
N

∑
j,k=1

TiTjT∗j ⊗ SkS∗k S∗i =
N

∑
j,k=1

A(j, i)A(i, k)TijT∗j ⊗ SkS∗ik
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holds. Since A(j, i)A(i, k)TijT∗j ⊗ SkS∗ik belongs to RA, we see that Ti ⊗ S∗i and
hence T∗i ⊗ Si belong toRA.

Define the diagonal action δA on R̃A by setting

δA
t = αAt

t ⊗ αA
t , t ∈ R/2πZ = T.

Since δA
t (EA)=EA, the automorphisms δA

t , t∈T define an action of T on R̃A. For

µ = (µ1, . . . , µm), ν = (ν1, . . . , νn) ∈ B∗(XA),

ξ = (ξk, . . . , ξ1), η = (ηl , . . . , η1) ∈ B∗(XAt)

satisfying A(ξk, µ1) = A(ηl , ν1) = 1, we see that

δA
t (Tξ T∗η ⊗ SµS∗ν) = exp(

√
−1(k− l + m− n)t)Tξ T∗η ⊗ SµS∗ν

so that the following lemma holds.

LEMMA 2.2. Keep the above notation. The element Tξ T∗η ⊗ SµS∗ν in R̃A belongs
toRA if and only if k− l = n−m.

Hence we have the following proposition.

PROPOSITION 2.3 ([18], Theorem 9.6). The fixed point algebra (R̃A)
δA

of R̃A
under δA is the asymptotic Ruelle algebraRA.

As in Lemma 9.5 of [18], the C∗-subalgebra of C∗(Ga
A) generated by ele-

ments Tξ T∗
ξ
⊗ SµS∗µ, ξ = (ξk, . . . , ξ1) ∈ B∗(XAt), µ = (µ1, . . . , µm) ∈ B∗(XA) with

A(ξk, µ1) = 1 is canonically isomorphic to the commutative C∗-algebra C(XA) of
continuous functions on XA. In what follows, we identify the subalgebra with
the algebra C(XA) so that C(XA) is a C∗-subalgebra ofRA and R̃A.

3. ASYMPTOTIC CONJUGACY AND TOPOLOGICAL CONJUGACY

For x = (xn)n∈Z ∈ XA, we set x+ = (xn)∞
n=0 and x− = (x−n)∞

n=0. Let us
denote by XA the compact Hausdorff space of right infinite sequences (xi)i∈Z+

∈
{1, . . . , N}Z+ satisfying A(xi, xi+1) = 1, i ∈ Z+. The right one-sided topologi-
cal Markov shift (XA, σA) is defined by a topological dynamical system of shift
transformation σA((xi)i∈Z+

) = (xi+1)i∈Z+
on XA. For x = (xi)i∈Z+

∈ XA and
k ∈ Z+, we set x[k,∞) = σk

A(x) = (xk, xk+1, . . . ) ∈ XA.
In [18], a notion of asymptotic conjugacy in Smale spaces was introduced.

We apply the notion for topological Markov shifts and rephrase it in the following
way.

DEFINITION 3.1 ([18]). Two topological Markov shifts (XA, σA) and (XB, σB)
are said to be asymptotically conjugate if there exists a homeomorphism h : XA →
XB satisfying the following three conditions:
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(i) There exists a nonnegative integer K ∈ Z+ such that:

σK+1
B (h(x))+ = σK

B(h(σA(x)))+ for x ∈ XA,(3.1)

σ−K+1
B (h(x))− = σ−K

B (h(σA(x)))− for x ∈ XA,(3.2)

σK+1
A (h−1(y))+ = σK

A(h
−1(σB(y)))+ for y ∈ XB,(3.3)

σ−K+1
A (h−1(y))− = σ−K

A (h−1(σB(y)))− for y ∈ XB.(3.4)

(ii) There exists a continuous function m1 : Ga
A → Z+ such that

σ
m1(x,z)
B (h(x))+ = σ

m1(x,z)
B (h(z))+ for (x, z) ∈ Ga

A,

σ
−m1(x,z)
B (h(x))− = σ

−m1(x,z)
B (h(z))− for (x, z) ∈ Ga

A.

(iii) There exists a continuous function m2 : Ga
B → Z+ such that

σ
m2(y,w)
A (h−1(y))+ = σ

m2(y,w)
A (h−1(w))+ for (y, w) ∈ Ga

B,

σ
−m2(y,w)
A (h−1(y))− = σ

−m2(y,w)
A (h−1(w))− for (y, w) ∈ Ga

B.

Let A = [A(i, j)]Ni,j=1, B = [B(i, j)]Mi,j=1 be irreducible matrices with entries in
{0, 1}. The following proposition is key in this section.

PROPOSITION 3.2. If the topological Markov shifts (XA, σA) and (XB, σB) are
asymptotically conjugate, then they are topologically conjugate.

Proof. Let h : XA → XB be a homeomorphism and K ∈ Z+ a nonnegative
integer satisfying (3.1), (3.2), (3.3), (3.4). We define two continuous maps h+ :
XA → XB and h−1

+ : XB → XA by setting

h+(x) = σK
B(h(x))+, x ∈ XA,

h−1
+ (y) = σK

A(h
−1(y))+, y ∈ XB.

It then follows that by (3.1),

h+(σA(x))=σK
B(h(σA(x)))+=σK+1

B (h(x))+=[σK+1
B (h(x))][0,∞)=[σB(h(x))][K,∞).

On the other hand,

σB(h+(x)) = σB([σ
K
B(h(x))][0,∞)) = [σK

B(h(x))][1,∞) = [σB(h(x))][K,∞).

Therefore we have

h+(σA(x)) = σB(h+(x)) for x ∈ XA.

Hence the continuous map h+ : XA → XB is a sliding block code (cf. [16]).
Therefore there exists a block map Φ : Bm+n+1(XA) → {1, 2, . . . , M} for some
m, n ∈ Z+ such that

h+((xi)i∈Z) = Φ([xi−m, . . . , xi+n])i∈Z+
for x = (xi)i∈Z ∈ XA.
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Similarly the continuous map h−1
+ : XB → XA satisfies h−1

+ (σB(y)) = σA(h−1
+ (y))

for y ∈ XB and there exists a block map Ψ : Bm′+n′+1(XB) → {1, 2, . . . , N} for
some m′, n′ ∈ Z+ such that

h−1
+ ((yi)i∈Z) = Ψ([yi−m′ , . . . , yi+n′ ])i∈Z+

for y = (yi)i∈Z ∈ XB.

By using these block maps

Φ : Bm+n+1(XA)→ {1, 2, . . . , M}, Ψ : Bm′+n′+1(XB)→ {1, 2, . . . , N},

we define two sliding block codes Φ∞ : XA → XB and Ψ∞ : XB → XA by setting

Φ∞((xi)i∈Z) = Φ([xi−m, . . . , xi+n])i∈Z ∈ XB for x = (xi)i∈Z ∈ XA,

Ψ∞((yi)i∈Z) = Ψ([yi−m′ , . . . , yi+n′ ])i∈Z ∈ XA for y = (yi)i∈Z ∈ XB.

We note that

Φ∞((xi)i∈Z)+ = h+((xi)i∈Z) ∈ XB for x = (xi)i∈Z ∈ XA,

Ψ∞((yi)i∈Z)+ = h−1
+ ((yi)i∈Z) ∈ XA for y = (yi)i∈Z ∈ XB.

For y = (yi)i∈Z ∈ XB, we have

[Ψ∞(y)][K,∞) = [σK
A(Ψ∞(y))][0,∞) = [Ψ∞(σK

B(y))][0,∞) = h−1
+ (σK

B(y))

= [σK
A(h
−1(σK

B(y)))][0,∞) = [h−1(σK
B(y))][K,∞).

As Φ∞ is a sliding block code with memory m, the condition [Ψ∞(y)][K,∞) =

[h−1(σK
B(y))][K,∞) implies

[Φ∞(Ψ∞(y))][K+m,∞) = [Φ∞(h−1(σK
B(y)))][K+m,∞).

It then follows that

[Φ∞(Ψ∞(y))][K+m,∞) = [Φ∞(h−1(σK
B(y)))][K+m,∞) = [h+(h−1(σK

B(y)))][K+m,∞)

= [(σK
B ◦ h)(h−1(σK

B(y)))][K+m,∞)

= [σK
B(σ

K
B(y))][K+m,∞) = [σ2K

B (y)][K+m,∞)

so that
[Φ∞(Ψ∞(y))][K+m,∞) = [σ2K

B (y)][K+m,∞) for y ∈ XB.

Since Φ∞ ◦Ψ∞ is a sliding block code, we obtain that

Φ∞ ◦Ψ∞ = σ2K
B .

Hence Φ∞ is surjective. Similarly we have that Ψ∞ ◦ Φ∞ = σ2K
A so that Φ∞ is

injective. Therefore we have a topological conjugacy Φ∞ : XA → XB.

We remark that the above proof needs only the equalities (3.1) and (3.3).
We thus conclude the following theorem.

THEOREM 3.3. Two topological Markov shifts (XA, σA) and (XB, σB) are asymp-
totically conjugate if and only if they are topologically conjugate.
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For the proof it is direct to see that topological conjugacy implies asymptotic
conjugacy. Hence the assertion follows from the preceding proposition.

4. CONJUGACY, GROUPOID ISOMORPHISM AND C∗-ALGEBRAS

We consider the groupoid Gs,u
A oZ2 and its C∗-algebra written R̃A. Recall

that an action γA of T2 on R̃A = EA(OAt ⊗OA)EA is defined by setting

γA
(r,s) = αAt

r ⊗ αA
s on OAt ⊗OA for (r, s) ∈ T2.

Since γA
(r,s)(EA) = EA, we have an action γA of T2 on R̃A, which defines two

kinds of actions of T on R̃A such that

δA
t = γA

(t,t) and ρA
t = γA

(−t/2,t/2) for t ∈ T.

We regard the groupoid C∗-algebra C∗(Ga
A oZ) as the crossed product C∗-algebra

C∗(Ga
A)oZ in a natural way. Let us denote by σ̂A the dual action on C∗(Ga

A)oZ.
In the following lemma, the C∗-algebra R̃A is regarded as a C∗-subalgebra of
OAt ⊗OA as in Proposition 2.1(ii).

LEMMA 4.1. There exists an isomorphism Ψ : C∗(Ga
A)oZ→ RA such that

Ψ(C(XA)) = C(XA) and Ψ ◦ σ̂A
t = ρA

t ◦Ψ, t ∈ T.

Proof. Let UA be the unitary in RA defined by UA =
N
∑

i=1
T∗i ⊗ Si. As in

Proposition 9.9 of [18], Ad(UA) corresponds to the shift operation on C(XA).
Since

ρA
t (UA) =

N

∑
i=1

α−t/2(T∗i )⊗ αt/2(Si) = exp(
√
−1t)

N

∑
i=1

T∗i ⊗ Si = exp(
√
−1t)UA,

we have the assertion.

Now we will give a proof of Theorem 1.1 stated in Introduction.

Proof of Theorem 1.1. The equivalence between (i) and (ii) is proved in The-
orem 3.3. The equivalences among (ii), (iii) and (v) are shown in [18]. We will
prove the three implications (i)⇒ (iv), (iv)⇒ (vi), (vi)⇒ (v).

(i) ⇒ (iv) Suppose that there exists a topological conjugacy h : XA → XB
so that h ◦ σA = σB ◦ h. For (x, p, q, z) ∈ Gs,u

A oZ2, the conditions (σ
p
A(x), z) ∈

Gs
A and (σ

q
A(x), z) ∈ Gu

A imply (σ
p
B(h(x)), h(z)) ∈ Gs

B and (σ
q
A(h(x)), h(z)) ∈

Gu
B, so that we have (h(x), p, q, h(z)) ∈ Gs,u

B oZ2. It is routine to show that the
correspondence

ϕ̃ : (x, p, q, z) ∈ Gs,u
A oZ2 → (h(x), p, q, h(z)) ∈ Gs,u

B oZ2
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yields an isomorphism of étale groupoids. It is then clear that cB ◦ ϕ̃ = cA. This
shows the condition (iv).

(iv)⇒ (vi) Suppose that there exists an isomorphism ϕ̃ : Gs,u
A oZ2 → Gs,u

B o
Z2 of étale groupoids such that cB ◦ ϕ̃ = cA. Since both groupoids Gs,u

A oZ2 and
Gs,u

B oZ2 are amenable and étale by Proposition 7.2 and Lemma 7.3 of [18], the
C∗-algebras R̃A and R̃B are represented on the Hilbert C∗-modules `2(Gs,u

A oZ2)

and `2(Gs,u
B o Z2), respectively as in [18]. As ϕ̃ : Gs,u

A o Z2 → Gs,u
B o Z2 is an

isomorphism of étale groupoids, there exist a homeomorphism h : XA → XB and
a continuous groupoid homomorphism c : Gs,u

A oZ2 → Z2 such that

ϕ(x, p, q, z) = (h(x), c(x, p, q, z), h(z)), (x, p, q, z) ∈ Gs,u
A oZ2.

The condition cB ◦ ϕ̃ = cA implies that c(x, p, q, z) = (p, q) so that we have

ϕ(x, p, q, z) = (h(x), p, q, h(z)), (x, p, q, z) ∈ Gs,u
A oZ2.

Let us consider the unitaries Vh : `2(Gs,u
B o Z2) → `2(Gs,u

A o Z2) and Vh−1 :
`2(Gs,u

A oZ2)→ `2(Gs,u
B oZ2) defined by

[Vhζ](x, p, q, z)= ζ(h(x), p, q, h(z)), [Vh−1 ξ](y, m, n, w)= ξ(h−1(y), m, n, h−1(w))

for ζ ∈ `2(Gs,u
B o Z2), (x, p, q, z) ∈ Gs,u

A o Z2, ξ ∈ `2(Gs,u
A o Z2), (y, m, n, w) ∈

Gs,u
B oZ2. Put Φ̃ = Ad(Vh) which satisfies Φ̃(Cc(Gs,u

A oZ2)) = Cc(Gs,u
B oZ2) so

that Φ̃(R̃A) = R̃B. Since XA, XB are identified with the unit spaces

(Gs,u
A oZ2)◦ = {(x, 0, 0, x) ∈ Gs,u

A oZ2 : x ∈ XA},
(Gs,u

B oZ2)◦ = {(y, 0, 0, y) ∈ Gs,u
B oZ2 : y ∈ XB},

respectively, it follows that Φ̃(C(XA)) = C(XB). It is also direct to see that the
identity Φ̃ ◦γA

(r,s)=γB
(r,s)◦Φ̃ for (r, s)∈T2 holds, because of the equality cB◦ϕ̃= cA.

(vi)⇒ (v) Suppose that there exists an isomorphism Φ̃ : R̃A → R̃B of C∗-
algebras such that Φ̃(C(XA)) = C(XB) and Φ̃ ◦ γA

(r,s) = γB
(r,s) ◦ Φ̃ for (r, s) ∈ T2.

As the action δA
t = γA

(t,t) of t ∈ T act on R̃A and its fixed point algebra (R̃A)
δA

is RA. Let us denote by Φ the restriction of Φ̃ to the fixed point algebra RA. It
induces an isomorphism Φ : RA → RB. Then it is clear that the action ρA

t =
γA
(−t/2,t/2) onRA satisfies Φ ◦ ρA

t = ρB
t ◦Φ. This shows the condition (v).

5. K-THEORETIC INVARIANTS

It follows from Theorem 1.1 that the isomorphism classes of the C∗-algebras
RA and R̃A are invariant under topological conjugacy of two-sided topological
Markov shifts. Concerning the asymptotic Ruelle algebra RA, its K-group for-
mula has been obtained by Putnam ([22], p. 129; cf. [11], [14]). We focus on study-
ing the K-group K0(R̃A) of the latter algebra R̃A. Under the assumption that the
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matrix A is irreducible and non-permutation, the algebra R̃A is a unital, simple,
purely infinite, nuclear C∗-algebra satisfying UCT, so that its isomorphism class
is completely determined by its K-theory date by a general classification theory
of Kirchberg ([15]) and Phillips ([21]). Hence the following is a corollary of Theo-
rem 1.1.

PROPOSITION 5.1. The pair (K0(R̃A), [1R̃A
]) of the K0-group of R̃A and the

position of the unit 1R̃A
of R̃A in K0(R̃A) is invariant under topological conjugacy of

two-sided topological Markov shift (XA, σA).

Recall that the projection EA is defined in (2.3). We have the following
proposition.

PROPOSITION 5.2. There exists an isomorphism Φ : R̃A⊗K → OAt ⊗OA⊗K
such that the induced isomorphism Φ∗ : K0(R̃A)→ K0(OAt ⊗OA) satisfies Φ∗([1R̃A

])

= [EA].

Proof. Since the C∗-algebra OAt ⊗ OA is unital and simple, the projection
EA in (2.3) is a full projection in OAt ⊗ OA. Brown’s theorem [4] tells us that
there exists an isometry vA in the multiplier algebra M(OAt ⊗OA ⊗K) of OAt ⊗
OA ⊗ K such that v∗AvA = 1 and vAv∗A = EA ⊗ 1. Define an isomorphism Φ :
R̃A ⊗K → OAt ⊗OA ⊗K by Φ = Ad(v∗A). Let p0 be a rank one projection in K.
We then have

Φ∗([1R̃A
]) = Φ∗([EA ⊗ p0]) = [v∗A(EA ⊗ p0)vA] = [EA ⊗ p0] = [EA]

in K0(OAt ⊗OA).

Hence the position [EA] in K0(OAt ⊗ OA) as well as the group K0(OAt ⊗
OA) are invariant under topological conjugacy of (XA, σA). By the Künneth for-
mulas [32] of the K-groups of the tensor product C∗-algebras, we know that

K0(OAt ⊗OA) ∼= (K0(OAt)⊗ K0(OA))⊕ (K1(OAt)⊗ K1(OA)),

K1(OAt ⊗OA) ∼= (K0(OAt)⊗ K1(OA))⊕ (K1(OAt)⊗ K0(OA))

⊕ TorZ1 (K0(OAt), K0(OA)).

By the universal coefficient theorem for KK-groups, the K-group Ki(OAt ⊗OA)
is isomorphic to the KK-group KKi+1(OAt ,OA) for i = 0, 1, so that

K0(R̃A) ∼= KK1(OAt ,OA), K1(R̃A) ∼= KK(OAt ,OA).

Since K0(OAt) is isomorphic to K0(OA) and K1(OA) is the torsion free part of
K0(OA), the groups Ki(OAt ⊗OA), i = 0, 1 do not have any further information
than the group K0(OA) by the above Künneth formulas. As K0(OA) = ZN/(id−
At)ZN , it is a direct sum Zn ⊕ TA of its torsion free part Zn and its torsion part
TA = Z/m1Z⊕ · · · ⊕ Z/mkZ, where mi|mi+1 with mi > 2, i = 1, . . . , k − 1. It is
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easy to see that

ZN/(id− A)ZN ⊗ZN/(id− At)ZN

∼= Zn2 ⊕ (TA)
n ⊕ (TA)

n ⊕ (TA ⊗ TA)

∼= Zn2 ⊕ (Z/m1Z)2n+2k−1 ⊕ (Z/m2Z)2n+2k−3 ⊕ · · · ⊕ (Z/mkZ)2n+1.

Hence the groups Ki(OAt ⊗ OA), i = 0, 1 give us the same information as the
group K0(OA).

The position [EA] in K0(OAt ⊗OA) however gives us more information than
the group K0(OA). In the above Künneth formula for K0(OAt ⊗OA), the element

[EA] lives in K0(OAt) ⊗ K0(OA) as the element
N
∑

i=1
[T∗i Ti] ⊗ [SiS∗i ] by definition

of EA. Therefore the position [EA] of the projection EA in K0(OAt) ⊗ K0(OA)
is invariant under topological conjugacy of (XA, σA). We set the vector ei =[
0, . . . , 0,

i
1, 0, . . . , 0

]
for i = 1, . . . , N. We summarize the above discussion as The-

orem 1.2 in Introduction and give its proof.

Proof of Theorem 1.2. Let A = [A(i, j)]Ni,j=1, B = [B(i, j)]Mi,j=1 be irreducible

non-permutation matrices such that (XA, σA) and (XB, σB) are topologically con-
jugate. By William’s theorem [38], the matrices A, B are strong shift equivalent.
Therefore there exist two rectangular nonnegative integer matrices C, D such
that A = CD, B = DC. By Theorem 4.6 of [17], there exists an isomorphism
Φ : OA ⊗K → OB ⊗K of C∗-algebras such that the diagram

K0(OA)
Φ∗−−−−→ K0(OB)

εA

y yεB

ZN/(id− At)ZN mCt−−−−→ ZM/(id− Bt)ZM

commutes, where mCt is the isomorphism induced by multiplying the matrix Ct

from the left and εA : K0(OA) → ZN/(id− At)ZN is an isomorphism defined
by εA([SiS∗i ]) = [ei] the class of the vector ei in ZN . Since the identities At =
DtCt, Bt = CtDt also hold, we similarly have an isomorphism Φt : OAt ⊗K →
OBt ⊗K of C∗-algebras such that the diagram

K0(OAt)
Φt
∗−−−−→ K0(OBt)

εAt

y yεBt

ZN/(id− A)ZN mD−−−−→ ZM/(id− B)ZM
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commutes. We then have a commutative diagram:

K0(OAt )⊗ K0(OA)
Φt
∗⊗Φ∗−−−−→ K0(OBt )⊗ K0(OB)

εAt⊗εA

y yεBt⊗εB

ZN/(id− A)ZN ⊗ZN/(id− At)ZN mD⊗mCt−−−−−→ ZM/(id− B)ZM ⊗ZM/(id− Bt)ZM.

We note that
N

∑
i=1

εAt([T∗i Ti])⊗ εA([SiS∗i ])=
N

∑
i=1

εAt([TiT∗i ])⊗ εA([SiS∗i ])

=
N

∑
i=1

[ei]⊗ [ei] in ZN/(id−A)ZN ⊗ZN/(id−At)ZN ,

and set the specific element as

(5.1) eA =
N

∑
i=1

[ei]⊗ [ei] in ZN/(id− A)ZN ⊗ZN/(id− At)ZN .

We will show that (mD ⊗ mCt)(eA) = eB. In the computation below, the vectors
ei, and f j denote the N × 1 matrix in ZN whose ith component is one and zero
elsewhere, and the M × 1 matrix in ZM whose jth component is one and zero
elsewhere, respectively. We have

N

∑
i=1

Dei ⊗ Ctei

=
N

∑
i=1


D(1, i)
D(2, i)

...
D(M, i)

⊗


C(i, 1)
C(i, 2)

...
C(i, M)

 =
N

∑
i=1


D(1, i)
D(2, i)

...
D(M, i)

⊗ M

∑
j=1

C(i, j) f j

=
N

∑
i=1

M

∑
j=1


D(1, i)C(i, j)
D(2, i)C(i, j)

...
D(M, i)C(i, j)

⊗ f j =
M

∑
j=1


∑N

i=1 D(1, i)C(i, j)
∑N

i=1 D(2, i)C(i, j)
...

∑N
i=1 D(N, i)C(i, j)

⊗ f j

=
M

∑
j=1


B(1, j)
B(2, j)

...
B(N, j)

⊗ f j =
M

∑
j=1

B f j ⊗ f j.

Hence we have

(5.2)
N

∑
i=1

Dei ⊗ Ctei −
M

∑
j=1

f j ⊗ f j =
M

∑
j=1

(B− id) f j ⊗ f j
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so that

(mD ⊗mCt)(eA) =
N

∑
i=1

[Dei]⊗ [Ctei] =
M

∑
j=1

[ f j]⊗ [ f j] = eB

thus proving Theorem 1.2.

REMARK 5.3. (i) The pair (ZN/(id−A)ZN⊗ZN/(id−At)ZN , eA) is a com-
plete invariant for the isomorphism class of the C∗-algebra R̃A, because the group
structure of ZN/(id− A)ZN ⊗ ZN/(id− At)ZN determines the groups Ki(OA),
Ki(OAt), i = 0, 1 and also the pair determines the position [EA] in K0(OAt ⊗OA).
Hence by Proposition 5.2, the pair (K0(R̃A), [EA]) and the group K1(R̃A) are de-
termined by the pair (ZN/(id− A)ZN ⊗ZN/(id− At)ZN , eA).

(ii) Since the projection EA is regarded as an element of the C∗-algebra FAt ⊗
FA such that C∗(Ga

A) = EA(FAt ⊗ FA)EA, we have another topological conju-
gacy invariant (K0(FAt)⊗ K0(FA), [EA]), the position [EA] in the group K0(FAt)
⊗K0(FA). We discuss this kind of invariants in [19].

(iii) J. Cuntz in [7] studied the homotopy groups πn(End(OA⊗K)) of the space
of endomorphisms End(OA ⊗K) of the C∗-algebra OA ⊗K. He proved that nat-
ural maps εn : πn(End(OA ⊗K))→ KKn(OA,OA) yield isomorphisms, and de-
fined an element denoted by ε1(λ

A) in the group Ext(OA)⊗ K0(OA), where λA

denotes the gauge action αA on OA. By the Kaminker–Putnam’s K-theoretic du-
ality between Ext(OA) and K0(OAt) ([12]), the element ε1(λ

A) can be regarded
as an element in K0(OAt) ⊗ K0(OA). Cuntz’s observation in [7] shows that the
element ε1(λ

A) is nothing but the above element eA under the identification be-
tween Ext(OA) ⊗ K0(OA) and ZN/(id− A)ZN ⊗ ZN/(id− At)ZN . He already
states in [7] that the position ε1(λ

A) in ZN/(id − A)ZN ⊗ ZN/(id − At)ZN is
invariant under topological conjugacy of the topological Markov shift (XA, σA).

In [38], Williams introduced an equivalence relation of nonnegative integral
square matrices called shift equivalence. It is weaker than strong shift equiva-
lence. The shift equivalence relation has played a crucial rôle in the classification
theory of symbolic dynamical systems (cf. [16]). Two matrices A, B are said to
be shift equivalent if there exist a positive integer ` and rectangular nonnegative
integer matrices R, S such that

(5.3) AR = RB, SA = BS, A` = RS, B` = SR.

We strengthen Theorem 1.2 in the following way.

PROPOSITION 5.4. The pair (ZN/(id− A)ZN ⊗ ZN/(id− At)ZN , eA) is in-
variant under shift equivalence.

Proof. Suppose that matrices A = [A(i, j)]Ni,j=1, B = [B(i, j)]Mi,j=1 are shift
equivalent. Let ` be a positive integer and R, S rectangular nonnegative integer
matrices satisfying (5.3). Then the map mS : ZN/(id− A)ZN → ZM/(id− B)ZM

defined by the left multiplication of the matrix S yields an isomorphism of the
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abelian groups. We similarly see that mRt : ZN/(id− At)ZN → ZM/(id− Bt)ZB

defined by the left multiplication of the matrix Rt yields an isomorphism of the
abelian groups. A similar computation proving the equality (5.2) in the proof of
Theorem 1.2 shows that the equality

N

∑
i=1

Sei ⊗ Rtei −
M

∑
j=1

f j ⊗ f j =
M

∑
j=1

(SR− id) f j ⊗ f j =
M

∑
j=1

(B` − id) f j ⊗ f j

holds. As B`− id = (B− id)(B`−1 + · · ·+ B+ id), we know (mS⊗mRt)(eA) = eB
so that the map

mS⊗mRt :ZN/(id−A)ZN⊗ZN/(id−At)ZN→ZM/(id−B)ZM⊗ZM/(id−Bt)ZM

gives rise to an isomorphism between (ZN/(id− A)ZN ⊗ ZN/(id− At)ZN , eA)
and (ZM/(id− B)ZM ⊗ZM/(id− Bt)ZM, eB).

We will present an example showing that the invariant (ZN/(id− A)ZN ⊗
ZN/(id − At)ZN , eA) is strictly finer than the K-group K0(OA). We note that
Enomoto–Fujii–Watatani in [9] listed a complete classification table of Cuntz–
Krieger algebras OA in terms of their K-groups for which the sizes of matrices
are three.

Let A =

1 1 1
1 1 1
1 1 1

 . Since (id− A)

 l
m
n

 =

−m− n
−l − n
−l −m

 , the map

ϕ :

a
b
c

 ∈ Z3 → [a + b + c] ∈ Z/2Z

induces an isomorphism ϕ : Z3/(id− A)Z3 → Z/2Z. Hence we have an isomor-
phism

ϕ̃ := ϕ⊗ ϕ : Z3/(id− A)Z3 ⊗Z3/(id− At)Z3 → Z/2Z⊗Z/2Z ∼= Z/2Z.

Since ϕ̃(ei ⊗ ei) = ϕ(ei)⊗ ϕ(ei) = 1⊗ 1, we then have

ϕ̃(eA) = [1⊗ 1] + [1⊗ 1] + [1⊗ 1] = [1] in Z/2Z

so that
(Z3/(id− A)Z3 ⊗Z3/(id− At)Z3, eA) ∼= (Z/2Z, [1]).

On the other hand, let B =

1 1 1
1 1 0
1 1 0

 and hence Bt =

1 1 1
1 1 1
1 0 0

 . Since

(id− B)

 l
m
n

 =

 −m− n
−l

−l −m + n

 , (id− Bt)

 l
m
n

 =

−m− n
−l − n
−l + n

 ,
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the maps

ψ :

a
b
c

 ∈ Z3 → [a + b + c] ∈ Z/2Z, ψt :

a
b
c

 ∈ Z3 → [b + c] ∈ Z/2Z

satisfy

ψ
(
(id− B)

 l
m
n

 ) = 2(−l −m), ψt
(
(id− Bt)

 l
m
n

 ) = −2l

so that they induce isomorphisms

ψ : Z3/(id− B)Z3 → Z/2Z, ψ
t : Z3/(id− Bt)Z3 → Z/2Z

and

ψ̃ := ψ⊗ ψ
t : Z3/(id− B)Z3 ⊗Z3/(id− Bt)Z3 → Z/2Z⊗Z/2Z ∼= Z/2Z.

Since

ψ̃(ei ⊗ ei) = ψ(ei)⊗ ψ
t
(ei) =

{
[1⊗ 0] = [0] if i = 1,
[1⊗ 1] = [1] if i = 2, 3,

we then have

ψ̃(eA) = [1⊗ 0] + [1⊗ 1] + [1⊗ 1] = [0] in Z/2Z

so that

(Z3/(id− B)Z3 ⊗Z3/(id− Bt)Z3, eB) ∼= (Z/2Z, [0]).

We thus have the following proposition.

PROPOSITION 5.5. Let A =

1 1 1
1 1 1
1 1 1

 and B =

1 1 1
1 1 0
1 1 0

 . Then K0(OA) ∼=

K0(OB)(∼= Z/2Z) and det(id− A) = det(id− B)(= −2). However

(Z3/(id− A)Z3 ⊗Z3/(id− At)Z3, eA) ∼= (Z/2Z, [1]),

(Z3/(id− B)Z3 ⊗Z3/(id− Bt)Z3, eB) ∼= (Z/2Z, [0]).

In the rest of this section, we will deal with square matrices with nonneg-
ative integers. Such matrices are called nonnegative integral matrices. A non-
negative integral matrix is said to be essential if none of its rows or columns is
zero vector. Let A = [A(i, j)]Ni,j=1 be an N × N essential nonnegative integral
matrix. The matrix defines a finite directed graph GA = (VA, EA) with N ver-
tices VA = {v1, . . . , vN} and A(i, j) directed edges from the vertex vi to the vertex
vj for i, j = 1, . . . , N. The directed edges are denoted by {a1, . . . , aNA} = EA.
For an edge ak ∈ EA, denote by s(ak), t(ak) its source vertex, terminal vertex,
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respectively. The directed graph GA has the NA × NA transition matrix AG =

[AG(i, j)]NA
i,j=1 of edges defined by

AG(i, j) =

{
1 if t(ai) = s(aj),
0 otherwise,

i, j = 1, . . . , NA.

As in Remark 2.16 of [8] and Section 4 of [30], the Cuntz–Krieger algebra OA for
the nonnegative integral matrix A is defined to be the Cuntz–Krieger algebraOAG

for the matrix AG with entries in {0, 1}. It is well-known that there exist rectangu-
lar nonnegative integral matrices R, S such that A = RS, AG = SR (cf. [16]). As in
Lemma 4.5 of [17], the left multiplication of the matrix St induces an isomorphism
mSt : ZNA /(id− (AG)t)ZNA → ZN/(id− At)ZN such that mSt([1NA ]) = [1N ],
where 1NA = [1, . . . , 1] ∈ ZNA , 1N = [1, . . . , 1] ∈ ZN . Let 1OA be the unit of
the Cuntz–Krieger algebra OA. By Proposition 3.1 of [6], there exists an isomor-
phism from K0(OAG ) to ZNA /(id− (AG)t)ZNA that sends the class [1OG

A
] of 1OG

A
to the class [1NA ] of 1NA . Hence for a nonnegative integral matrix A, there ex-
ists an isomorphism from K0(OA) to ZN/(id− At)ZN that sends the class of the
unit [1OA ] of OA to the class [1N ] of 1N . We define the element [eA] in the group
ZN/(id− A)ZN ⊗ZN/(id− At)ZN by the same formula (5.1) as that for matrices
with entries in {0, 1}. We then have the following lemma.

LEMMA 5.6. There exists an isomorphism Φ of groups from ZNA /(id− AG)ZNA

⊗ZNA /(id− (AG)t)ZNA onto ZN/(id− A)ZN ⊗ZN/(id− At)ZN such that
Φ(eAG ) = eA.

Proof. Let R, S be rectangular nonnegative integral matrices R, S satisfying
A = RS, AG = SR. As in the proof of Theorem 1.2, the isomorphism mR ⊗mSt :
ZNA /(id − AG)ZNA ⊗ ZNA /(id − (AG)t)ZNA → ZN/(id − A)ZN ⊗ ZN/(id −
At)ZN satisfies mR ⊗mSt(eAG ) = eA.

The following proposition can be proved in a similar way to how Proposi-
tion 5.4 was proved.

PROPOSITION 5.7. Let A = [A(i, j)]Ni,j=1 be an N × N essential nonnegative
integral matrix. The pair (ZN/(id− A)ZN⊗ZN/(id− At)ZN , eA) is invariant under
shift equivalence.

We will present an example of nonnegative integral matrix A such that the
two C∗-algebras R̃A and OAt ⊗OA are not isomorphic.

Let A =

[
4 1
1 0

]
. Since (id − A)

[
l
m

]
=

[
−3l −m
−l + m

]
, the map ϕ :

[
l
m

]
∈

Z2 → [l + m] ∈ Z/4Z induces isomorphisms ϕ : Z2/(id− A)Z2 → Z/4Z and

ϕ̃ := ϕ⊗ ϕ : Z2/(id− A)Z2 ⊗Z2/(id− At)Z2 → Z/4Z⊗Z/4Z ∼= Z/4Z.
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Since ϕ̃(ei ⊗ ei) = ϕ(ei)⊗ ϕ(ei) = 1⊗ 1, we have

ϕ̃(eA) = [1⊗ 1] + [1⊗ 1] = [2] in Z/4Z.

On the other hand, we have ϕ̃([12]⊗ [12]) = ϕ
( [1

1

] )
⊗ ϕt

( [1
1

] )
= [2⊗ 2] = [0]

in Z/4Z. We thus have

(Z2/(id− A)Z2 ⊗Z2/(id− At)Z2, eA) ∼= (Z/4Z, [2]),

(Z2/(id− A)Z2 ⊗Z2/(id− At)Z2, [12]⊗ [12]) ∼= (Z/4Z, [0]),

so that the algebras R̃A and OAt ⊗ OA are not isomorphic by the classification
theorem of unital, purely infinite, simple nuclear C∗-algebras ([15], [21]).

6. KMS STATES ON R̃A

In this section, we will study KMS states on the C∗-algebra R̃A for the di-
agonal action δA. Following after [3], we will define KMS states in the following
way. For a one-parameter automorphism group αt, t ∈ R on a C∗-algebra A and
a real number γ ∈ R, a state ψ on A is called a KMS state for the action α if ψ
satisfies

(6.1) ψ(Xαiγ(Y)) = ψ(YX)

for all X, Y in a norm dense α-invariant ∗-subalgebra of the set of entire analytic
elements for α in A. The value γ is called the inverse temperature and the condi-
tion (6.1) is called the KMS condition.

Let β be the Perron–Frobenius eigenvalue for an irreducible matrix A with
entries in {0, 1}. It has been shown in [10] that KMS states for gauge action on
Cuntz–Krieger algebra OA exist if and only if its inverse temperature is log β,
and the admitted KMS state is unique. Let us denote by ϕ the unique KMS state
for gauge action on OA. Similarly we denote by ϕt the unique KMS state for

gauge action on OAt . As in [10], the vector

 ϕ(S1S∗1)
...

ϕ(SNS∗N)

 gives rise to the unique

normalized positive eigenvector of A for the eigenvalue β. Hence we have

β

 ϕ(S1S∗1)
...

ϕ(SNS∗N)

 =

 A(1, 1) · · · A(1, N)
...

...
A(N, 1) · · · A(N, N)


 ϕ(S1S∗1)

...
ϕ(SNS∗N)

 =

 ϕ(S∗1S1)
...

ϕ(S∗NSN)


so that βϕ(SiS∗i ) = ϕ(S∗i Si), i = 1, . . . , N and more generally

βm ϕ(Sµ1···µm S∗µ1···µm) = ϕ(S∗µ1···µm Sµ1···µm), (µ1, . . . , µm) ∈ Bm(XA).
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Therefore we have
(6.2)

ϕ(Sµm S∗µm) =
1
β

ϕ(S∗µm Sµm) =
1
β

ϕ(S∗µ1···µm Sµ1···µm) = βm−1 ϕ(Sµ1···µm S∗µ1···µm)

and similarly

(6.3) ϕt(Tξ1 T∗ξ1
) = βk−1 ϕt(Tξk ···ξ1 T∗ξk ···ξ1

), (ξk, . . . , ξ1) ∈ Bk(XAt).

Let [ai]
N
i=1 and [bi]

N
i=1 be the positive eigenvectors of A and At for the eigenvalue

β, respectively satisfying
N

∑
i=1

aibi = 1.

For admissible words ξ = (ξ1, . . . , ξk) ∈ Bk(XA) and ν = (ν1, . . . , νn) ∈ Bn(XA),
put ξν = (ξ1, . . . , ξk, ν1, . . . , νn) ∈ Bk+n(XA). For i ∈ Z, denote by U

[ξν]i+k+n−1
i

the

cylinder set of XA such that

U
[ξν]i+k+n−1

i
={(xj)j∈Z∈XA : xi = ξ1, . . . , xi+k−1= ξk, xi+k =ν1, . . . , xi+k+n−1=νn}.

In [20], W. Parry proved that there exists a unique invariant measure µ on XA
of maximal entropy. It is called the Parry measure, which satisfies the following
equality:

(6.4) µ(U
[ξν]i+k+n−1

i
) = bξ1 aνn β−(k+n−1), i ∈ Z.

Let C∗(Ga
A) be the groupoid C∗-algebra for the groupoid Ga

A. As in Putnam’s
paper [22] and his lecture notes [23], the algebra is an AF-algebra with a tracial
state Tr defined by

Tr( f ) =
∫

XA

f (x, x)dµ(x) for f ∈ Cc(GA).

Let us define a state ϕ̃ on R̃A by setting:

ϕ̃ =
1

∑N
j=1 ϕt(TjT∗j )ϕ(S∗j Sj)

ϕt ⊗ ϕ on R̃A = EA(OAt ⊗OA)EA.

Since (ϕt ⊗ ϕ)(EA) =
N
∑

j=1
ϕt(TjT∗j )ϕ(S∗j Sj), we know that ϕ̃ gives rise to a state

on R̃A. We know more about ϕ̃ in the following way.

PROPOSITION 6.1. (i) The state ϕ̃ is a KMS state on R̃A for the diagonal action
δA at the inverse temperature log β.

(ii) The restriction of ϕ̃ to the subalgebra C(XA) coincides with the Parry measure µ

on XA.
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(iii) The formula

(6.5) ϕ̃(Y) = Tr
( ∫∫

T2

γA
r,s(Y)drds

)
for Y ∈ R̃A

holds.

Proof. (i) For

µ = (µ1, . . . , µm), ν = (ν1, . . . , νn), µ′ = (µ′1, . . . , µ′m′), ν′ = (ν′1, . . . , ν′n′) ∈ B∗(XA),

ξ = (ξk, . . . , ξ1), η = (ηl , . . . , η1), ξ
′
= (ξ ′k′ , . . . , ξ ′1), η′ = (η′l′ , . . . , η′1) ∈ B∗(XAt)

with A(ξk, µ1) = A(ηl , ν1) = A(ξ ′k′ , µ′1) = A(η′l′ , ν′1) = 1, put

x = Tξ T∗η ⊗ SµS∗ν , x′ = T
ξ
′T∗η′ ⊗ Sµ′S

∗
ν′ ∈ R̃A.

It then follows that

(ϕt ⊗ ϕ)(EA) · ϕ̃(x′δA
i log β(x))

= (ϕt ⊗ ϕ)((T
ξ
′T∗η′ ⊗ Sµ′S

∗
ν′)(α

At

i log β(Tξ T∗η )⊗ αA
i log β(SµS∗ν)))

= ϕt(T
ξ
′T∗η′α

At

i log β(Tξ T∗η ))ϕ(Sµ′S
∗
ν′α

A
i log β(SµS∗ν))

= ϕt(Tξ T∗η T
ξ
′T∗η′)ϕ(SµS∗νSµ′S

∗
ν′)

= (ϕt ⊗ ϕ)((Tξ T∗η ⊗ SµS∗ν)(Tξ
′T∗η′ ⊗ Sµ′S

∗
ν′))

= (ϕt ⊗ ϕ)(xx′) = (ϕt ⊗ ϕ)(EA) · ϕ̃(xx′),

thus proving that ϕ̃ is a KMS state on R̃A for the diagonal action δA at the inverse
temperature log β.

(ii) Put

ai =
ai

∑N
i=1 ai

= ϕ(SiS∗i ), bi =
bi

∑N
i=1 bi

= ϕt(TiT∗i )

so that
N

∑
i=1

ϕ(SiS∗i )ϕt(TiT∗i ) =
1(

∑N
i=1 ai

)
·
(

∑N
i=1 bi

) .

It then follows that

µ(U
[ξν]i+k+n−1

i
) = bξ1 ·

( N

∑
i=1

bi

)
· aνn

( N

∑
i=1

ai

)
· β−(k+n−1)

= ϕt(Tξ1 T∗ξ1
)
( N

∑
i=1

bi

)
· ϕ(Sνn S∗νn)

( N

∑
i=1

ai

)
· β−(k+n−1)

=
1

∑N
i=1 ϕt(TiT∗i )ϕ(SiS∗i )

· ϕt(Tξ1 T∗ξ1
)ϕ(Sνn S∗νn) · β

−(k+n−1).
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By using (6.2) and (6.3) we thus have

µ(U
[ξν]i+k+n−1

i
) =

1

∑N
i=1 ϕt(TiT∗i )ϕ(SiS∗i )

· 1
β
· ϕt(Tξk ···ξ1 T∗ξk ···ξ1

)ϕ(Sν1···νn S∗ν1···νn)

=
1

∑N
i=1 ϕt(TiT∗i )ϕ(S∗i Si)

· ϕt(Tξ T∗
ξ
)ϕ(SνS∗ν)

=
1

(ϕt ⊗ ϕ)(EA)
· ϕt(Tξ T∗

ξ
)ϕ(SνS∗ν) = ϕ̃(Tξ T∗

ξ
⊗ SνS∗ν).

(iii) For

µ = (µ1, . . . , µm), ν = (ν1, . . . , νn) ∈ B∗(XA),

ξ = (ξk, . . . , ξ1), η = (ηl , . . . , η1) ∈ B∗(XAt),

satisfying A(ξk, µ1) = A(ηl , ν1) = 1, it is direct to see the following equalities:

ϕ̃(Tξ T∗η ⊗ SµS∗ν) =ϕt(Tξ T∗η )ϕ(SµS∗ν)

=

{
ϕt(Tξ T∗

ξ
)ϕ(SνS∗ν) if ξ = η, µ = ν,

0 otherwise,

=

{
µ(U

[ξν]i+k+n−1
i

) if ξ = η, µ = ν,

0 otherwise.

Since the above value coincides with

Tr
( ∫∫

T2

γA
r,s(Tξ T∗η ⊗ SµS∗ν)drds

)
,

the formula (6.5) holds.

We finally prove that a KMS state on R̃A for the diagonal action δA exists
only at the inverse temperature log β. We will further show that the admitted
KMS state is unique. In order to avoid non essential difficulty, we assume that the
irreducible matrix A with entries in {0, 1} is aperiodic so that there exists n0 ∈ N
such that An0(i, j) > 1 for all i, j = 1, . . . , N. In case when A is not aperiodic,
but irreducible with period p and non-permutation, it is not difficult to see that
the equation (6.12) holds for n = pm, m > m0 for some m0 ∈ N and i, j in the
same period class (cf. [16]), so that Theorem 1.3 holds. If A is not irreducible, the
unicity of a KMS state is broken, so that Theorem 1.3 does not hold any longer.

Let ψ be a KMS state on R̃A for the diagonal action δA at the inverse tem-
perature log γ for 1 < γ ∈ R. We will prove that γ = β, the Perron–Frobenius
eigenvalue of A and ψ = ϕ̃.

For i, j ∈ {1, . . . , N} and words µ = (µ1, . . . , µm), ν = (ν1, . . . , νn) such that
(i, µ1, . . . , µm, j) ∈ Bm+2(XA), (i, ν1, . . . , νn, j) ∈ Bn+2(XA), we define a partial
isometry

(6.6) Vν,µ(i, j) = T∗i T∗ν1
· · · T∗νn T∗j ⊗ SiSµ1 · · · Sµm Sj.
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Since T∗i ⊗ Si, T∗j ⊗ Sj ∈ R̃A, we know that Vν,µ(i, j) belongs to R̃A. We then have
the identities

Vν,µ(i, j)Vν,µ(i, j)∗

= T∗i T∗ν1
· · · T∗νn T∗j TjTνn · · · Tν1 Ti ⊗ SiSµ1 · · · Sµm SjS∗j S∗µm · · · S

∗
µ1

S∗i
= T∗i Ti ⊗ SiSµ1 · · · Sµm SjS∗j S∗µm · · · S

∗
µ1

S∗i and

Vν,µ(i, j)∗Vν,µ(i, j)

= TjTνn · · · Tν1 TiT∗i T∗ν1
· · · T∗νn T∗j ⊗ S∗j S∗µm · · · S

∗
µ1

S∗i SiSµ1 · · · Sµm Sj

= TjTνn · · · Tν1 TiT∗i T∗ν1
· · · T∗νn T∗j ⊗ S∗j Sj.

For p ∈ Z, denote by R̃δA

A (p) the pth spectral subspace of R̃A for the action δA.

LEMMA 6.2. Suppose that X ∈ R̃A belongs to R̃δA

A (p) for some p 6= 0. Then we
have ψ(X) = 0

Proof. We may assume p > 0. For i, j = 1, . . . , N, let µ = (µ1, . . . , µn0+p)

be an admissible word such that (i, µ1, . . . , µn0+p, j) ∈ Bn0+p+2(XA). Take ν =

(ν1, . . . , νn0) with (i, ν1, . . . , νn0 , j) ∈ Bn0(XA) and consider the partial isometry

Vν,µ(i, j) = T∗i T∗ν1
· · · T∗νn0

T∗j ⊗ SiSµ1 · · · Sµn0+p Sj.

The partial isometry Vν,µ(i, j) belongs to R̃δA

A (p) and satisfies

Vν,µ(i, j)Vν,µ(i, j)∗ = T∗i Ti ⊗ SiSµ1 · · · Sµn0+p SjS∗j S∗µn0+p · · · S
∗
µ1

S∗i .

We then have

EA =
N

∑
i,j=1

∑
µ∈Bn0+p(XA)

Vν,µ(i, j)Vν,µ(i, j)∗.

It then follows that

ψ(X) = ψ(EAX) =
N

∑
i,j=1

∑
µ∈Bn0+p(XA)

ψ(Vν,µ(i, j)Vν,µ(i, j)∗X)

=
N

∑
i,j=1

∑
µ∈Bn0+p(XA)

ψ(Vν,µ(i, j)∗XδA
i log γ(Vν,µ(i, j)))

=
1

γp

N

∑
i,j=1

∑
µ∈Bn0+p(XA)

ψ(Vν,µ(i, j)∗XVν,µ(i, j))

=
1

γp

N

∑
i,j=1

∑
µ∈Bn0+p(XA)

ψ(Vν,µ(i, j)δA
i log γ(Vν,µ(i, j)∗X))

=
1

γp

N

∑
i,j=1

∑
µ∈Bn0+p(XA)

ψ(Vν,µ(i, j)Vν,µ(i, j)∗X) =
1

γp ψ(EAX).
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Since γ > 1, we have ψ(X) = 0.

SinceRA is the fixed point algebra (R̃A)
δA

of R̃A under δA, we may define
a conditional expectation EA : R̃A → RA by

(6.7) EA(X) =
∫
T

δA
t (X)dt, X ∈ R̃A.

The preceding lemma implies the following lemma.

LEMMA 6.3. Let ψ0 be the restriction of ψ to the subalgebra (R̃A)
δA

. Then ψ0 is
a tracial state onRA such that ψ = ψ0 ◦ EA.

Hence the value of KMS state is determined on the subalgebra RA. Recall

that UA denotes the unitary UA =
N
∑

i=1
T∗i ⊗ Si which belongs toRA.

LEMMA 6.4. ψ(UAXU∗A) = ψ(X) for all X ∈ R̃A.

Proof. Since UA is fixed under the action δA, we have

ψ(X) = ψ(U∗AUAX) = ψ(UAXδA
i log γ(U

∗
A)) = ψ(UAXU∗A).

As in Proposition 9.9 of [18], the automorphism Ad(UA) behaves like the
shift on R̃A. Lemma 6.4 tells us that the KMS state is invariant nuder the shift.
The following lemma is crucial in our discussions.

LEMMA 6.5. Let X = Tξ T∗η ⊗ SµS∗ν ∈ RA where

µ = (µ1, . . . , µm), ν = (ν1, . . . , νn) ∈ B∗(XA),

ξ = (ξk, . . . , ξ1), η = (ηl , . . . , η1) ∈ B∗(XAt).

Suppose that ψ(X) 6= 0. Then we have k = l, m = n and µ = ν, ξ = η.

Proof. Since X belongs toRA, we have A(ξk, µ1) = A(ηl , ν1) = 1 and k− l =
n−m. We may assume that k > l and hence n > m. It then follows that

ψ(X)=ψ((Tξk · · · Tξ1 T∗η1
· · · T∗ηl

⊗ Sµ1 · · · Sµm S∗νn · · · S
∗
ν1
) · (Tηl T

∗
ηl
⊗ Sν1 S∗ν1

))

=ψ((Tηl T
∗
ηl
⊗ Sν1 S∗ν1

) · δA
i log γ(Tξk · · · Tξ1 T∗η1

· · · T∗ηl
⊗ Sµ1 · · · Sµm S∗νn · · · S

∗
ν1
))

=
1

γk+m−l−n ψ((Tηl T
∗
ηl
⊗Sν1 S∗ν1

)·(Tξk · · · Tξ1 T∗η1
· · · T∗ηl

⊗Sµ1 · · · Sµm S∗νn · · · S
∗
ν1
))

=ψ(Tηl T
∗
ηl
· Tξk · · · Tξ1 T∗η1

· · · T∗ηl
⊗ Sν1 S∗ν1

· Sµ1 · · · Sµm S∗νn · · · S
∗
ν1
).

By the assumption ψ(X) 6= 0, we get ηl = ξk and ν1 = µ1, and we have

ψ(X) = ψ(Tηl Tξk−1
· · · Tξ1 T∗η1

· · · T∗ηl
⊗ Sµ1 · · · Sµm S∗νn · · · S

∗
ν1
).
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As

UA · Tηl Tξk−1
· · · Tξ1 T∗η1

· · · T∗ηl
⊗ Sµ1 · · · Sµm S∗νn · · · S

∗
ν1
·U∗A

= Tξk−1
· · · Tξ1 T∗η1

· · · T∗ηl−1
⊗ Sηl Sµ1 · · · Sµm S∗νn · · · S

∗
ν1

S∗ηl
,

Lemma 6.4 shows us the equality

(6.8) ψ(X) = ψ(Tξk−1
· · · Tξ1 T∗η1

· · · T∗ηl−1
⊗ Sηl Sµ1 · · · Sµm S∗νn · · · S

∗
ν1

S∗ηl
).

We apply the same argument above to the right hand side of (6.8), and continue
these procedures so that we finally get

ηl−1 = ξk−1, ηl−2 = ξk−2, . . . , η1 = ξk−l+1

and the identity

ψ(X) = ψ(Tξk−l · · · Tξ1 T∗η1
Tη1 ⊗ Sη1 Sη2 · · · Sηl Sµ1 · · · Sµm S∗νn · · · S

∗
ν1

S∗ηl
· · · S∗η2

S∗η1
).

As ξk−l+1 = η1, we see that A(ξk−l , η1) = 1 and hence Tξk−l · · · Tξ1 T∗η1
⊗ Sη1 be-

longs to the algebra R̃A such that

δA
i log γ(Tξk−l · · · Tξ1 T∗η1

⊗ Sη1) =
1

γk−l Tξk−l · · · Tξ1 T∗η1
⊗ Sη1 .

Hence we have

ψ(X)=ψ((Tξk−l · · ·Tξ1 T∗η1
⊗Sη1)·(Tη1⊗Sη2 · · ·Sηl Sµ1 · · ·Sµm S∗νn · · ·S

∗
ν1

S∗ηl
· · ·S∗η2

S∗η1
))

=ψ((Tη1 ⊗ Sη2 · · · Sηl Sµ1 · · · Sµm S∗νn · · · S
∗
ν1

S∗ηl
· · · S∗η2

S∗η1
)

· δA
i log γ(Tξk−l · · · Tξ1 T∗η1

⊗ Sη1))

=
1

γk−l ψ(Tη1 Tξk−l · · ·Tξ1 T∗η1
⊗Sη2 · · ·Sηl Sµ1 · · ·Sµm S∗νn · · ·S

∗
ν1

S∗ηl
· · ·S∗η2

S∗η1
Sη1).

Since S∗η2
S∗η1

Sη1 = S∗η2
, we have

ψ(X) =
1

γk−l ψ(Tη1 Tξk−l · · · Tξ1 T∗η1
⊗ Sη2 · · · Sηl Sµ1 · · · Sµm S∗νn · · · S

∗
ν1

S∗ηl
· · · S∗η2

)

=
1

γk−l ψ(U∗A
l−1(Tη1 Tξk−l · · · Tξ1 T∗η1

⊗ Sη2 · · · Sηl Sµ1 · · · Sµm S∗νn · · · S
∗
ν1

S∗ηl
· · · S∗η2

Ul−1
A ))

=
1

γk−l ψ(Tηl · · · Tη2 Tη1 Tξk−l · · · Tξ1 T∗η1
T∗η2
· · · T∗ηl

⊗ Sµ1 · · · Sµm S∗νn · · · S
∗
ν1
).

As (ηl , . . . , η1) = (ξk, . . . , ξk−l+1), we finally obtain that

ψ(X) =
1

γk−l ψ(X)

so that k = l and hence η = ξ. We similarly see that µ = ν.
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Since any element X ofRA is approximated by finite linear combinations of
elements of the form Tξ T∗η ⊗ SµS∗ν ∈ RA, we have the following proposition by
using Lemma 6.3.

PROPOSITION 6.6. If an element X ∈ R̃A satisfies ψ(X) 6= 0, then X belongs to
C(XA).

We will next show that the restriction of the KMS state ψ to the commutative
subalgebra C(XA) coincides with the state defined by the Parry measure on XA.

Recall the partial isometry Vν,µ(i, j) defined by (6.6) for i, j ∈ {1, . . . , N}
and µ = (µ1, . . . , µm), ν = (ν1, . . . , νn) such that (i, µ1, . . . , µm, j) ∈ Bm+2(XA),
(i, ν1, . . . , νn, j) ∈ Bn+2(XA). We set

pm,µ(i, j) = ψ(TiT∗i ⊗ Sµ1 · · · Sµm SjS∗j S∗µm · · · S
∗
µ1
).

The following lemma holds.

LEMMA 6.7. (i) ψ(Vν,µ(i, j)Vν,µ(i, j)∗) = pm,µ(i, j).
(ii) ψ(Vν,µ(i, j)∗Vν,µ(i, j)) = pn,ν(i, j).

(iii) ψ(Vν,µ(i, j)Vν,µ(i, j)∗) = γn−mψ(Vν,µ(i, j)∗Vν,µ(i, j)).

Proof. (i) Since T∗i ⊗ Si belongs to R̃A such that δA
i log γ(T

∗
i ⊗ Si) = T∗i ⊗ Si,

we have

ψ(Vν,µ(i, j)Vν,µ(i, j)∗) = ψ(T∗i Ti ⊗ SiSµ1 · · · Sµm SjS∗j S∗µm · · · S
∗
µ1

S∗i )

= ψ((T∗i ⊗ Si) · (Ti ⊗ Sµ1 · · · Sµm SjS∗j S∗µm · · · S
∗
µ1

S∗i ))

= ψ((Ti ⊗ Sµ1 · · · Sµm SjS∗j S∗µm · · · S
∗
µ1

S∗i ) · (T∗i ⊗ Si))

= ψ(TiT∗i ⊗ Sµ1 · · · Sµm SjS∗j S∗µm · · · S
∗
µ1

S∗i Si) = pm,µ(i, j).

(ii) We have Vν,µ(i, j)∗Vν,µ(i, j) = TjTνn · · · Tν1 TiT∗i T∗ν1
· · · T∗νn T∗j ⊗ S∗j Sj and

hence

Un+1
A Vν,µ(i, j)∗Vν,µ(i, j)U∗n+1

A = TiT∗i ⊗ Sν1 · · · Sνn SjS∗j S∗νn · · · S
∗
ν1

.

By Lemma 6.4, we have the desired identity.
(iii) As δA

i log γ(Vν,µ(i, j)∗) = γn−mVν,µ(i, j)∗, the KMS condition for ψ ensures
us the desired identity.

The preceding lemma tells us that the values pm,µ(i, j) and pn,ν(i, j) are equal
for m = n as long as (i, µ1, . . . , µm, j) ∈ Bm+2(XA), (i, ν1, . . . , νn, j) ∈ Bn+2(XA).
Hence the value pn,ν(i, j) does not depend on the choice of the word ν as long as
the length of ν is n and (i, ν1, . . . , νn, j) ∈ Bn+2(XA). We may thus define pn(i, j)
by pn,ν(i, j) for some ν with (i, ν1, . . . , νn, j) ∈ Bn+2(XA). If there is no word ν such
as (i, ν1, . . . , νn, j) ∈ Bn+2(XA), then we define pn(i, j) to be zero.

LEMMA 6.8. Let i, j = 1, . . . , n and n ∈ Z+.
(i) Assume An+1(i, j) > 0 and An+2(i, j) > 0. Then pn(i, j) = γpn+1(i, j).
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(ii) Assume An+1(i, j) > 0. Then

pn(i, j) =
N

∑
k=1

A(j, k)pn+1(i, k) =
N

∑
h=1

A(h, i)pn+1(h, j).

(iii) Assume An(i, j) > 0 and An+1(i, j) > 0. Then we have

γpn(i, j) =
N

∑
k=1

A(j, k)pn(i, k) =
N

∑
h=1

A(h, i)pn(h, j).

Proof. (i) Since An+1(i, j), An+2(i, j) > 0, we may find ν = (ν1, . . . , νn) and
µ = (µ1, . . . , µn+1) such that (i, ν1, . . . , νn, j) ∈ Bn+2(XA), (i, µ1, . . . , µn+1, j) ∈
Bn+3(XA). Consider Vν,µ(i, j) = T∗i T∗ν1

· · · T∗νn T∗j ⊗ SiSµ1 · · · Sµn+1 Sj. It then fol-
lows that

pn(i, j) = ψ(Vν,µ(i, j)∗Vν,µ(i, j)) = ψ(Vν,µ(i, j)δA
i log γ(Vν,µ(i, j)∗))

= γψ(Vν,µ(i, j)Vν,µ(i, j)∗) = γpn+1,µ(i, j) = γpn+1(i, j).

(ii) Since An+1(i, j) > 0, we may find ν = (ν1, . . . , νn) such that (i, ν1, . . . , νn, j) ∈
Bn+2(XA). It then follows that

pn(i, j) = pn,ν(i, j) = ψ(TiT∗i ⊗ Sν1 · · · Sνn SjS∗j S∗νn · · · S
∗
ν1
)

=
N

∑
k=1

A(j, k)ψ(TiT∗i ⊗ Sν1 · · · Sνn SjSkS∗k S∗j S∗νn · · · S
∗
ν1
)

=
N

∑
k=1

A(j, k)pn+1,νj(i, k) =
N

∑
k=1

A(j, k)pn+1(i, k).

We also see that

pn(i, j) =
N

∑
h=1

At(i, h)ψ(TiThT∗i T∗h ⊗ Sν1 · · · Sνn SjS∗j S∗νn · · · S
∗
ν1
)

=
N

∑
h=1

A(h, i)pn+1,iνj(h, j) =
N

∑
h=1

A(h, i)pn+1(h, j).

The assertion (iii) follows from (i) and (ii).

LEMMA 6.9. For i = 1, . . . , N and n ∈ Z+, we have:

(i)
N
∑

j=1
An+1(i, j)pn(i, j) = ψ(T∗i Ti ⊗ SiS∗i ) and hence

N
∑

i,j=1
An+1(i, j)pn(i, j) = 1.

(ii)
N
∑

j=1
An+1(j, i)pn(i, j) = ψ(TiT∗i ⊗ S∗i Si) and hence

N
∑

i,j=1
An+1(j, i)pn(i, j) = 1.
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Proof. (i) We have the following identities:

ψ(T∗i Ti ⊗ SiS∗i )=
N

∑
µ1=1

A(i, µ1)ψ(T∗i Ti ⊗ SiSµ1 S∗µ1
S∗i )

=
N

∑
j=1

N

∑
µ1,...,µn=1

A(i, µ1)A(µ1, µ2)· · ·A(µn, j)ψ(T∗i Ti⊗Siµ1···µn jS∗iµ1···µn j)

=
N

∑
j=1

An+1(i, j)pn(i, j).

We also have
N
∑

i=1
ψ(T∗i Ti ⊗ SiS∗i ) = ψ(EA) = 1.

(ii) is similarly shown to (i) .

We notice that ψ(T∗i Ti ⊗ SiS∗i ) = ψ(TiT∗i ⊗ S∗i Si) because of the equality
δA

i log γ(T
∗
i ⊗ Si) = T∗i ⊗ Si and the KMS condition for ψ. Recall that we are assum-

ing the matrix A is aperiodic so that there exists n0 ∈ N such that An(i, j) > 0 for
all i, j = 1, . . . , N and n > n0.

LEMMA 6.10. We have γ = β.

Proof. Lemma 6.8 and Lemma 6.9 imply that the vector [pn(i, k)]Nk=1 is a
nonnegative eigenvector of the matrix A with eigenvalue γ for each n ∈ N and
i = 1, . . . , N. Since A is aperiodic, [pn(i, k)]Nk=1 is actually a positive eigenvec-
tor with eigenvalue γ. By the Perron–Frobenius theorem, γ coincides with the
Perron–Frobenius eigenvalue β.

We have seen that γ must be the Perron–Frobenius eigenvalue of the matrix
A by Lemma 6.10. Its proof does not need the assumption γ > 1 that we had
first assumed. Now the matrix A is aperiodic and not any permutation so that
its Perron–Frobenius eigenvalue is always greater than one. Hence γ(= β) is
automatically greater than one.

Recall that [aj]
N
j=1, [bi]

N
i=1 be the positive eigenvectors of A and At for the

eigenvalue β respectively such that
N
∑

i=1
aibi = 1. We have the following lemma.

LEMMA 6.11. For n > n0 and i, j = 1, . . . , N, we have

(6.9) pn(i, j) =
biaj

(∑N
h=1 bh) · (∑N

k=1 ak)

N

∑
h,k=1

pn(h, k).

Proof. We fix n > n0. For a fixed i = 1, . . . , N, the vector [pn(i, k)]Nk=1 is a
positive eigenvector of the matrix A for the eigenvalue β. By the uniqueness of
the positive eigenvector of A, we may find a positive real number cn,i such that

(6.10) pn(i, j) = cn,iaj for j = 1, . . . , N.
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By Lemma 6.8, we know that the vector
[ N

∑
j=1

pn(i, j)
]N

i=1
is a positive eigenvector

of the matrix At for the eigenvalue β. Hence the normalized positive eigenvectors[ ∑N
j=1 pn(i,j)

∑N
h,k=1 pn(h,k)

]N

i=1
and

[
bi

∑N
k=1 bk

]N

i=1
coincide, so that we have

(6.11)
N

∑
j=1

pn(i, j) = bi
∑N

h,k=1 pn(h, k)

∑N
k=1 bk

for i = 1, . . . , N.

By (6.10) and (6.11), we have

cn,i =
∑N

j=1 pn(i, j)

∑N
j=1 aj

=
bi∑N

h,k=1 pn(h, k)

(∑N
k=1 bk)(∑

N
j=1 aj)

so that we know (6.9) by using (6.10) again.

We thus obtain the following lemma.

LEMMA 6.12. For n > n0 and i, j = 1, . . . , N, we have

(6.12) pn(i, j) =
1

βn+1 biaj.

Proof. We fix n > n0. By Lemma 6.11 together with Lemma 6.9, we have

1 =
N

∑
i,j=1

An+1(i, j)pn(i, j) =
N

∑
i,j=1

An+1(i, j)biaj

(∑N
h=1 bh) · (∑N

k=1 ak)

N

∑
h,k=1

pn(h, k).

As [aj]
N
j=1 is a positive eigenvector of A for the eigenvalue β, we have

N

∑
i,j=1

An+1(i, j)biaj =
N

∑
i=1

βn+1biai = βn+1

so that the equalities

1 =
βn+1

(∑N
h=1 bh) · (∑N

k=1 ak)

N

∑
h,k=1

pn(h, k)

and

(6.13)
N

∑
h,k=1

pn(h, k) =
1

βn+1

( N

∑
i=1

bi

)
·
( N

∑
j=1

aj

)
hold. By (6.9) and (6.13), we get the desired equality.

Consequently, we know the following proposition.

PROPOSITION 6.13. The restriction of a KMS state ψ on R̃A to the commutative
C∗-subalgebra C(XA) coincides with the state defined by the Parry measure on XA.
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Proof. For n > n0 and ξ = (i, ν1, . . . , νn, j) ∈ Bn+2(XA), Lemma 6.12 shows
that

ψ(TiT∗i ⊗ Sν1···νn jS∗ν1···νn j) =
1

βn+1 biaj.

Let µ be the Parry measure on XA. Since the Parry measure of the cylinder set
U[ξ]m+n+1

m
⊂ XA, m ∈ Z for the word ξ is given by

µ(U[ξ]m+n+1
m

) =
1

βn+1 biaj

by the formula (6.4). Let χU
[ξ]m+n+1

m
be the characteristic function of the cylinder

set U[ξ]m+n+1
m

. Since

ψ(TiT∗i ⊗ Sν1···νn jS∗ν1···νn j) = ψ(χU
[ξ]m+n+1

m
),

we obtain
µ(U[ξ]m+n+1

m
) = ψ(χU

[ξ]m+n+1
m

).

Any cylinder set on XA is a finite union of cylinder sets of words having length
greater than n0 + 1. Hence we may conclude that the restriction of ψ to the com-
mutative C∗-subalgebra C(XA) of R̃A coincides with the state defined by the
Parry measure on XA.

Therefore we may summarize the above discussion in Theorem 1.3.
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