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ABSTRACT. This paper gives a systematic study of operator-valued local
Hardy spaces, which are localizations of the Hardy spaces defined by Mei. We
prove the h1-bmo duality and the hp-hq duality for any conjugate pair (p, q)
when 1 < p < ∞. We show that h1(Rd,M) and bmo(Rd,M) are also good
endpoints of Lp(L∞(Rd)⊗M) for interpolation. We obtain the local version
of Calderón–Zygmund theory, and then deduce that the Poisson kernel in our
definition of the local Hardy norms can be replaced by any reasonable test
function. Finally, we establish the atomic decomposition of the local Hardy
space hc

1(R
d,M).
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1. INTRODUCTION AND PRELIMINARIES

This paper is devoted to the study of operator-valued local Hardy spaces.
It follows the current line of the investigation of noncommutative harmonic anal-
ysis. This field arose from the noncommutative integration theory developed
by Murray and von Neumann, in order to provide a mathematical foundation
for quantum mechanics. The objective was to construct and study a linear func-
tional on an operator algebra which plays the role of the classical integral. In [30],
Pisier and Xu developed a pioneering work on noncommutative martingale the-
ory; since then, many classical results have been successfully transferred to the
noncommutative setting, see for instance, [1], [3], [12], [14], [19], [20], [21], [22],
[26], [28], [32], [33], [34].

Inspired by the above mentioned developments and the Littlewood–Paley-
Stein theory of quantum Markov semigroups (cf. [15], [16], [18]), Mei [24] stud-
ied operator-valued Hardy spaces, which are defined by the Littlewood–Paley g-
function and Lusin area integral function associated to the Poisson kernel. These



384 RUNLIAN XIA AND XIAO XIONG

spaces are shown to be very useful for many aspects of noncommutative har-
monic analysis. In [41], we obtain general characterizations of Mei’s Hardy spaces,
which state that the Poisson kernel can be replaced by any reasonable test func-
tion. This is done mainly by using the operator-valued Calderón–Zygmund the-
ory.

In the classical setting, the theory of Hardy spaces is one of the most im-
portant topics in harmoic analysis. The local Hardy spaces hp(Rd) were first in-
troduced by Goldberg [10]. These spaces are viewed as local or inhomogeneous
counterparts of the classical real Hardy spacesHp(Rd) [6]. Goldberg’s motivation
of introducing these local spaces was the study of pseudo-differential operators.
It is known that pseudo-differential operators are not necessarily bounded on
the classical Hardy spaceH1(Rd), but bounded on h1(Rd) under some appropri-
ate assumptions. Afterwards, many other inhomogeneous spaces have also been
studied. Our references for the classical theory are [7], [10], [37]. However, they
have not been investigated so far in the operator-valued case.

Motivated by [24], [41], [42], we provide a localization of Mei’s operator-
valued Hardy spaces on Rd in this paper. The norms of these spaces are partly
given by the truncated versions of the Littlewood–Paley g-function and Lusin
area integral function. Some techniques that we use to deal with our local Hardy
spaces are modelled after those of [41]; however, some highly non-trivial modi-
fications are needed. This happens since with the truncation, we only know the
Lp-norms of the Poisson integrals of functions on the strip Rd × (0, 1), and lose
information when the time is large. This brings some substantial difficulties that
the non-local case does not have, for example, in the duality problem. Moreover,
the noncommutative maximal function method is still unavailable in this setting,
while in the classical case it is efficiently and frequently employed. However,
based on tools developed recently, for instance, in [14], [18], [20], [24], [25], [30],
[32], [33], we can overcome these difficulties.

Let us present here the four main results of this paper. The first family
of results concerns of the operator-valued local Hardy spaces hc

p(Rd,M) and
bmoc(Rd,M). The first major result of this part is the hc

p-bmoc
q duality for 1 6

p < 2, where q denotes the conjugate index of p. In particular, when p = 1, we
obtain the operator-valued local analogue of the classical Fefferman–Stein theo-
rem. The pattern of the proof of this theorem is similar to that of Mei’s non-local
case. We also show that

hc
q(Rd,M) = bmoc

q(Rd,M) for 2 < q < ∞

like in the martingale and non-local settings. Thus the dual of hc
p(Rd,M) agrees

with hc
q(Rd,M) when 1 < p 6 2.

The second major result shows that the local Hardy spaces behave well with
respect to both complex and real interpolations. In particular, we have

(bmoc(Rd,M), hc
1(R

d,M))1/p = hc
p(Rd,M)
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for 1 < p < ∞. We reduce this interpolation problem to the corresponding one
on the non-local Hardy spaces in order to use Mei’s interpolation result in [24].
This proof is quite simple.

The third major result concerns the Calderón–Zygmund theory. We know
that the usual M-valued Calderón–Zygmund operators which satisfy the Hör-
mander condition are in general not bounded on inhomogeneous spaces. Thus,
in order to guarantee the boundedness of a Calderón–Zygmund operator on
hc

p(Rd,M), we need to impose an extra decay at infinity to the kernel.
The Calderón–Zygmund theory mentioned above will be applied to the

general characterization of hc
p(Rd,M) with the Poisson kernel replaced by any

reasonable test function. This characterization will play an important role in our
recent study of (inhomogeneous) Triebel–Lizorkin spaces on Rd, see [39].

1.1. NOTATION. In the following, we collect some notation which will be fre-
quently used in this paper. Throughout, we will use the notation A . B, which is
an inequality up to a constant: A 6 cB for some constant c > 0. The relevant con-
stants in all such inequalities may depend on the dimension d, the test function
Φ or p, etc., but never on the function f in consideration. The equivalence A ≈ B
will mean A . B and B . A simultaneously.

The Bessel and Riesz potentials are Jα = (1 − (2π)−2∆)α/2 and Iα =
(−(2π)−2∆)α/2, respectively. If α = 1, we will abbreviate J1 as J and I1 as I.
We denote also Jα(ξ) = (1 + |ξ|2)α/2 on Rd and Iα(ξ) = |ξ|α on Rd \ {0}. Then Jα

and Iα are the symbols of the Fourier multipliers Jα and Iα, respectively.
We denote by Hσ

2 (Rd) the potential Sobolev space, consisting of all tem-
pered distributions f such that Jσ( f ) ∈ L2(Rd). If σ > d

2 , the elements in Hσ
2 (Rd)

will serve as important convolution kernels in the sequel.

1.2. NONCOMMUTATIVE Lp-SPACES. Now we recall some preliminaries on non-
commutative Lp-spaces and operator-valued Hardy spaces. We start with a brief
introduction to noncommutative Lp-spaces. Let M be a von Neumann algebra
equipped with a normal semifinite faithful trace τ and S+

M be the set of all pos-
itive elements x in M with τ(s(x)) < ∞, where s(x) denotes the support of x,
i.e., the smallest projection e such that exe = x. Let SM be the linear span of S+

M.
Then every x ∈ SM has finite trace, and SM is a w*-dense ∗-subalgebra ofM.

Let 1 6 p < ∞. For any x ∈ SM, the operator |x|p belongs to S+
M (recalling

|x| = (x∗x)1/2). We define

‖x‖p = (τ(|x|p))1/p.

One can prove that ‖ · ‖p is a norm on SM. The completion of (SM, ‖ · ‖p) is
denoted by Lp(M), which is the usual noncommutative Lp-space associated to
(M, τ). In this paper, the norm of Lp(M) will be often denoted simply by ‖ · ‖p
if there is no confusion. But if different Lp-spaces appear in a same context, we
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will precise their norms in order to avoid possible ambiguity. We refer the reader
to [44] and [31] for further information on noncommutative Lp-spaces.

Let us now introduce noncommutative Hilbert space-valued Lp-spaces
Lp(M; Hc) and Lp(M; Hr), which are studied at length in [18]. Let H be a Hilbert
space and v ∈ H with ‖v‖ = 1, and pv be the orthogonal projection onto the one-
dimensional subspace generated by v. Then define the following row and column
noncommutative Lp-spaces:

Lp(M; Hr) = (pv ⊗ 1M)Lp(B(H)⊗M) and

Lp(M; Hc) = Lp(B(H)⊗M)(pv ⊗ 1M),

where the tensor product B(H)⊗M is equipped with the tensor trace while B(H)
is equipped with the usual trace, and where 1M denotes the unit of M. For
f ∈ Lp(M; Hc),

‖ f ‖Lp(M;Hc) = ‖( f ∗ f )1/2‖p.

A similar formula holds for the row space by passing to adjoint: f ∈ Lp(M; Hr)
if and only if f ∗ ∈ Lp(M; Hc), and ‖ f ‖Lp(M;Hr) = ‖ f ∗‖Lp(M;Hc). It is clear that
Lp(M; Hc) and Lp(M; Hr) are 1-complemented subspaces of Lp(B(H)⊗M) for
any p.

1.3. OPERATOR-VALUED HARDY SPACES. Throughout the remainder of the pa-
per, unless explicitly stated otherwise, (M, τ) will be fixed as before and N =
L∞(Rd)⊗M, equipped with the tensor trace. In this subsection, we introduce
Mei’s operator-valued Hardy spaces. Contrary to the custom, we will use letters
s, t to denote variables of Rd since letters x, y are reserved for operators in non-
commutative Lp-spaces. Accordingly, a generic element of the upper half-space
Rd+1
+ will be denoted by (s, ε) with ε > 0, where Rd+1

+ = {(s, ε) : s ∈ Rd, ε > 0}.
Let P be the Poisson kernel on Rd:

P(s) = cd
1

(|s|2 + 1)(d+1)/2

with cd the usual normalizing constant and |s| the Euclidean norm of s. Let

Pε(s) =
1
εd P

( s
ε

)
= cd

ε

(|s|2 + ε2)(d+1)/2
.

For any function f on Rd with values in L1(M) +M, its Poisson integral, when-
ever it exists, will be denoted by Pε( f ):

Pε( f )(s) =
∫
Rd

Pε(s− t) f (t)dt, (s, ε) ∈ Rd+1
+ .

Note that the Poisson integral of f exists if

f ∈ L1

(
M; Lc

2

(
Rd,

dt
1 + |t|d+1

))
+ L∞

(
M; Lc

2

(
Rd,

dt
1 + |t|d+1

))
.
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This space is the right space in which all functions considered in this paper live
as far as only column spaces are involved. As it will appear frequently later, to

simplify notation, we will denote the Hilbert space L2

(
Rd, dt

1+|t|d+1

)
by Rd:

(1.1) Rd = L2

(
Rd,

dt
1 + |t|d+1

)
.

The Lusin area square function of f is defined by

(1.2) Sc( f )(s) =
( ∫

Γ

∣∣∣ ∂

∂ε
Pε( f )(s + t)

∣∣∣2 dt dε

εd−1

)1/2
, s ∈ Rd,

where Γ is the cone {(t, ε) ∈ Rd+1
+ : |t| < ε}. For 1 6 p < ∞ define the column

Hardy spaceHc
p(Rd,M) to be

Hc
p(Rd,M) = { f : ‖ f ‖Hc

p = ‖Sc( f )‖p < ∞}.

Note that [24] uses the gradient of Pε( f ) instead of the sole radial derivative in
the definition of Sc above, but this does not affect Hc

p(Rd,M) (up to equivalent
norms). At the same time, it is proved in [24] that Hc

p(Rd,M) can be equally
defined by the Littlewood–Paley g-function:

(1.3) Gc( f )(s) =
( ∞∫

0

ε
∣∣∣ ∂

∂ε
Pε( f )(s)

∣∣∣2 dε
)1/2

, s ∈ Rd.

Thus
‖ f ‖Hc

p ≈ ‖G
c( f )‖p, f ∈ Hc

p(Rd,M).

The row Hardy spaceHr
p(Rd,M) is the space of all f such that f ∗ ∈ Hc

p(Rd,M),
equipped with the norm ‖ f ‖Hr

p = ‖ f ∗‖Hc
p . Finally, we define the mixture space

Hp(Rd,M) as

Hp(Rd,M) = Hc
p(Rd,M) +Hr

p(Rd,M) for 1 6 p 6 2

equipped with the sum norm

‖ f ‖Hp = inf{‖ f1‖Hc
p + ‖ f2‖Hr

p : f = f1 + f2}, and

Hp(Rd,M) = Hc
p(Rd,M) ∩Hr

p(Rd,M) for 2 < p < ∞

equipped with the intersection norm

‖ f ‖Hp = max(‖ f ‖Hc
p , ‖ f ‖Hr

p).

Observe that

Hc
2(Rd,M) = Hr

2(Rd,M) = L2(N ) with equivalent norms.

It is proved in [24] that for 1 < p < ∞

Hp(Rd,M) = Lp(N ) with equivalent norms.
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The operator-valued BMO spaces are also studied in [24]. Let Q be a cube
in Rd (with sides parallel to the axes) and |Q| its volume. For a function f with
values inM, fQ denotes its mean over Q:

fQ =
1
|Q|

∫
Q

f (t)dt.

The column BMO norm of f is defined to be

(1.4) ‖ f ‖BMOc = sup
Q⊂Rd

∥∥∥ 1
|Q|

∫
Q

| f (t)− fQ|2dt
∥∥∥1/2

M
.

Then
BMOc(Rd,M) = { f ∈ L∞(M; Rc

d) : ‖ f ‖BMOc < ∞}.
Similarly, we define the row space BMOr(Rd,M) as the space of f with the
property that f ∗ lies in BMOc(Rd,M), and BMO(Rd,M) = BMOc(Rd,M) ∩
BMOr(Rd,M) with the intersection norm.

It is showed in [24] that the dual of Hc
1(R

d,M) can be identified with
BMOc(Rd,M). This is the operator-valued analogue of the celebrated Fefferman–
Stein H1-BMO duality theorem.

On the other hand, one of the main results of [41] asserts that the Poisson
kernel in the definition of Hardy spaces can be replaced by more general test
functions.

Take any Schwartz function Φ with vanishing mean. We will assume that Φ
is nondegenerate in the following sense:

(1.5) ∀ ξ ∈ Rd \ {0} ∃ ε > 0, such that Φ̂(εξ) 6= 0.

Set Φε(s) = ε−dΦ( s
ε ) for ε > 0. The radial and conic square functions of f asso-

ciated to Φ are defined by replacing the partial derivative of the Poisson kernel P
in Sc( f ) and Gc( f ) by Φ :

Sc
Φ( f )(s) =

( ∫
Γ

|Φε ∗ f (s + t)|2 dtdε

εd+1

)1/2
, s ∈ Rd and(1.6)

Gc
Φ( f )(s) =

( ∞∫
0

|Φε ∗ f (s)|2 dε

ε

)1/2
.(1.7)

The following two lemmas are taken from [41]. The first one says that the two
square functions above define equivalent norms inHc

p(Rd,M).

LEMMA 1.1. Let 1 6 p < ∞ and f ∈ L1(M; Rc
d) + L∞(M; Rc

d). Then f ∈
Hc

p(Rd,M) if and only if Gc
Φ( f ) ∈ Lp(N ) if and only if Sc

Φ( f ) ∈ Lp(N ). If this is the
case, then

‖Gc
Φ( f )‖p ≈ ‖Sc

Φ( f )‖p ≈ ‖ f ‖Hc
p

with the relevant constants depending only on p, d and Φ.
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The above square functions Gc
Φ and Sc

Φ can be discretized as follows:

Gc,D
Φ ( f )(s) =

( ∞

∑
j=−∞

|Φ2−j ∗ f (s)|2
)1/2

Sc,D
Φ ( f )(s) =

( ∞

∑
j=−∞

2dj
∫

B(s,2−j)

|Φ2−j ∗ f (t)|2dt
)1/2

.
(1.8)

Here B(s, r) denotes the ball of Rd with center s and radius r. To prove that these
discrete square functions also describe our Hardy spaces, we need to impose
the following condition on the previous Schwartz function Φ, which is stronger
than (1.5):

(1.9) ∀ ξ ∈ Rd \ {0} ∃ 0 < 2a 6 b < ∞ such that Φ̂(εξ) 6= 0, ∀ ε ∈ (a, b].

The following is the discrete version of Lemma 1.1.

LEMMA 1.2. Let 1 6 p < ∞ and f ∈ L1(M; Rc
d) + L∞(M; Rc

d). Then f ∈
Hc

p(Rd,M) if and only if Gc,D
Φ ( f ) ∈ Lp(N ) if and only if Sc,D

Φ ( f ) ∈ Lp(N ). Moreover,

‖Gc,D
Φ ( f )‖p ≈ ‖Sc,D

Φ ( f )‖p ≈ ‖ f ‖Hc
p

with the relevant constants depending only on p, d and Φ.

Finally, let us give some easy facts on operator-valued functions. The first
one is the following Cauchy–Schwarz type inequality for the operator-valued
square function,

(1.10)
∣∣∣ ∫
Rd

φ(s) f (s)ds
∣∣∣2 6

∫
Rd

|φ(s)|2ds
∫
Rd

| f (s)|2ds,

where φ : Rd → C and f : Rd → L1(M) +M are functions such that all
integrations of the above inequality make sense. We also require the operator-
valued version of the Plancherel formula. For sufficiently nice functions f : Rd →
L1(M) +M, for example, for f ∈ L2(Rd)⊗ L2(M), we have

(1.11)
∫
Rd

| f (s)|2ds =
∫
Rd

| f̂ (ξ)|2dξ.

Given two nice functions f and g, the polarized version of the above equality is

(1.12)
∫
Rd

f (s)g∗(s)ds =
∫
Rd

f̂ (ξ)ĝ(ξ)∗dξ.

The paper is organized as follows. In the next section, we give the defini-
tions of operator-valued local Hardy and bmo spaces. Section 3 is devoted to the
proofs of duality results, including the h1-bmo duality and the hp-hq duality for
1 < p < 2 and 1

p + 1
q = 1. Section 4 gives the results on interpolation. In Sec-

tion 5, we develop Calderón–Zymund theory that is suitable for our local version



390 RUNLIAN XIA AND XIAO XIONG

of Hardy spaces. In Section 6, we prove general characterizations of hc
p(Rd,M),

and then connect the local Hardy spaces hc
p(Rd,M) with Mei’s non-local Hardy

spacesHc
p(Rd,M). In the last section of this paper, we give the atomic decompo-

sition of hc
1(R

d,M).

2. OPERATOR-VALUED LOCAL HARDY SPACES

2.1. OPERATOR-VALUED LOCAL HARDY SPACES. In this subsection, we give the
definition of operator-valued local Hardy spaces as well as some basic facts on
them. Let f ∈ L1(M; Rc

d) + L∞(M; Rc
d) (recalling that the Hilbert space Rd is de-

fined by (1.1)). Then the Poisson integral of f is well-defined and takes values in
L1(M) +M. Now we define the local analogue of the Lusin area square function
of f by

sc( f )(s) =
( ∫

Γ̃

∣∣∣ ∂

∂ε
Pε( f )(s + t)

∣∣∣2 dtdε

εd−1

)1/2
, s ∈ Rd,

where Γ̃ is the truncated cone {(t, ε) ∈ Rd+1
+ : |t| < ε < 1}. It is the intersection

of the cone {(t, ε) ∈ Rd+1
+ : |t| < ε} and the strip S ⊂ Rd+1

+ defined by:

S = {(s, ε) : s ∈ Rd, 0 < ε < 1}.

For 1 6 p < ∞ define the column local Hardy space hc
p(Rd,M) to be

hc
p(Rd,M) = { f ∈ L1(M; Rc

d) + L∞(M; Rc
d) : ‖ f ‖hc

p < ∞},

where the hc
p(Rd,M)-norm of f is defined by

‖ f ‖hc
p = ‖sc( f )‖Lp(N ) + ‖P ∗ f ‖Lp(N ).

The row local Hardy space hr
p(Rd,M) is the space of all f such that f ∗∈hc

p(Rd,M),
equipped with the norm ‖ f ‖hr

p = ‖ f ∗‖hc
p . Moreover, define the mixture space

hp(Rd,M) as follows:

hp(Rd,M) = hc
p(Rd,M) + hr

p(Rd,M) for 1 6 p 6 2

equipped with the sum norm

‖ f ‖hp = inf{‖g‖hc
p + ‖h‖hr

p : f = g + h, g ∈ hc
p(Rd,M), h ∈ hr

p(Rd,M)}, and

hp(Rd,M) = hc
p(Rd,M) ∩ hr

p(Rd,M) for 2 < p < ∞

equipped with the intersection norm

‖ f ‖hp = max{‖ f ‖hc
p , ‖ f ‖hr

p}.
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The local analogue of the Littlewood–Paley g-function of f is defined by

gc( f )(s) =
( 1∫

0

∣∣∣ ∂

∂ε
Pε( f )(s)

∣∣∣2εdε
)1/2

, s ∈ Rd.

We will see in Section 6 that, for all 1 6 p < ∞,

‖sc( f )‖p + ‖P ∗ f ‖p ≈ ‖gc( f )‖p + ‖P ∗ f ‖p.

In the following, we give some easy facts that will be frequently used later.
Firstly, we have

(2.1) ‖sc( f )‖2
2 + ‖P ∗ f ‖2

2 ≈ ‖ f ‖2
2.

Indeed, by (1.11), we have∫
Rd

∣∣∣ ∂

∂ε
Pε( f )(s)

∣∣∣2ds =
∫
Rd

∣∣∣ ∂̂

∂ε
Pε(ξ)

∣∣∣2| f̂ (ξ)|2dξ =
∫
Rd

4π2|ξ|2| f̂ (ξ)|2e−4πε|ξ|dξ.

Then ∫
Rd

1∫
0

∣∣∣ ∂

∂ε
Pε( f )(s)

∣∣∣2εdεds =
1
4

∫
Rd

(1− e−4π|ξ| − 4π|ξ|e−4π|ξ|)| f̂ (ξ)|2dξ.

Therefore

‖sc( f )‖2
2=τ

∫
Rd

∫
Γ̃

∣∣∣ ∂

∂ε
Pε( f )(s + t)

∣∣∣2 dεdt
εd−1 ds = τ

∫
Rd

1∫
0

∫
B(s,ε)

∣∣∣ ∂

∂ε
Pε( f )(t)

∣∣∣2 dεdt
εd−1 ds

= cdτ
∫
Rd

1∫
0

∣∣∣ ∂

∂ε
Pε( f )(s)

∣∣∣2εdεds=
cd
4

τ
∫
Rd

(1−e−4π|ξ|−4π|ξ|e−4π|ξ|)| f̂ (ξ)|2dξ,

where cd is the volume of the unit ball in Rd. Meanwhile,

‖P ∗ f ‖2
2 = τ

∫
Rd

e−4π|ξ|| f̂ (ξ)|2dξ.

Then we deduce (2.1) from the equality

4
cd
‖sc( f )‖2

2 + ‖P ∗ f ‖2
2 = τ

∫
Rd

(1− 4π|ξ|e−4π|ξ|)| f̂ (ξ)|2dξ

and the fact that 0 6 4π|ξ|e−4π|ξ| 6 1
e for every ξ ∈ Rd. Passing to adjoint, (2.1)

also tells us that ‖ f ‖hr
2(Rd ,M) ≈ ‖ f ∗‖2 = ‖ f ‖2. Then we have, with equivalent

norms,

(2.2) hc
2(Rd,M) = hr

2(Rd,M) = L2(N ).
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Next, if we apply (1.12) instead of (1.11) in the above proof, we get the fol-
lowing polarized version of (2.1),∫

Rd

f (s)g∗(s)ds=4
∫
Rd

1∫
0

∂

∂ε
Pε( f )(s)

∂

∂ε
Pε(g)∗(s)ε dεds

+
∫
Rd

P∗ f (s)(P ∗ g(s))∗ds+4π
∫
Rd

P∗ f (s)(I(P)∗g(s))∗ds

=
4
cd

∫
Rd

∫∫
Γ̃

∂

∂ε
Pε( f )(s + t)

∂

∂ε
Pε(g)∗(s + t)

dtdε

εd−1 ds

+
∫
Rd

P∗ f (s)(P∗g(s))∗ds+4π
∫
Rd

P ∗ f (s)(I(P) ∗ g(s))∗ds

(2.3)

for nice f , g ∈ L1(M; Rc
d) + L∞(M; Rc

d) (recalling that I is the Riesz potential of
order 1).

2.2. OPERATOR-VALUED BMO SPACES. Now we introduce the noncommutative
analogue of bmo spaces defined in [10]. For any cube Q ⊂ Rd, we denote its
center by cQ, its side length by l(Q), and its volume by |Q|. Let f ∈ L∞(M; Rc

d).
The mean value of f over Q is denoted by fQ := 1

|Q|
∫
Q

f (s)ds. We set

(2.4) ‖ f ‖bmoc =max
{

sup
|Q|<1

∥∥∥( 1
|Q|

∫
Q

| f− fQ|2dt
)1/2∥∥∥

M
, sup
|Q|=1

∥∥∥(∫
Q

| f |2dt
)1/2∥∥∥

M

}
.

Then we define

bmoc(Rd,M) = { f ∈ L∞(M; Rc
d) : ‖ f ‖bmoc < ∞}.

Respectively, define bmor(Rd,M) to be the space of all f ∈ L∞(M; Rr
d) such that

‖ f ∗‖bmoc < ∞

with the norm ‖ f ‖bmor = ‖ f ∗‖bmoc . And bmo(Rd,M) is defined as the intersec-
tion of these two spaces

bmo(Rd,M) = bmoc(Rd,M) ∩ bmor(Rd,M)

equipped with the norm

‖ f ‖bmo = max{‖ f ‖bmoc , ‖ f ‖bmor}.

REMARK 2.1. Let Q be a cube with volume kd 6 |Q| < (k + 1)d for some
positive integer k. Then Q can be covered by at most (k + 1)d cubes with volume
1, say Qj’s. Evidently,

1
|Q|

∫
Q

| f |2dt 6 k−d
∫
Q

| f |2dt 6 k−d
(k+1)d

∑
j=1

∫
Qj

| f |2dt.
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Hence,

sup
|Q|>1

∥∥∥( 1
|Q|

∫
Q

| f |2dt
)1/2∥∥∥

M
6 2d/2 sup

|Q|=1

∥∥∥( ∫
Q

| f |2dt
)1/2∥∥∥

M
.

Thus, if we replace the second supremum in (2.4) over all cubes of volume one
by that over all cubes of volume not less than one, we get an equivalent norm of
bmoc(Rd,M).

PROPOSITION 2.2. Let f ∈ bmoc(Rd,M). Then

‖ f ‖L∞(M;Rc
d)
. ‖ f ‖bmoc .

Moreover, bmo(Rd,M), bmoc(Rd,M) and bmor(Rd,M) are Banach spaces.

Proof. Let Q0 be the cube centered at the origin with side length 1 and Qm =
Q0 + m for each m ∈ Zd. For f ∈ L∞(M; Rc

d),

‖ f ‖2
L∞(M;Rc

d)
=
∥∥∥ ∫
Rd

| f (t)|2
1 + |t|d+1 dt

∥∥∥
M

6 ∑
m∈Zd

∥∥∥ ∫
Qm

| f (t)|2
1 + |t|d+1 dt

∥∥∥
M

. ∑
m∈Zd

∥∥∥ 1
1+|m|d+1

∫
Qm

| f (t)|2dt
∥∥∥
M

.‖ f ‖2
bmoc ∑

m∈Zd

1
1+|m|d+1 .‖ f ‖2

bmoc .

It is then easy to check that bmoc(Rd,M) is a Banach space.

PROPOSITION 2.3. We have the inclusion bmoc(Rd,M) ⊂ BMOc(Rd,M).
More precisely, there exists a constant C depending only on the dimension d, such that
for any f ∈ bmoc(Rd,M),

(2.5) ‖ f ‖BMOc 6 C‖ f ‖bmoc .

Proof. By virtue of Remark 2.1, it suffices to compare
∥∥∥( 1
|Q|
∫
Q
| f |2dt

)1/2∥∥∥
M

and
∥∥∥( 1
|Q|
∫
Q
| f − fQ|2dt

)1/2∥∥∥
M

for |Q| > 1. By the triangle inequality and (1.10),

we have the following which leads immediately to (2.5):∥∥∥( 1
|Q|

∫
Q

| f − fQ|2dt
)1/2∥∥∥

M
6
∥∥∥( 1
|Q|

∫
Q

| f |2dt
)1/2∥∥∥

M
+ ‖ fQ‖M

6 2
∥∥∥( 1
|Q|

∫
Q

| f |2dt
)1/2∥∥∥

M
.

Classically, BMO functions are related to Carleson measures (see [9]). A
similar relation still holds in the present noncommutative local setting. We say
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that anM-valued measure dλ on the strip S = Rd× (0, 1) is a Carleson measure if

N(λ) = sup
|Q|<1

{ 1
|Q|

∥∥∥ ∫
T(Q)

dλ
∥∥∥
M

: Q ⊂ Rd cube
}
< ∞,

where T(Q) = Q× (0, l(Q)].

LEMMA 2.4. Let g ∈ bmoc(Rd,M). Then dλg = | ∂
∂ε Pε(g)(s)|2εdsdε is an

M-valued Carleson measure on the strip S and

max{N(λg)
1/2, ‖P ∗ g‖L∞(N )} . ‖g‖bmoc .

Proof. Given a cube Q with |Q| < 1, denote by 2Q the cube with the same
center and twice the side length of Q. We decompose g = g1 + g2 + g3, where
g1 = (g − g2Q)12Q and g2 = (g − g2Q)1Rd\2Q. Since

∫
∂
∂ε Pε(s)ds = 0 for any

ε > 0, we have ∂
∂ε Pε(g) = ∂

∂ε Pε(g1) +
∂
∂ε Pε(g2). By (1.10),

N(λg) 6 2(N(λg1) + N(λg2)).

We first deal with N(λg1). By (1.11) and (2.5), we have

∫
T(Q)

∣∣∣ ∂

∂ε
Pε(g1)(s)

∣∣∣2εdsdε 6
∫
Rd

∞∫
0

∣∣∣ ∂

∂ε
Pε(g1)(s)

∣∣∣2εdsdε

=
∫
Rd

∞∫
0

∣∣∣ ∂̂

∂ε
Pε(ξ)

∣∣∣2|ĝ1(ξ)|2εdεds

.
∫
Rd

|g1(s)|2ds =
∫

2Q

|g− g2Q|2ds . |Q| ‖g‖2
bmoc .

Thus, N(λg1) . ‖g‖2
bmoc . Since

∣∣∣ ∂
∂ε Pε(s)

∣∣∣ . 1
(ε+|s|)d+1 , applying (1.10), we obtain

∣∣∣ ∂

∂ε
Pε(g2)(s)

∣∣∣2 .
1
ε

∫
Rd\2Q

|g(t)− g2Q|2

(ε + |s− t|)d+1 dt.

The integral on the right hand side of the above inequality can be treated by a
standard argument as follows: for any (s, ε) ∈ T(Q),∫
Rd\2Q

|g(t)− g2Q|2

(ε + |s− t|)d+1 dt.
∫

Rd\2Q

|g(t)− g2Q|2

|t− cQ|d+1 dt . ∑
k>1

∫
2k+1Q\2kQ

|g(t)− g2Q|2

|t− cQ|d+1 dt

.
1

l(Q) ∑
k>1

2−k 1
|2k+1Q|

∫
2k+1Q

|g(t)−g2Q|2dt.
1

l(Q)
‖g‖2

bmoc ,

where cQ is the center of Q. Then, it follows that N(λg2) . ‖g‖2
bmoc .
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Now we deal with the term ‖P ∗ g(s)‖M. Let Qm = Q0 + m be the translate
of the cube with volume one centered at the origin, so Rd =

⋃
m∈Zd

Qm. By (1.10),

for any s ∈ Rd, we have

‖P ∗ g(s)‖M =
∥∥∥∑

m

∫
Qm

P(t)g(s− t)dt
∥∥∥
M

6 ∑
m

( ∫
Qm

|P(t)|2dt
)1/2

· sup
m∈Zd

∥∥∥( ∫
Qm

|g(s− t)|2dt
)1/2∥∥∥

M

. sup
|Q|=1

∥∥∥( 1
|Q|

∫
Q

|g(t)|2dt
)1/2∥∥∥

M
. ‖g‖bmoc .

Thus, ‖P∗ g‖L∞(N ) = sup
s∈Rd
‖P∗ g(s)‖M . ‖g‖bmoc , which completes the proof.

Reexamining the above proof, we find that the facts used to prove N(λg)1/2

. ‖g‖bmoc are:

(•)
∫
Rd

ε ∂
∂ε Pε(s)ds = 0 for ∀ ε < 0;

(•) sup
ξ∈Rd

∞∫
0

∣∣∣ε̂ ∂
∂ε Pε(ξ)

∣∣∣2 dε
ε < ∞;

(•)
∣∣∣ε ∂

∂ε Pε(s)
∣∣∣ . ε

(ε+|s|)d+1 .

It is easy to see that if we replace ε ∂
∂ε Pε above by Ψε = 1

εd Ψ( ·ε ), where Ψ is a
Schwartz function such that Ψ̂(0) = 0, the corresponding three conditions still
hold. On the other hand, the only fact used for proving the inequality
‖P ∗ g‖L∞(N ) . ‖g‖bmoc is that

∑
m

( ∫
Qm

|P(t)|2dt
)1/2

< ∞.

Recall that Hσ
2 (Rd) denotes the potential Sobolev space, consisting of distribu-

tions f such that Jσ( f ) ∈ L2(Rd). It is equipped with the norm ‖ f ‖Hσ
2 (Rd) =

‖Jσ f ‖L2(Rd). If ψ is a function on Rd such that ψ̂ ∈ Hσ
2 (Rd) for some σ > d

2 , we
have

∑
m

( ∫
Qm

|ψ(s)|2dt
)1/2

.
(

∑
m

1
(1 + |m|2)σ

)1/2( ∫
Rd

(1+ |s|2)σ|ψ(s)|2ds
)1/2

.‖ψ̂‖Hσ
2
.

Based on the above observation, we have the following generalization of Lem-
ma 2.4.

LEMMA 2.5. Let ψ be the (inverse) Fourier transform of a function in Hσ
2 (Rd),

and Ψ be a Schwartz function such that Ψ̂(0) = 0. If g ∈ bmoc(Rd,M), then dµg =
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|Ψε ∗ g(s)|2 dεds
ε is anM-valued Carleson measure on the strip S and

(2.6) max{N(µg)
1/2, ‖ψ ∗ g‖L∞(N )} . ‖g‖bmoc .

In particular,

(2.7) max{N(µg)
1/2, ‖J(P) ∗ g‖L∞(N )} . ‖g‖bmoc .

Proof. (2.6) follows from the above discussion; (2.7) is ensured by (2.6) and
the fact that (1 + |ξ|2)1/2e−2π|ξ| ∈ Hσ

2 (Rd), which can be checked by a direct
computation.

REMARK 2.6. We will see in the next section that the converse inequality of
(2.7) also holds.

3. THE DUAL SPACE OF hc
p FOR 1 6 p < 2

In this section, we describe the dual of hc
p(Rd,M) for 1 6 p < 2 as bmo

type spaces. We call these spaces bmoc
q(Rd,M) (with q the conjugate index of p).

The argument used here is modelled on the one used in [10] when studying the
duality betweenHc

p(Rd,M) and BMOc
q(Rd,M). However, due to the truncation

of the square functions, some highly non-trivial modifications are needed.

3.1. DEFINITION OF bmoc
q . Let 2 < q 6 ∞. We define bmoc

q(Rd,M) to be the
space of all f ∈ Lq(M; Rc

d) such that

‖ f ‖bmoc
q
=
(∥∥∥ sup +

s∈Q⊂Rd

|Q|<1

1
|Q|

∫
Q

| f (t)− fQ|2dt
∥∥∥q/2

q/2
+
∥∥∥ sup +

s∈Q⊂Rd

|Q|=1

1
|Q|

∫
Q

| f (t)|2dt
∥∥∥q/2

q/2

)1/q
<∞.

If q = ∞, bmoc
q(Rd,M) coincides with the space bmoc(Rd,M) introduced in the

previous section.

Note that the norm
∥∥∥ sup

i

+ai

∥∥∥
q/2

is just an intuitive notation since the point-

wise supremum does not make any sense in the noncommutative setting. This
is the norm of the Banach space Lq/2(N ; `∞); we refer to [14], [22], [29] for more
information.

If 1 6 p < ∞ and (ai)i∈Z is a sequence of positive elements in Lp(N ), it has
been proved by Junge (see Remark 3.7 of [14]) that

(3.1)
∥∥∥ sup

i

+ai

∥∥∥
p
= sup

{
∑
i∈Z

τ(aibi) : bi ∈ Lq(N ), bi > 0,
∥∥∥ ∑

i∈Z
bi

∥∥∥
q
6 1

}
.

It is also known that a positive sequence (xi)i belongs to Lp(N ; `∞) if and only if
there is an a ∈ Lp(N ) such that xi 6 a for all i, and moreover,

‖(xi)‖Lp(N ;`∞) = inf{‖a‖p : a ∈ Lp(N ), xi 6 a, ∀ i}.
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Then we get the following fact (which can be taken as an equivalent definition):
f ∈ bmoc

q(Rd,M) if and only if

∃ a ∈ Lq/2(N ) such that
1
|Q|

∫
Q

| f (t)− fQ|2dt 6 a(s),

∀ s ∈ Q and ∀Q ⊂ Rd with |Q| < 1 and(3.2)

∃ b ∈ Lq/2(N ) such that
1
|Q|

∫
Q

| f (t)|2dt 6 b(s),

∀ s ∈ Q and ∀Q ⊂ Rd with |Q| = 1.(3.3)

If this is the case, then

‖ f ‖bmoc
q
= inf{(‖a‖q/2

q/2 + ‖b‖
q/2
q/2)

1/q : a, b as in (3.2) and (3.3), respectively}.

In fact, the cubes considered in the definition of bmoc
q(Rd,M) can be re-

duced to cubes with dyadic lengths. Let Qk
s denote the cube centered at s and

with side length 2−k, k ∈ Z. Set

f #
k (s) =

1
|Qk

s |

∫
Qk

s

| f (t)− fQk
s
|2dt and f #(s) =

1
|Q0

s |

∫
Q0

s

| f (t)|2dt.

LEMMA 3.1. If q > 2, then(∥∥∥ sup
k>1

+ f #
k

∥∥∥q/2

q/2
+ ‖ f #‖q/2

q/2

)1/q

gives an equivalent norm in bmoc
q(Rd,M).

Proof. It is obvious from the definition that∥∥∥ sup
k>1

+ f #
k

∥∥∥1/2

q/2
6 ‖ f ‖bmoc

q
and ‖ f #‖1/2

q/2 6 ‖ f ‖bmoc
q
.

We notice that for any cube Q with |Q| < 1 and s ∈ Q, there exists k > −1 such
that Q ⊂ Qk

s and |Qk
s | 6 4d|Q|. Thus

1
4d

∥∥∥ sup +

s∈Q⊂Rd

|Q|<1

1
|Q|

∫
Q

| f (t)− fQ|2dt
∥∥∥1/2

q/2
.
∥∥∥ sup

k>−1

+ f #
k

∥∥∥1/2

q/2
. 2d

∥∥∥ sup
k>1

+ f #
k

∥∥∥1/2

q/2
.

Similarly,
1
4d

∥∥∥ sup +

s∈Q⊂Rd

|Q|=1

1
|Q|

∫
Q

| f (t)|2dt
∥∥∥1/2

q/2
6 2d‖ f #‖1/2

q/2.

Thus the lemma is proved.

From the proofs of Proposition 2.2 and Lemma 2.4, it is easy to see that their
q-analogues still hold in the present setting. We leave the proofs to the reader.



398 RUNLIAN XIA AND XIAO XIONG

PROPOSITION 3.2. Let q > 2 and f ∈ bmoc
q(Rd,M). Then

‖ f ‖Lq(M;Rc
d)
. ‖ f ‖bmoc

q
.

LEMMA 3.3. Let f ∈ bmoc
q(Rd,M) and assume that the operators a and b satisfy

(3.2) and (3.3), respectively. Then dλ f is a q-Carleson measure in the following sense:

1
|Q|

∫
T(Q)

∣∣∣ ∂

∂ε
Pε( f )(t)

∣∣∣2εdtdε . a(s), ∀ s ∈ Q and ∀Q ⊂ Rd with |Q| < 1.

Moreover, |ψ ∗ f (s)|2 . b(s) for any s ∈ Rd, if ψ is the (inverse) Fourier transform of a
function in Hσ

2 (Rd).

3.2. A BOUNDED MAP. In the sequel, we equip the truncated cone Γ̃ = {(s, ε) ∈
Rd+1
+ : |s| < ε < 1} with the measure dtdε

εd+1 . For any 1 6 p < ∞, we will embed
hc

p(Rd,M) into a larger space Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N ). Here Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N )

is the `p-direct sum of the Banach spaces Lp(N ; Lc
2(Γ̃)) and Lp(N ), equipped

with the norm

‖( f , g)‖ = (‖ f ‖p
Lp(N ;Lc

2(Γ̃))
+ ‖g‖p

Lp(N )
)1/p

for f ∈ Lp(N ; Lc
2(Γ̃)) and g ∈ Lp(N ), with the usual modification for p = ∞.

DEFINITION 3.4. We define a map E from hc
p(Rd,M) to Lp(N ; Lc

2(Γ̃))
⊕
p

Lp(N ) by

E( f )(s, t, ε) =
(

ε
∂

∂ε
Pε( f )(s + t), P ∗ f (s)

)
,

and a map F for sufficiently nice h = (h′, h′′) ∈ Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N ) by

F(h)(u) =
∫
Rd

[ 4
cd

∫∫
Γ̃

h′(s, t, ε)
∂

∂ε
Pε(s+ t−u)

dtdε

εd + h′′(s)(P+ 4π I(P))(s−u)
]
ds .

By definition, the map E embeds hc
p(Rd,M) isometrically into Lp(N ; Lc

2(Γ̃))⊕
p

Lp(N ). The following results, Theorems 3.8 and 3.18 show that by identifying

hc
p(Rd,M) as a subspace of Lp(N ; Lc

2(Γ̃))
⊕
p

Lp(N ) via E, hc
p(Rd,M) is comple-

mented in Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N ) for every 1 < p < ∞ by virtue of the map F.

PROPOSITION 3.5. Let 1 6 p < ∞. Then for any nice f ∈ L1(M; Rc
d) +

L∞(M; Rc
d), we have

F(E( f )) = f .
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Proof. Applying (2.3), we get the following which completes the proof, for
any nice function g,∫
Rd

F(E( f ))(u)g(u)du=
∫
Rd

[ 4
cd

∫∫
Γ̃

∂

∂ε
Pε( f )(s + t)

∂

∂ε
Pε(s + t− u)

dtdε

εd−1 g(u)du

+ P ∗ f (s)
∫
(P(s− u) + 4π I(P)(s− u))g(u)du

]
ds

=
∫
Rd

[ 4
cd

∫∫
Γ̃

∂

∂ε
Pε( f )(s + t)

∂

∂ε
Pε(g)(s + t)

dtdε

εd−1

+P ∗ f (s)(P ∗ g+4π I(P) ∗ g)(s)
]
ds=

∫
Rd

f (u)g(u)du .

The following dyadic covering lemma is known. Tao Mei [24] proved this
lemma for the d-torus and also for the real line. For the case Rd with d > 1, we
refer the interested readers to [5], [13], [23] for more details. In the following, we
give a sketch of the way how we choose the dyadic covering.

LEMMA 3.6. There exist a constant C > 0, depending only on d, and d + 1 dyadic
increasing filtrations Di = {Di

j}j∈Z of σ-algebras on Rd for 0 6 i 6 d, such that for

any cube Q ⊂ Rd, there is a cube Di
m,j ∈ Di

j satisfying Q ⊂ Di
m,j and |Di

m,j| 6 C|Q|.

Proof. Let {αi}d
i=0 be a sequence in the interval (0, 1) such that mini 6=i′ |αi −

αi′ | > 0. Then we define

(3.4) αi
j =


αi j > 0,
αi + 1

3 (2
−j − 1) j < 0 and − j even,

αi − 1
3 (2
−j + 1) j < 0 and − j odd.

The σ-algebra Di
j is generated by the cubes

Di
m,j = (αi

j + m12−j, αi
j + (m1 + 1)2−j]× · · · × (αi

j + md2−j, αi
j + (md + 1)2−j],

for all m = (m1, . . . , md) ∈ Zd.
For any cube Q ⊂ Rd, there exist a constant C, depending only on {αi}d

i=0
and d, and a dyadic cube Di

m,j such that Q ⊂ Di
m,j and |Di

m,j| 6 C|Q|.

To show the boundedness of the map F, we need the following assertion by
Mei, see Proposition 3.2 of [24]; we include a proof for this lemma, since the one
in [24] is the one dimensional case. Let 1 6 p < ∞, and f ∈ Lp(N ) be a positive
function. Let Q be a cube centered at the origin, and denote Qt = t + Q. Then we
define

f Q(t) =
1
|Q|

∫
Qt

f (s)ds.
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LEMMA 3.7. Let 1 6 p < ∞ and let ( fk)k∈Z be a positive sequence in Lp(N ) and
(Qk)k∈Z be a sequence of cubes centered at the origin. Then∥∥∥ ∑

k∈Z
( fk)

Qk
∥∥∥

p
.
∥∥∥ ∑

k∈Z
fk

∥∥∥
p
.

Proof. Similarly to the proof of Proposition 3.2 in [24], we are going to apply
Theorem 0.1 of [14] for noncommutative martingales. By Lemma 3.6, we can
cover every Qk by some Di

m′ ,jk
, and thus by some Di

m,jk−1, which has twice the side

length of Di
m′ ,jk

. Moreover, |Di
m,jk−1| 6 C|Qk|. Obviously, t+Qk is still covered by

t+Di
m,jk−1, but the later is not necessarily a dyadic cube inDi

jk−1. Let us adjust the

translation vector t = (t1, . . . , td) as follows. Write Qk = (−a, a]× · · · × (−a, a]
and Di

m,jk−1 = (b1, b2]× · · · × (b1, b2], then either b2 − a > 2−jk or −a− b1 > 2−jk .

Without loss of generality, we can assume b2 − a > 2−jk . Now set t̃ = (t̃1, . . . , t̃d)
with t̃j the largest real number in the set 2−jkZ less than tj. Then it is easy to see
that t + Qk is covered by t̃ + Di

m,jk−1 and that the later is a dyadic cube. Thus,

( fk)
Qk

6 C ∑
06i6d

E( fk|Di
jk ),

where E(·|Di
j) denotes the conditional expectation with respect to Di

j. Then the
lemma follows from Theorem 0.1 in [14].

THEOREM 3.8. For 2 < p 6 ∞, the map F extends to a bounded map from
Lp(N ; Lc

2(Γ̃))
⊕
p

Lp(N ) to bmoc
p(Rd,M).

Proof. We have to show that for any h = (h′, h′′) ∈ Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N ),

‖F(h)‖bmoc
p
. ‖h‖Lp(N ;Lc

2(Γ̃))
⊕

p Lp(N ).

Fix h = (h′, h′′) ∈ Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N ) and set ϕ = F(h). We will apply

Lemma 3.1 to estimate the bmoc
p-norm of F(h). For v ∈ Rd and k ∈ N, denote by

Qk
v the cube centered at v and with side length 2−k, then we have Qk

v = v + Qk
0.

We set

h′1(s, t, ε) = h′(s, t, ε)1Qk−1
v

(s), h′2(s, t, ε) = h′(s, t, ε)1
(Qk−1

v )c(s) and

ϕ#
k(v) =

1
|Qk

v|

∫
Qk

v

|ϕ(u)− ϕQk
v
|2du.

Let

BQk
0(v) =

∫
Rd

∫∫
Γ̃

( ∂

∂ε
Pε

)Qk
0
(s, t, v)h′2(s, t, ε)

dtdε

εd ds
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with ( ∂
∂ε Pε)

Qk
0(s, t, v) = 1

|Qk
v |
∫

Qk
v

∂
∂ε Pε(s + t− u)du. Then, we have

ϕ#
k(v).

1
|Qk

v|

∫
Qk

v

|ϕ(u)− BQk
0(v)|2du

.
1
|Qk

v|

∫
Qk

v

∣∣∣ ∫
(Qk−1

v )c

∫∫
Γ̃

h′2(s, t, ε)
[ ∂

∂ε
Pε(s+t−u)−

( ∂

∂ε
Pε

)Qk
0
(s, t, v)

]dtdε

εd ds
∣∣∣2du

+
1
|Qk

v|

∫
Qk

v

∣∣∣ ∫
Qk−1

v

∫∫
Γ̃

h′1(s, t, ε)
∂

∂ε
Pε(s + t− u)

dtdε

εd ds
∣∣∣2du

+
1
|Qk

v|

∫
Qk

v

∣∣∣ ∫
Rd

h′′(s)[P(s− u) + 4π I(P)(s− u)]ds
∣∣∣2du.

When s ∈ (Qk−1
v )c, u ∈ Qk

v and (t, ε) ∈ Γ̃, we have |s + t− u|+ ε ≈ |s− v|+ ε
with uniform constants. Then,∫∫

Γ̃

∣∣∣ ∂

∂ε
Pε(s + t− u)−

( ∂

∂ε
Pε

)Qk
0
(s, t, v)

∣∣∣2 dtdε

εd−1

.
∫∫
Γ̃

( 2−k

(|s + t− u|+ ε)d+2

)2 dtdε

εd−1 .

1∫
0

∫
B(0,ε)

2−2k

(|s− v|2 + ε2)d+2 dt
dε

εd−1

= cd

1∫
0

2−2kε

(|s− v|2 + ε2)d+2 dε .
2−2k

|s− v|2d+2 .

Let (ak)k∈N be a positive sequence such that
∥∥∥ ∑

k>1
ak

∥∥∥
(p/2)′

6 1, where r′ denotes

the conjugate index of r. Let

A= ∑
k>1

τ
∫
Rd

∫
(Qk−1

v )c

2−2k

|s− v|d+1 ds ·
∫

(Qk−1
v )c

1
|s− v|d+1

∫∫
Γ̃

|h′2(s, t, ε)|2dtdε

εd+1 ds · ak(v)dv

B= ∑
k>1

τ
∫
Rd

1
|Qk

v|

∫
Qk

v

∣∣∣ ∫
Qk−1

v

∫∫
Γ̃

h′1(s, t, ε)
∂

∂ε
Pε(s + t− u)

dtdε

εd+1 ds
∣∣∣2du · ak(v)dv

C= ∑
k>1

τ
∫
Rd

1
|Qk

v|

∫
Qk

v

∣∣∣ ∫
Rd

h′′(s)[P(s− u) + 4π I(P)(s− u)]ds
∣∣∣2du · ak(v)dv.

Then,

∑
k>1

τ
∫

ϕ#
k(v)ak(v)dv . A + B + C.
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First, we estimate the term A. Applying the Fubini theorem and the Hölder in-
equality, we arrive at

A . ∑
k>1

τ
∫
Rd

2−k
∫

(Qk−1
s )c

|v− s|−d−1
∫∫
Γ̃

|h′2(s, t, ε)|2 dtdε

εd+1 ds ak(v)dv

6
∥∥∥ ∫∫

Γ̃

|h′2(·, t, ε)|2 dtdε

εd+1

∥∥∥
p/2
·
∥∥∥ ∑

k>1
2−k

∫
(Qk−1

s )c

|v− s|−d−1ak(v)dv
∥∥∥
(p/2)′

. ‖h′‖2
Lp(N ;Lc

2(Γ̃))
·
∥∥∥ ∑

k>1
2−k ∑

j6k

∫
Qj−2

s \Qj−1
s

2(j−1)(d+1)ak(v)dv
∥∥∥
(p/2)′

.

Here and in the context below, ‖ · ‖(p/2)′ is the norm of L(p/2)′(N ) with respect
to the variable s ∈ Rd. Now we apply Lemma 3.7 to estimate the second factor of
the last term:∥∥∥ ∑

k>1
∑
j6k

2(j−1)d
∫

Qj−2
s \Qj−1

s

2j−k−1ak(v)dv
∥∥∥
(p/2)′

.
∥∥∥ ∑

j∈Z
∑
k>j
k>1

2j−k−1ak

∥∥∥
(p/2)′

.
∥∥∥ ∑

k>1
ak

∥∥∥
(p/2)′

6 1.

Then we move to the estimate of B:

B 6 ∑
k>1

∫
Rd

2kdτ
∫
Rd

∣∣∣ ∫
Qk−1

v

∫∫
Γ̃

h′1(s, t, ε)a1/2
k (v)

∂

∂ε
Pε(s + t− u)

dtdε

εd ds
∣∣∣2dudv

6 ∑
k>1

∫
Rd

2kd sup
‖ f ‖2=1

∣∣∣τ ∫
Qk−1

v

∫∫
Γ̃

h′1(s, t, ε)a1/2
k (v)

∂

∂ε
Pε( f )∗(s + t)

dtdε

εd ds
∣∣∣2dv.

Since hc
2(Rd,M) = L2(N ) with equivalent norms, by the Cauchy–Schwarz in-

equality and Lemma 3.7, we get

B 6 ∑
k>1

∫
Rd

2kdτ
∫

Qk−1
v

∫∫
Γ̃

|h′1(s, t, ε)|2 dtdε

εd+1 ds ak(v)dv · ‖ f ‖hc
2

. ∑
k>1

τ
∫
Rd

∫∫
Γ̃

|h′1(s, t, ε)|2 dtdε

εd+1 2kd
∫

Qk−1
s

ak(v)dvds

6 ‖h′‖2
Lp(N ;Lc

2(Γ̃))

∥∥∥ ∑
k>1

2kd
∫

Qk−1
s

ak(v)dv
∥∥∥
(p/2)′

6 2d‖h′‖2
Lp(N ;Lc

2(Γ̃))

∥∥∥ ∑
k>1

ak

∥∥∥
(p/2)′

6 2d‖h′‖2
Lp(N ;Lc

2(Γ̃))
.
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The techniques used to estimate the term C are similar to that of B:

C = ∑
k>1

τ
∫
Rd

2kd
∫

Qk−1
v

∣∣∣ ∫
Rd

h′′(s)[P(s− u) + 4π I(P)(s− u)]ds
∣∣∣2ak(v)dvdu

6
∥∥∥ ∑

k>1
2kd

∫
Qk−1

s

ak(v)dv
∥∥∥
(p/2)′

∥∥∥∣∣∣ ∫
Rd

h′′(s)[P(s− ·) + 4π I(P)(s− ·)]ds
∣∣∣2∥∥∥

p/2

.
∥∥∥∣∣∣ ∫

Rd

h′′(s)[P(s− ·) + 4π I(P)(s− ·)]ds
∣∣∣2∥∥∥

p/2
.

Take f ∈ Lp′(N ) with norm one such that∥∥∥∣∣∣∫
Rd

h′′(s)[P(s−u)+4π I(P)(s−u)]ds
∣∣∣2∥∥∥

p/2
=
∣∣∣τ∫
Rd

h′′(s)[P∗ f (s)+4π I(P) ∗ f (s)]ds
∣∣∣2.

Then∣∣∣τ ∫
Rd

h′′(s)[P ∗ f (s) + 4π I(P) ∗ f (s)]ds
∣∣∣2 6 ‖h′′‖2

p‖P ∗ f + 4π I(P) ∗ f ‖2
p′

. ‖h′′‖2
p‖ f ‖2

p′ = ‖h
′′‖2

p.

Combining the estimates of A, B and C with (3.1), we obtain∥∥∥ sup
k>1

+ϕ#
k

∥∥∥
p/2

. ‖h‖2
Lp(N ;Lc

2(Γ̃))
⊕

p Lp(N )
.

It remains to establish the Lp/2-norm of ϕ#(s) = 1
|Q0

s |
∫

Q0
s

|ϕ(t)|2dt, which is

relatively easy. For any positive operator a such that ‖a‖L(p/2)′ (N ) 6 1, we have

τ
∫

ϕ#(v)a(v)dv . τ
∫
Rd

∫
Q0

v

∣∣∣ ∫
Rd

∫∫
Γ̃

h′(s, t, ε)
∂

∂ε
Pε(s + t− u)

dtdε

εd+1 ds
∣∣∣2du · a(v)dv

+τ
∫
Rd

∫
Q0

v

∣∣∣ ∫
Rd

h′′(s)[P(s−u)+4π I(P)(s−u)]ds
∣∣∣2du · a(v)dv

def
= B′ + C′.

The terms B′ and C′ are treated in the same way as B and C, respectively. The
results are

B′ 6 τ
∫
Rd

∫∫
Γ̃

|h′(s, t, ε)|2 dtdε

εd+1

∫
Q0

s

a(v)dvds 6 ‖h′‖2
Lp(N ;Lc

2(Γ̃))
‖a‖(p/2)′ ,

C′ 6
∥∥∥ ∫

Q0
s

a(v)dv
∥∥∥
(p/2)′

∥∥∥∣∣∣ ∫
Rd

h′′(s)[P(s− ·) + 4π I(P)(s− ·)]ds
∣∣∣2∥∥∥

p/2
. ‖h′′‖2

p.
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So we obtain
‖ϕ#‖p/2 . ‖h‖2

Lp(N ;Lc
2(Γ̃))

⊕
p Lp(N )

.

Thus, Lemma 3.1 ensures the following which proves the theorem:

‖F(h)‖bmoc
p
. ‖h‖Lp(N ;Lc

2(Γ̃))
⊕

p Lp(N ).

COROLLARY 3.9. Let 1 6 p < 2. For any f ∈ Lp(M; Lc
2(Rd, (1 + |t|d+1)dt)),

we have
‖ f ‖hc

p . ‖ f ‖Lp(M;Lc
2(Rd ,(1+|t|d+1)dt)).

Proof. To simplify notation, we denote L2(Rd, (1 + |t|d+1)dt) by Wd. Let q
be the conjugate index of p. By duality, we can choose h = (h′, h′′) ∈ Lq(N ; Lc

2)
⊕
q

Lq(N ) with norm one such that

‖sc( f )‖p + ‖P ∗ f ‖p

=
∣∣∣τ ∫

Rd

∫∫
Γ̃

∂

∂ε
Pε( f )(s + t)h′∗(s, t, ε)

dtdε

εd ds + τ
∫
Rd

P ∗ f (s)h′′∗(s)ds
∣∣∣

=
∣∣∣τ ∫ f (u)F̃(h)∗(u)du

∣∣∣,
where

(3.5) F̃(h)(u) =
∫
Rd

[ ∫∫
Γ̃

h′(s, t, ε)
∂

∂ε
Pε(s + t− u)

dtdε

εd + h′′(s)P(s− u)
]
ds .

Following the proof of Theorem 3.8, it is easy to see that F̃ is also bounded from
Lq(N ; Lc

2(Γ̃))
⊕
q

Lq(N ) to bmoc
q(Rd,M). They applying Proposition 3.2 and The-

orem 3.8, we have the following and thus we obtain the desired assertion:∣∣∣τ ∫ f (s)F̃(h)∗(s)ds
∣∣∣ . sup

‖ϕ‖bmoc
q(Rd ,M)

61

∣∣∣τ ∫ f (s)ϕ∗(s)ds
∣∣∣

. sup
‖ϕ‖Lq(M;Rc

d)
61

∣∣∣τ ∫ (1 + |s|d+1) f (s)ϕ∗(s)
ds

1 + |s|d+1

∣∣∣
= ‖(1 + |s|d+1) f ‖Lp(M;Rc

d)
= ‖ f ‖Lp(M;Wc

d)
.

3.3. DUALITY. Now we are going to present the hc
p-bmoc

q duality for 1 6 p < 2.
We begin this subsection by a lemma which will be very useful in the sequel.

LEMMA 3.10. Let 1 6 p 6 2 and q be its conjugate index. For f ∈ hc
p(Rd,M)∩

L2(N ) and g ∈ bmoc
q(Rd,M),∣∣∣τ ∫

Rd

f (s)g∗(s)ds
∣∣∣ . ‖ f ‖hc

p‖g‖bmoc
q
.
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Proof. It suffices to prove the lemma for compactly supported (relative to
the variable of Rd) f ∈ hc

p(Rd,M). We assume that f is sufficiently nice that all
calculations below are legitimate. We need two auxiliary square functions. For
s ∈ Rd and ε ∈ [0, 1], we define

(3.6) sc( f )(s, ε) =
( 1∫

ε

∫
B(s,r−ε/2)

∣∣∣ ∂

∂r
Pr( f )(t)

∣∣∣2 dtdr
rd−1

)1/2
,

(3.7) sc( f )(s, ε) =
( 1∫

ε

∫
B(s,r/2)

∣∣∣ ∂

∂r
Pr( f )(t)

∣∣∣2 dtdr
rd−1

)1/2
.

Both sc( f )(s, ε) and sc( f )(s, ε) are decreasing in ε and sc( f )(s, 0) = sc( f )(s). In
addition, it is clear that sc( f )(s, ε) 6 sc( f )(s, ε). Let (ei)i∈I be an increasing family
of τ-finite projections ofM such that ei converges to 1M in the strong operator
topology. Then we can approximate sc( f )(s, ε) by sc(ei f ei)(s, ε). Thus we can as-
sume that τ is finite; under this finiteness assumption, for any small δ > 0 (which
will tend to zero in the end of the proof), consider sc( f )(s, ε) + δ1M instead of
sc( f )(s, ε), we can assume that sc( f )(s, ε) is invertible inM for every (s, ε) ∈ S.
By (2.3) and the Fubini theorem, we have

∣∣∣τ∫ f (s)g∗(s)ds
∣∣∣. ∣∣∣τ ∫

Rd

1∫
0

∂

∂ε
Pε( f )(s)

∂

∂ε
Pε(g)∗(s)ε dεds

∣∣∣
+
∣∣∣τ ∫

Rd

P ∗ f (s)(P ∗ g(s))∗ds + τ
∫
Rd

P ∗ f (s)(I(P) ∗ g(s))∗ds
∣∣∣

=
∣∣∣2d

cd
τ
∫
Rd

1∫
0

∫
B(s,ε/2)

∂

∂ε
Pε( f )(t)

∂

∂ε
Pε(g)∗(t)

dεdt
εd−1 ds

∣∣∣
+
∣∣∣τ∫
Rd

P ∗ f (s)(P ∗ g(s))∗ds+τ
∫
Rd

P ∗ f (s)(I(P) ∗ g(s))∗ds
∣∣∣.

Then,∣∣∣τ ∫ f (s)g∗(s)ds
∣∣∣

.
∣∣∣2d

cd
τ
∫
Rd

1∫
0

∫
B(s,ε/2)

∂

∂ε
Pε( f )(t)sc( f )(s, ε)(p−2)/2sc( f )(s, ε)(2−p)/2∂

∂ε
Pε(g)∗(t)

dεdt
εd−1 ds

∣∣∣
+
(∣∣∣τ∫

Rd

P ∗ f (s)(P ∗ g(s))∗ds
∣∣∣+∣∣∣τ∫

Rd

P ∗ f (s)(I(P) ∗ g(s))∗ds
∣∣∣)def

= I+II.
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The term II is easy to deal with. By the Hölder inequality and (2.7), we get

II 6 ‖P ∗ f ‖p‖P ∗ g‖q + ‖P ∗ f ‖p‖I(P) ∗ g‖q.

Then by Proposition V.3 and Lemma V.3.2 of [35] we have

‖P ∗ g‖q . ‖J(P) ∗ g‖q, and ‖I(P) ∗ g‖q . ‖J(P) ∗ g‖q.

Hence, by Lemma 3.3,

II . ‖g‖bmoc
q
‖ f ‖hc

p .

Now we estimate the term I. By the Cauchy–Schwarz inequality

c2
d

4d I2 6 τ
∫
Rd

1∫
0

( ∫
B(s,ε/2)

∣∣∣ ∂

∂ε
Pε( f )(t)

∣∣∣2 dt
εd−1

)
sc( f )(s, ε)p−2dεds

· τ
∫
Rd

1∫
0

( ∫
B(s,ε/2)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2 dt
εd−1

)
sc( f )(s, ε)2−pdεds def

= A · B.

Note here that sc( f )(s, ε) is the function of two variables defined by (3.6), which is
differentiable in the w∗-sense. We first deal with A. Using sc( f )(s, ε) 6 sc( f )(s, ε),
we have

A 6 τ
∫
Rd

1∫
0

∫
B(s,ε/2)

∣∣∣ ∂

∂ε
Pε( f )(t)

∣∣∣2sc( f )(s, ε)p−2 dεdt
εd−1 ds

= −τ
∫
Rd

1∫
0

( ∂

∂ε
sc( f )(s, ε)2

)
sc( f )(s, ε)p−2dεds

= −2τ
∫
Rd

1∫
0

sc( f )(s, ε)p−1 ∂

∂ε
sc( f )(s, ε)dεds.

Since 1 6 p < 2 and sc( f )(s, ε) is decreasing in ε, sc( f )(s, ε)p−1 6 sc( f )(s, 0)p−1.
At the same time, ∂

∂ε sc( f )(s, ε) 6 0. Therefore,

A . −τ
∫
Rd

sc( f )(s, 0)p−1
1∫

0

∂

∂ε
s( f )c(s, ε)dεds . τ

∫
Rd

sc( f )(s, 0)pds = ‖ f ‖p
hc

p
.

The estimate of B is harder. For any j ∈ N, we need to create a square net
partition in Rd as follows:

Qm,j =
( 1√

d
(m1 − 1)2−j,

1√
d

m12−j
]
× · · · ×

( 1√
d
(md − 1)2−j,

1√
d

md2−j
]
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with m = (m1, . . . , md) ∈ Zd. Let cm,j denote the center of Qm,j. Define

(3.8) Sc( f )(s, j) =
( 1∫

2−j

∫
B(cm,j ,r)

∣∣∣ ∂

∂r
Pr( f )(t)

∣∣∣2 dtdr
rd−1

)1/2
if s ∈ Qm,j.

For any s ∈ Rd and k ∈ N0 (N0 being the set of nonnegative integers), we define

d(s, k) = Sc( f )(s, k)2−p − Sc( f )(s, k− 1)2−p.

Since B(s, r− ε
2 ) ⊂ B(cm,j, r) whenever s ∈ Qm,j and ε > 2−j, we have

sc( f )(s, ε) 6 Sc( f )(s, j), ∀ s ∈ Qm,j, ε > 2−j.

It is clear that Sc( f )(s, j) is increasing in j, so d(s, k) > 0. At the same time, d(s, k)
is constant on Qm,k and ∑

k6j
d(s, k) = Sc( f )(s, j)2−p. Therefore,

B . τ ∑
m∈Zd

∑
j>1

∫
Qm,j

2−j+1∫
2−j

( ∫
B(s,ε/2)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2 dt
εd−1

)
Sc( f )(s, j)2−pdεds

= τ
∫
Rd

∑
j>1

Sc( f )(s, j)2−p
2−j+1∫
2−j

( ∫
B(s,ε/2)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2 dt
εd−1

)
dεds

= τ
∫
Rd

∑
j>1

∑
16k6j

d(s, k)
2−j+1∫
2−j

( ∫
B(s,ε/2)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2 dt
εd−1

)
dεds

= τ
∫
Rd

∑
k>1

d(s, k) ∑
j>k

2−j+1∫
2−j

( ∫
B(s,ε/2)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2 dt
εd−1

)
dεds

= τ ∑
m

∑
k>1

d(s, k)
∫

Qm,k

2−k+1∫
0

( ∫
B(s,ε/2)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2 dt
εd−1

)
dεds .

Since g ∈ bmoc
q, Lemma 3.3 ensures the existence of a positive operator a ∈

Lq/2(N ) such that ‖a‖q/2 . ‖g‖2
bmoc

q
and

1
|Q|

∫
T(Q)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2εdtdε6 a(s) and for s∈Q and for all cubes Q with |Q|<1.
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Let Q̃m,k be the cube concentric with Qm,k and having side length 2−k+1. By the
Fubini theorem and Lemma 2.4, we have

∫
Qm,k

2−k+1∫
0

( ∫
B(s,ε/2)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2 dt
εd−1

)
dεds 6 2d

∫
Q̃m,k

2−k+1∫
0

∣∣∣ ∂

∂ε
Pε(g)(s)

∣∣∣2εdεds

= 2d
∫

T(Q̃m,k)

∣∣∣ ∂

∂ε
Pε(g)(s)

∣∣∣2εdεds

.
∫

Qm,k

a(s)ds.

Then we deduce

B . τ ∑
m

∑
k>1

∫
Qm,k

d(s, k)a(s)ds = τ
∫
Rd

∑
k>1

d(s, k)a(s)ds

= τ
∫
Rd

Sc( f )(s,+∞)2−pa(s)ds = τ
∫
Rd

Sc( f )(s)2−pa(s)ds 6 ‖Sc( f )‖2−p
p ‖a‖q/2

6 ‖ f ‖2−p
hc

p
‖a‖q/2 . ‖ f ‖2−p

hc
p
‖g‖2

bmoc
q
.

Combining the estimates of A, B and II, we complete the proof.

The following is the main theorem of this section.

THEOREM 3.11. Let 16 p<2 and q be its conjugate index. We have hc
p(Rd,M)∗

= bmoc
q(Rd,M) with equivalent norms. More precisely, every g ∈ bmoc

q(Rd,M)

defines a continuous linear functional on hc
p(Rd,M) by

`g( f ) = τ
∫

f (s)g∗(s)ds, ∀ f ∈ Lp(M; Wc
d).

Conversely, every ` ∈ hc
p(Rd,M)∗ can be written as above and is associated to some

g ∈ bmoc
q(Rd,M) with

‖`‖(hc
p)∗ ≈ ‖g‖bmoc

q
.

Proof. First, by Lemma 3.10, we get

(3.9) |`g( f )| . ‖g‖bmoc
q
‖ f ‖hc

p .

Now we prove the converse. Suppose that ` ∈ hc
p(Rd,M)∗. By the Hahn–

Banach theorem, ` extends to a continuous functional on Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N )

with the same norm. Thus, there exists h = (h′, h′′) ∈ Lq(N ; Lc
2(Γ̃))

⊕
q

Lq(N )
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such that

‖h‖Lq(N ;Lc
2(Γ̃))

⊕
q Lq(N ) = ‖`‖(hc

p)∗ and

`( f ) = τ
∫
Rd

∫∫
Γ̃

∂

∂ε
Pε( f )(s + t)h′∗(s, t, ε)

dtdε

εd ds + τ
∫
Rd

P ∗ f (s)h′′∗(s)ds,

= τ
∫
Rd

f (u)F̃(h)∗(u)du,

where F̃ is the map defined in (3.5).
Let g = F̃(h). Following the proof of Theorem 3.8, we have

‖g‖bmoc
q
. ‖`‖(hc

p)∗ and

`( f ) = τ
∫
Rd

f (s)g∗(s)ds, ∀ f ∈ Lp(M; Wc
d).

Thus, we have accomplished the proof of the theorem.

The following corollary gives an equivalent norm of the space bmoc
q. Note

that it is a strengthening of the one-sided estimates in Lemmas 2.4 and 2.5.

COROLLARY 3.12. Let 2 < q 6 ∞. Then g ∈ bmoc
q(Rd,M) if and only if

dλg = | ∂
∂ε Pε(g)(s)|2εdsdε is anM-valued Carleson q-measure on S and ‖J(P) ∗ g‖q <

∞. Furthermore,

‖g‖bmoc
q
≈
∥∥∥ sup +

s∈Q⊂Rd

|Q|<1

1
|Q|

∫
T(Q)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2εdtdε
∥∥∥1/2

q/2
+ ‖J(P) ∗ g‖q.

Proof. From the proof of Lemma 3.10, it is easy to see that if

dλg =
∣∣∣ ∂

∂ε
Pε(g)(s)

∣∣∣2εdsdε

is anM-valued Carleson q-measure on S and J(P) ∗ g ∈ Lq(N ), then g defines a
continuous functional on hc

p(Rd,M):

`( f ) = τ
∫
Rd

f (s)g∗(s)ds, and

‖`‖(hc
p)∗ .

∥∥∥ sup +

s∈Q⊂Rd

|Q|<1

1
|Q|

∫
T(Q)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2εdtdε
∥∥∥1/2

q/2
+ ‖J(P) ∗ g‖q.

According to Theorem 3.11, there exists a function g′ ∈ bmoc
q(Rd,M) such that

‖g′‖bmoc
q
.
∥∥∥ sup +

s∈Q⊂Rd

|Q|<1

1
|Q|

∫
T(Q)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2εdtdε
∥∥∥1/2

q/2
+ ‖J(P) ∗ g‖q
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and that

τ
∫
Rd

f (s)g∗(s)ds = τ
∫
Rd

f (s)g′∗(s)ds,

for any f ∈ hc
p(Rd,M). Thus, g = g′ with

‖g‖bmoc
q
.
∥∥∥ sup +

s∈Q⊂Rd

|Q|<1

1
|Q|

∫
T(Q)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2εdtdε
∥∥∥1/2

q/2
+ ‖J(P) ∗ g‖q.

The inverse inequality is already contained in Lemmas 2.4 and 2.5. We obtain the
desired assertion.

3.4. THE EQUIVALENCE hq =bmoq . We now show that hc
q(Rd,M)=bmoc

q(Rd,M)
for 2 < q < ∞. Thus according to the duality obtained in the last subsection, the
dual of hc

p(Rd,M) agrees with hc
q(Rd,M) when 1 < p < 2. Let us begin with two

lemmas concerning the comparison of sc( f ) and gc( f ). We require an auxiliary
truncated square function. For s ∈ Rd and ε ∈ [0, 2

3 ], we define:

(3.10) g̃c( f )(s, ε) =
( 2/3∫

ε

∣∣∣ ∂

∂r
Pr( f )(s)

∣∣∣2rdr
)1/2

.

LEMMA 3.13. We have

g̃c( f )(s, ε) . sc( f )(s, ε
2 ),

where the relevant constant depends only on the dimension d.

Proof. By translation, it suffices to prove this inequality for s = 0. Given
ε ∈ [0, 2

3 ], for any r such that ε 6 r 6 2
3 , let us denote the ball centered at (0, r)

and tangent to the boundary of the cone
{
(t, u) ∈ Rd+1

+ : |t| < r−(ε/2)
r u

}
by B̃r.

We notice that the radius of B̃r is greater than or equal to r√
5
. By the harmonicity

of ∂
∂r Pr( f ), we have

∂

∂r
Pr( f )(0) =

1
|B̃r|

∫
B̃r

∂

∂u
Pu( f )(t)dt.

Then by (1.10), we arrive at

∣∣∣ ∂

∂r
Pr( f )(0)

∣∣∣2 6

√
5

d+1

cd+1rd+1

∫
B̃r

∣∣∣ ∂

∂u
Pu( f )(t)

∣∣∣2dt,
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where cd+1 is the volume of the unit ball of Rd+1. Integrating the above inequality,
we get

(3.11)

2
3∫

ε

∣∣∣ ∂

∂r
Pr( f )(0)

∣∣∣2rdr 6

2
3∫

ε

√
5

d+1

cd+1rd

∫
B̃r

∣∣∣ ∂

∂u
Pu( f )(t)

∣∣∣2dtdudr.

Since (t, u) ∈ B̃r implies
√

5√
5+1

u 6 r 6
√

5√
5−1

u and ε
2 6 u 6 1, the right hand side

of (3.11) can be majorized by

√
5

d+1

cd+1

1∫
ε/2

∫
B̃r

∣∣∣ ∂

∂u
Pu( f )(t)

∣∣∣2 2u∫
u/2

1
rd drdtdu 6 C|sc( f )(0, ε

2 )|
2,

where C is a constant depending only on d. Therefore, g̃c( f )(0, ε). sc( f )(0, ε
2 ).

LEMMA 3.14. Let 1 6 p < ∞. Then for any f ∈ hc
p(Rd,M), we have

‖sc( f )‖p + ‖P ∗ f ‖p . ‖gc( f )‖p + ‖P ∗ f ‖p.

Proof. We first deal with the case when 1 6 p < 2. Let g be a function in
bmoc

q(Rd,M) (q is the conjugate index of p). Following a similar calculation as
(2.3), it is easy to see that

τ
∫
Rd

f (s)g∗(s)ds

= 4τ
∫
Rd

2/3∫
0

∂

∂ε
Pε( f )(s)

∂

∂ε
Pε(g)∗(s)εdεds

+
(

τ
∫
Rd

P ∗ f (s)(P1/3 ∗ g(s))∗ds +
8π

3
τ
∫
Rd

P ∗ f (s)(I(P1/3) ∗ g(s))∗ds
)

def
= I + II.

The term II can be treated in the same way as in the proof of Lemma 3.10:

II . ‖P ∗ f ‖p · ‖J(P1/3) ∗ f ‖p.

Applying Lemma 3.3, we have

II . ‖P ∗ f ‖p · ‖g‖bmoc
q
.
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Concerning the term I, we have

|I|2

.τ
∫
Rd

2/3∫
0

∣∣∣ ∂

∂ε
Pε( f )(s)

∣∣∣2 g̃c( f )(s, ε)p−2εdεds · τ
∫
Rd

2/3∫
0

∣∣∣ ∂

∂ε
Pε(g)(s)

∣∣∣2 g̃c( f )(s, ε)2−pεdεds

def
= A′ · B′.

Following the argument for the estimate of A in the proof of Lemma 3.10, we
deduce similarly that A′ . ‖g̃c( f )‖p

p. Now we deal with term B′. By Lemma 3.13,
we have

B′ 6 τ
∫
Rd

2/3∫
0

∣∣∣ ∂

∂ε
Pε(g)(s)

∣∣∣2sc( f )(s, ε
2 )εdεds.

Then we apply almost the same argument as in the estimate of B. There is
only one minor difference: when ε > 2−j and s ∈ Qm,j, we have sc( f )(s, ε

2 ) 6
Sc( f )(s, j + 1). We conclude that

B′ . ‖g‖2
bmoc

q
‖sc( f )‖2−p

p .

Combining the estimates of I, A′ and B′ with Theorem 3.11, we get

‖sc( f )‖p + ‖P ∗ f ‖p . ‖g̃c( f )‖p + ‖P ∗ f ‖p . ‖gc( f )‖p + ‖P ∗ f ‖p.

The case p = 2 is obvious. For p > 2, choose a positive g ∈ L(p/2)′(N ) with
norm one such that,

‖sc( f )‖2
p =

∥∥∥ ∫∫
Γ̃

∣∣∣ ∂

∂ε
Pε( f )(·+ t)

∣∣∣2 dtdε

εd−1

∥∥∥
p/2

= τ
∫
Rd

∫∫
Γ̃

∣∣∣ ∂

∂ε
Pε( f )(s + t)

∣∣∣2 dtdε

εd−1 g(s)ds

= τ
∫
Rd

1∫
0

∣∣∣ ∂

∂ε
Pε( f )(t)

∣∣∣2 dtdε

εd−1

∫
B(t,ε)

g(s)ds.

By the noncommutative Hardy–Littlewood maximal inequality (the one dimen-
sionR case is given by Theorem 3.3 of [24], the caseRd is a simple corollary of (3.1)
and Lemma 3.7), there exists a positive a ∈ L(p/2)′(N ) such that ‖a‖(p/2)′ 6 1 and

1
|B(t, 2−k)|

∫
B(t,2−k)

g(s)ds 6 a(t), ∀ t ∈ Rd, ∀ ε > 0.
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Therefore,

‖sc( f )‖2
p =τ

∫
Rd

1∫
0

∣∣∣ ∂

∂ε
Pε( f )(t)

∣∣∣2 dtdε

εd−1

∫
B(t,ε)

g(s)ds6 cdτ
∫
Rd

1∫
0

∣∣∣ ∂

∂ε
Pε( f )(t)

∣∣∣2εa(t)dtdε

6 cd

∥∥∥ 1∫
0

∣∣∣ ∂

∂ε
Pε( f )(t)

∣∣∣2εdtdε
∥∥∥

p/2
‖a‖(p/2)′ 6 cd‖gc( f )‖p.

Then the assertion for the case p > 2 is also proved.

To proceed further, we introduce the definition of tent spaces. These spaces
are closely related to Hardy spaces and were initially defined by Coifman, Meyer
and Stein in [4]. In the noncommutative setting, the operator-valued tent spaces
were first defined and studied by Mei [25].

DEFINITION 3.15. For any function defined on Rd × (0, 1) = S with values
in L1(M) +M, whenever it exists, we define

Ac( f )(s) =
( ∫

Γ̃

| f (t + s, ε)|2 dtdε

εd+1

)1/2
, s ∈ Rd.

For 1 6 p < ∞, we define

Tc
p(Rd,M) = { f : Ac( f ) ∈ Lp(N )}

equipped with the norm ‖ f ‖Tc
p(Rd ,M) = ‖Ac( f )‖p. For p = ∞, define the operator-

valued column Tc
∞ norm of f as

‖ f ‖Tc
∞ = sup

|Q|61

∥∥∥( 1
|Q|

∫
T(Q)

| f (s, ε)|2 dsdε

ε

)1/2∥∥∥
M

,

and the corresponding space is

Tc
∞(Rd,M) = { f : ‖ f ‖Tc

∞ < ∞}.

REMARK 3.16. By the same arguments used in the proof of Theorem 3.11,
it is straightforward to prove the duality that Tc

p(Rd,M)∗ = Tc
q (Rd,M) for 1 6

p < ∞ and 1
p + 1

q = 1. For the case p = 1, it suffices to replace ∂
∂ε Pε( f )(s)

and ∂
∂ε Pε(g)(s) in the proof of Lemma 3.10 by f (s, ε) and g(s, ε), respectively. A

similar argument will give us the inclusion that Tc
∞(Rd,M) ⊂ Tc

1(R
d,M)∗. On

the other hand, since L∞(N ; Lc
2(Γ̃)) ⊂ Tc

∞(Rd,M), we get the reverse inclusion.
For 1 < p < ∞, the tent space Tc

p(Rd,M) we define above is a complemented
subspace of the column tent space defined in [24]. So by Remark 4.6 in [41], we
obtain the duality that Tc

p(Rd,M)∗ = Tc
q (Rd,M).

THEOREM 3.17. For 2 < q < ∞, hc
q(Rd,M) = bmoc

q(Rd,M) with equivalent
norms.
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Proof. First, we show the inclusion hc
q(Rd,M) ⊂ bmoc

q(Rd,M). By Theo-
rem 3.11, it suffices to show that hc

q(Rd,M) ⊂ hc
p(Rd,M)∗. Applying (2.3), for

any f ∈ hc
q(Rd,M) and g ∈ hc

p(Rd,M), we have

τ
∫
Rd

g(s) f ∗(s)ds =
4
cd

∫
Rd

∫∫
Γ̃

∂

∂ε
Pε(g)(s + t)

∂

∂ε
Pε( f )∗(s + t)

dtdε

εd−1 ds

+
∫
Rd

P ∗ g(s)(P ∗ f (s))∗ds + 4π
∫
Rd

I(P) ∗ g(s)(P ∗ f (s))∗ds.

Then, by the Hölder inequality,∣∣∣τ ∫
Rd

g(s) f ∗(s)ds
∣∣∣ 6 ∥∥∥ε · ∂

∂ε
Pε(g)

∥∥∥
Lp(N ;L2(Γ̃))

∥∥∥ε · ∂

∂ε
Pε( f )

∥∥∥
Lq(N ;L2(Γ̃))

+ ‖(P + I(P)) ∗ g‖p · ‖P ∗ f ‖q

6 (‖sc(g)‖p + ‖(P + I(P)) ∗ g‖p)‖ f ‖hc
q .

Now, we show that for any 1 6 p < 2 and g ∈ hc
p(Rd,M), we have ‖(P +

I(P)) ∗ g‖p . ‖g‖hc
p . Since 2 < q < ∞, we have 1 < q

2 < ∞. Applying the
noncommutative Hardy–Littlewood maximal inequality, we get

‖ f ‖bmoc
q
.
∥∥∥ sup

s∈Q⊂Rd

+ 1
|Q|

∫
Q

| f (t)|2dt
∥∥∥1/2

q/2
. ‖| f |2‖1/2

q/2 = ‖ f ‖q.

This implies that Lq(N ) ⊂ bmoc
q(Rd,M) for any 2 < q 6 ∞. Then by Theo-

rem 3.11, we get hc
p(Rd,M) ⊂ Lp(N ). Therefore we deduce that

(3.12) ‖(P + I(P)) ∗ g‖p . ‖g‖p . ‖g‖hc
p .

Thus, ∣∣∣τ ∫
Rd

g(s) f ∗(s)ds
∣∣∣ . ‖ f ‖hc

q‖g‖hc
p .

We have proved hc
q(Rd,M) ⊂ bmoc

q(Rd,M).
Let us turn to the reverse inclusion bmoc

q(Rd,M) ⊂ hc
q(Rd,M). We need

to make use of the tent spaces in Definition 3.15. We claim that for q > 2, every
f ∈ bmoc

q(Rd,M) induces a linear functional on Tc
p(Rd,M)

⊕
p

Lp(N ). Indeed,

for any h = (h′, h′′) ∈ Tc
p(Rd,M)

⊕
p

Lp(N ), we define

` f (h) = τ
∫
Rd

1∫
0

h′(s, ε)
∂

∂ε
Pε( f )∗(s)dεds

+ τ
∫
Rd

h′′(s)[(P ∗ f )∗(s) + 4π(I(P) ∗ f )∗(s)]ds.

(3.13)
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Set

Ac(h′)(s, ε)=

1∫
ε

∫
B(s,r−ε/2)

|h′(s, ε)|2 dtdr
rd+1 , Ac

(h′)(s, ε)=

1∫
ε

∫
B(s,r/2)

|h′(s, ε)|2 dtdr
rd+1 .

Then by the Cauchy–Schwarz inequality, we arrive at

|` f (h)| .
(

τ
∫
Rd

1∫
0

( ∫
B(s,ε/2)

∣∣∣ ∂

∂ε
Pε( f )(t)

∣∣∣2 dt
εd−1

)
Ac

(h′)(s, ε)p−2dεds
)1/2

·
(

τ
∫
Rd

1∫
0

( ∫
B(s,ε/2)

∣∣∣ ∂

∂ε
Pε( f )(t)

∣∣∣2 dt
εd−1

)
Ac

(h′)(s, ε)2−pdεds
)1/2

+
∣∣∣τ ∫

Rd

h′′(s)(P ∗ f (s))∗ds
∣∣∣+ ∣∣∣τ ∫

Rd

h′′(s)(I(P) ∗ f (s))∗ds
∣∣∣.

Following a similar argument as in the proof of Lemma 3.10, we obtain that

|` f (h)| . (‖h′‖Tc
p + ‖h

′′‖Lp)‖ f ‖bmoc
q
. ‖h‖Tc

p
⊕

p Lp · ‖ f ‖bmoc
q
,

which implies that ‖` f ‖ 6 cq‖ f ‖bmoc
q
. So the claim is proved.

Next we show that ‖ f ‖hc
q 6 Cq‖` f ‖. By definition, we can regard Tc

p as

a closed subspace of Lp(N ; Lc
2(Γ̃)) in the natural way. Then, ` f extends to a

linear functional on Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N ). Thus, there exists g = (g′, g′′) ∈

Lq(N ; Lc
2(Γ̃))

⊕
q

Lq(N ) such that

‖g‖Lq(N ;Lc
2(Γ̃))

⊕
q Lq(N ) 6 ‖` f ‖

and for any h = (h′, h′′) ∈ Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N ),

` f (h) = τ
∫
Rd

∫∫
Γ̃

h′(s, ε)g′∗(s, t, ε)
dtdε

εd+1 ds + τ
∫
Rd

h′′(s)g′′∗(s)ds

= τ
∫
Rd

1∫
0

h′(s, ε)
∫

B(s,ε)

g′∗(s, t, ε)dt
dsdε

εd+1 + τ
∫
Rd

h′′(s)g′′∗(s)ds.

Comparing the equalities above with (3.13), we get

∂

∂ε
Pε( f )(s) =

1
εd+1

∫
B(0,ε)

g′(s, t, ε)dt and P ∗ f + 4π I(P) ∗ f = g′′.
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By Lemma 3.14, we have

‖ f ‖hc
q .

∥∥∥( 1∫
0

∣∣∣ ∂

∂ε
Pε( f )

∣∣∣2εdε
)1/2∥∥∥

q
+ ‖P ∗ f ‖q

6 cd

∥∥∥( 1∫
0

1
εd+1

∫
B(0,ε)

|g′(s, t, ε)|2dtdε
)1/2∥∥∥

q
+ ‖P ∗ f ‖q

. ‖g′‖Lq(N ;Lc
2(Γ̃)) + ‖P ∗ f ‖q.

Now let us majorize the second term ‖P ∗ f ‖q by ‖g′′‖q. Indeed, consider the
function

G(s) = 2π

∞∫
0

e−2πεPε(s)dε.

It is easy to see that G ∈ L1(Rd), ‖G‖1 6 1 and Ĝ(ξ) = (1 + |ξ|)−1. This means
that the operator (1 + I)−1 is a contractive Fourier multiplier on Lq(N ). There-
fore,

‖P ∗ f ‖q 6 ‖(P + I(P)) ∗ f ‖q 6 4π‖g′′‖q.

Finally, we conclude that ‖ f ‖hc
q . ‖` f ‖ . ‖ f ‖bmoc

q
and then we have hc

q(Rd,M) =

bmoc
q(Rd,M) with equivalent norms.

Armed with the theorem above, we are able to extend the content of Theo-
rem 3.8.

THEOREM 3.18. (i) The map F extends to a bounded map from L∞(N ; Lc
2(Γ̃))

⊕
∞

L∞(N ) into bmoc(Rd,M) and

‖F(h)‖bmoc . ‖h‖L∞(N ;Lc
2(Γ̃))

⊕
∞ L∞(N ).

(ii) For 1 < p < ∞, F extends to a bounded map from Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N ) into

hc
p(Rd,M) and

‖F(h)‖hc
p . ‖h‖Lp(N ;Lc

2(Γ̃))
⊕

p Lp(N ).

Proof. (i) is already contained in Theorem 3.8. When p > 2, (ii) follows from
Theorem 3.8 and Theorem 3.17. The case p = 2 is trivial. For the case 1 < p < 2,
according to Theorem 3.11, we have

‖F(h)‖hc
p . sup

‖ f ‖bmoc
q
61

∣∣∣τ ∫
Rd

F(h)(s) f ∗(s)ds
∣∣∣.
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Then, by Theorem 3.17 and (3.12), for h = (h′, h′′) ∈ Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N ), we

have the following and the desired inequality is proved:

sup
‖ f ‖bmoc

q
61

∣∣∣τ ∫
Rd

F(h)(s) f ∗(s)ds
∣∣∣

. sup
‖ f ‖hc

q
61

∣∣∣τ∫
Rd

[ ∫∫
Γ̃

h′(s, t, ε)
∂

∂ε
Pε( f )∗(s+t)dtdε+h′′(s)([P+4π I(P)] ∗ f ∗(s))

]
ds
∣∣∣

. ‖h‖Lp(N ;Lc
2(Γ̃))

⊕
p Lp(N ).

The above theorem shows that, for any 1 < p < ∞, hc
p(Rd,M) is a com-

plemented subspace of Lp(N ; Lc
2(Γ̃))

⊕
p

Lp(N ). Thus, we deduce the following

duality theorem.

THEOREM 3.19. We have hc
p(Rd,M)∗ = hc

q(Rd,M) with equivalent norms for
any 1 < p < ∞.

4. INTERPOLATION

In this section we study the interpolation of local Hardy and bmo spaces by
transferring the problem to that of the operator-valued Hardy and BMO spaces
defined in [24]. We begin with an easy observation on the difference between
bmoc

q and BMOc
q norms.

LEMMA 4.1. For 2 < q 6 ∞, we have

‖g‖bmoc
q
≈ (‖g‖q

bmoc
q
+ ‖J(P) ∗ g‖q

q)
1/q.

Proof. Repeating the proof of Proposition 2.3 with ‖ · ‖M replaced by
‖ · ‖Lq/2(N ;`∞), we have ‖g‖BMOc

q
. ‖g‖bmoc

q
. By Lemma 3.3, it is also evident

that ‖J(P) ∗ g‖q . ‖g‖bmoc
q
. Then we obtain

(‖g‖q
bmoc

q
+ ‖J(P) ∗ g‖q

q)
1/q . ‖g‖bmoc

q
.

On the other hand, by Corollary 3.12, we have

‖g‖bmoc
q
.
∥∥∥ sup +

s∈Q⊂Rd

|Q|<1

1
|Q|

∫
T(Q)

∣∣∣ ∂

∂ε
Pε(g)(t)

∣∣∣2εdtdε
∥∥∥1/2

q/2
+ ‖J(P) ∗ g‖q.

Clearly, the first term on the right side can be estimated from above by ‖g‖BMOc
q

(see Theorem 3.4 of [41]). Therefore, we have the following and thus, the lemma
is proved:

‖g‖bmoc
q
. ‖g‖BMOc

q
+ ‖J(P) ∗ g‖q ≈ (‖g‖q

bmoc
q
+ ‖J(P) ∗ g‖q

q)
1/q.
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Define Fq(N ) to be the space of all f ∈ Lq(M; Rc
d) such that ‖J(P) ∗ f ‖q <

∞. From the above lemma, we see that bmoc
q(Rd,M) and BMOc

q(Rd,M)
⊕
q

Fq(N )

have equivalent norms. By the interpolation between BMOc
q(Rd,M) and

BMOc(Rd,M) (see [24] for more details), we deduce the following lemma.

LEMMA 4.2. Let 2 < q < ∞ and 0 < θ < 1. Then

(bmoc
q(Rd,M), bmoc(Rd,M))θ ⊂ bmoc

$(Rd,M) with $ =
q

1− θ
.

Proof. By Lemma 4.1, we see that

bmoc
q(Rd,M) = BMOc

q(Rd,M)
⊕

q
Fq(N )

with equivalent norms. Define a map

Υq : Fq(N ) −→ Lq(N )

f 7−→ J(P) ∗ f .

Thus, Υq defines an isometric embedding of Fq(N ) into Lq(N ). Then by the inter-
polation between BMOc

q(Rd,M) and BMOc(Rd,M), we get the following which
completes the proof:

(bmoc
q(Rd,M), bmoc(Rd,M))θ

=
(

BMOc
q(Rd,M)

⊕
q

Fq(N ), BMOc(Rd,M)
⊕
∞

F∞(N )
)

θ

= (BMOc
q(Rd,M), BMOc(Rd,M))θ

⊕
$

(Fq(N ), F∞(N ))θ

⊂ BMOc
$(Rd,M)

⊕
$

F$(N ) = bmoc
$(Rd,M).

THEOREM 4.3. Let 1 < p < ∞. We have

(bmoc(Rd,M), hc
1(R

d,M))1/p = hc
p(Rd,M).

Proof. Let 1 < p < 2 and 1
p′ =

1−θ
p + θ. Since the map E in Definition 3.4 is

an isometry from hc
p(Rd,M) to Lp(N ; Lc

2(Γ̃))
⊕
p

Lp(N ), we have

(4.1) (hc
p(Rd,M), hc

1(R
d,M))θ ⊂ hc

p′(R
d,M).

By Theorem 3.19, hc
p is a reflexive Banach space. Then applying Corollary 4.5.2 of

[2], we know that the dual of (hc
p(Rd,M), hc

1(R
d,M))θ is (bmoc

q(Rd,M),
bmoc(Rd,M))θ . Therefore, if the inclusion (4.1) is proper, we will get the proper
inclusion

bmoc
$(Rd,M) ( (bmoc

q(Rd,M), bmoc(Rd,M))θ ,
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which is in contradiction with Lemma 4.2. Thus, we have

(4.2) (hc
p(Rd,M), hc

1(R
d,M))θ = hc

p′(R
d,M).

By duality and Corollary 4.5.2 of [2] again, the above equality implies that for
q′ = q

1−θ ,

(4.3) (hc
q(Rd,M), bmoc(Rd,M))θ = hc

q′(R
d,M).

For the case where 1 < p1, p2 < ∞, the interpolation of hc
p1
(Rd,M) and

hc
p2
(Rd,M) is much easier to handle. Indeed, by Theorem 3.18, we have, for any

1 < p < ∞, hc
p(Rd,M) is a complemented subspace of Lp(N ; Lc

2(Γ̃))
⊕
p

Lp(N )

via the maps E and F in Definition 3.4. This implies that, for any 1 < p1, p2 < ∞,

(hc
p1
(Rd,M), hc

p2
(Rd,M))θ = hc

p(Rd,M),

with 1
p = 1−θ

p1
+ θ

p2
. Combining this equivalence with (4.2), (4.3), and applying

Wolff’s interpolation theorem (see [38]), we get the desired assertion.

The following theorem is the mixed version of Theorem 4.3, which states
that h1(Rd,M) and bmo(Rd,M) are also good endpoints of Lp(N ).

THEOREM 4.4. Let 1 < p < ∞. We have (X, Y)1/p = Lp(N ) with equivalent
norms, where X = bmo(Rd,M) or L∞(N ), and Y = h1(Rd,M) or L1(N ).

Proof. By the same argument as in the proof of Theorem 4.3, we have the
inclusion

(bmoq(Rd,M), bmo(Rd,M))θ ⊂ bmoq′(Rd,M) q′ =
q
θ

,

which ensures by duality that

(hp(Rd,M), h1(Rd,M))θ ⊃ hp′(Rd,M) = Lp′(N )

for 1
p′ =

1−θ
p + θ. Then by Proposition 6.18,

Lp′(N ) ⊂ (hp(Rd,M), h1(Rd,M))θ = (Lp(N ), h1(Rd,M))θ .

Since h1(Rd,M) ⊂ L1(N ), then

(hp(Rd,M), h1(Rd,M))θ ⊂ (Lp(N ), L1(N ))θ = Lp′(N ).

Combining the estimates above, we have

(hp(Rd,M), h1(Rd,M))θ = Lp′(N ).

Again, using duality and Wolff’s interpolation theorem, we conclude the proof
by the same trick as in the proof of Theorem 4.3.

We end this section by some real interpolation results.
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COROLLARY 4.5. Let 1 < p < ∞. Then we have:
(i) (bmoc(Rd,M), hc

1(R
d,M))1/p,p = hc

p(Rd,M) with equivalent norms;
(ii) (X, Y)1/p,p = Lp(N ) with equivalent norms, where X = bmo(Rd,M) and

Y = h1(Rd,M), or X = L∞(N ) and Y = L1(N ).

Proof. Both (i) and (ii) follow from Theorem 4.7.2 of [2]; we only prove (i).
Let 1 < p1 < p < p2 < ∞ with 1

p = 1−η
p1

+ η
p2

. By Theorem 4.7.2 of [2], we write

(bmoc(Rd,M), hc
1(R

d,M))1/p,p

= ((bmoc(Rd,M), hc
1(R

d,M))1/p1 , (bmoc(Rd,M), hc
1(R

d,M))1/p2)η,p.
(4.4)

Then (i) follows from Theorem 4.4 and the facts that (Lp1(N ), Lp2(N ))η,p =

Lp(N ) and that hc
p(Rd,M) is a complemented subspace of Lp(N ; Lc

2(Γ̃))
⊕
p

Lp(N ).

5. CALDERÓN–ZYGMUND THEORY

We introduce the Calderón–Zygmund theory on operator-valued local
Hardy spaces in this section. It is closely related to the similar results of [11],
[17], [27] and [43]. The results in the following will be used in the next section to
investigate various square functions that characterize local Hardy spaces.

Let K be an L1(M) +M)-valued tempered distribution which coincides on
Rd \ {0} with a locally integrable L1(M) +M-valued function. We define the
left singular integral operator Kc associated to K by

Kc( f )(s) =
∫
Rd

K(s− t) f (t)dt,

and the right singular integral operator Kr associated to K by

Kr( f )(s) =
∫
Rd

f (t)K(s− t)dt.

Both Kc( f ) and Kr( f ) are well-defined for sufficiently nice functions f with val-
ues in L1(M) ∩M, for instance, for f ∈ S ⊗ (L1(M) ∩M).

Let bmoc
0(Rd,M) denote the subspace of bmoc(Rd,M) consisting of com-

pactly supported functions. The following lemma is an analogue of Lemma 2.1 in
[41] for inhomogeneous spaces. Notice that the usual Calderón–Zygmund oper-
ators (the operators satisfying the condition (i) and (iii) in the following lemma)
are not necessarily bounded on hc

1(R
d,M). Thus, we need to impose an extra

decay at infinity on the kernel K.

LEMMA 5.1. Assume that:
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(i) the Fourier transform of K is bounded: sup
ξ∈Rd
‖K̂(ξ)‖M < ∞;

(ii) K satisfies the size estimate at infinity: there exist C1 and ρ > 0 such that

‖K(s)‖M 6
C1

|s|d+ρ
, ∀ |s| > 1;

(iii) K has the Lipschitz regularity: there exist C2 and γ > 0 such that

‖K(s− t)− K(s)‖M 6 C2
|t|γ

|s− t|d+γ
, ∀ |s| > 2|t|.

Then Kc is bounded on hc
p(Rd,M) for 1 6 p < ∞ and from bmoc

0(Rd,M) to
bmoc(Rd,M).

A similar statement also holds for Kr and the corresponding row spaces.

Proof. First suppose that Kc maps constant functions to zero. This amounts
to requiring that Kc(1Rd) = 0. Let Q ⊂ Rd be a cube with |Q| < 1. Since the
assumption of Lemma 2.1 in [41] are included in the ones of this lemma, we get∥∥∥( 1

|Q|

∫
Q

|Kc( f )− Kc( f )Q|2dt
)1/2∥∥∥

M
. ‖ f ‖BMOc . ‖ f ‖bmoc .

Now let us focus on the cubes with side length 1. Let Q be a cube with |Q| = 1
and Q̃ = 2Q be the cube concentric with Q and with side length 2. Decompose f
as f = f1 + f2, where f1 = 1Q̃ f and f2 = 1Rd\Q̃ f . Then Kc( f ) = Kc( f1) + Kc( f2).
We have∥∥∥ 1

|Q|

∫
Q

|Kc( f )|2ds
∥∥∥
M

.
∥∥∥ 1
|Q|

∫
Q

|Kc( f1)|2ds
∥∥∥
M

+
∥∥∥ 1
|Q|

∫
Q

|Kc( f2)|2ds
∥∥∥
M

.

The first term is easy to estimate. By assumption (i) and (1.10),∥∥∥ 1
|Q|

∫
Q

|Kc( f1)|2ds
∥∥∥
M

6
∥∥∥ 1
|Q|

∫
Rd

|K̂(ξ) f̂1(ξ)|2dξ
∥∥∥
M

.
∥∥∥ 1
|Q|

∫
Rd

| f̂1(ξ)|2dξ
∥∥∥
M

=
∥∥∥ 1
|Q|

∫
Q̃

| f (s)|2ds
∥∥∥
M

. sup
|Q|=1

∥∥∥ 1
|Q|

∫
Q

| f (s)|2ds
∥∥∥
M

.

To estimate the second term, using assumption (ii) and (1.10) again, we have

|Kc( f2)(s)|2 =
∣∣∣ ∫
Rd

K(s− t) f2(t)dt
∣∣∣2 =

∣∣∣ ∫
Rd\Q̃

K(s− t) f (t)dt
∣∣∣2

6
∫

Rd\Q̃

‖K(s− t)‖Mdt ·
∫

Rd\Q̃

‖K(s− t)‖−1
M |K(s− t) f (t)|2dt

.
∫

Rd\Q̃

‖K(s− t)‖M| f (t)|2dt .
∫

Rd\Q̃

1
|s− t|d+ρ

| f (t)|2dt.
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Set Q̃m = Q̃ + 2m for every m ∈ Zd. Then Rd \ Q̃ =
⋃

m 6=0
Q̃m. Continuing the

estimate of |Kc( f2)(s)|2, for any s ∈ Q, we have

|Kc( f2)(s)|2 6 ∑
m 6=0

∫
Q̃m

1
|s− t|d+ρ

| f (t)|2dt ≈ ∑
m 6=0

1
|m|d+ρ

∫
Q̃m

| f (t)|2dt . ‖ f ‖bmoc .

Combining the previous estimates, it is easy to see that Kc is bounded from
bmoc

0(Rd,M) to bmoc(Rd,M).
Now we illustrate that the additional requirement Kc(1Rd)=0 is not needed.

First, a similar argument as above ensures that for every compactly supported
f ∈ L∞(N ), ‖Kc( f )‖bmoc . ‖ f ‖∞. Then we follow the argument of Proposi-
tion II.5.15 in [8] to extend Kc on the whole L∞(N ), as

Kc( f )(s) = lim
j

[
Kc( f1Bj)(s)−

∫
1<|t|6j

K(−t) f (t)dt
]
, ∀ s ∈ Rd,

where Bj is the ball centered at the origin with radius j. Let us show that the
sequence on the right hand side converges pointwise in the norm ‖ · ‖M and
uniformly on any compact set Ω ⊂ Rd. To this end, we denote by gj the j-th term
of this sequence. Let l be the first natural number such that l > 2 sup

s∈Ω

|s|. Then for

s ∈ Ω and j > l, we have

gj(s) = gl(s) +
∫

l<|t|6j

(K(s− t)− K(−t)) f (t)dt.

By assumption (iii), the integral on the right hand side is bounded by a bounded
multiple of ‖ f ‖∞, uniformly on s ∈ Ω. This ensures the convergence of gj, so
Kc( f ) is a well-defined function. Now we have to estimate the bmoc-norm of
Kc( f ). Taking any cube Q ⊂ Rd, by the uniform convergence of gj on Q inM,
we have∥∥∥( ∫

Q

|Kc( f )(s)− (Kc( f ))Q|2ds
)1/2∥∥∥

M
= lim

j

∥∥∥( ∫
Q

|gj(s)− (gj)Q|2ds
)1/2∥∥∥

M
.

Similarly, ∥∥∥( ∫
Q

|Kc( f )(s)|2ds
)1/2∥∥∥

M
= lim

j

∥∥∥( ∫
Q

|gj(s)|2ds
)1/2∥∥∥

M
.

Hence, by the fact that gj and Kc( f1Bj) differ by a constant, we obtain

‖Kc( f )‖bmoc = lim
j
‖gj‖bmoc . lim sup

j
‖Kc( f1Bj)‖bmoc + ‖ f ‖∞ . ‖ f ‖∞.

Therefore, Kc defined above extends to a bounded operator from L∞(N ) to
bmoc(Rd,M). In particular, Kc(1Rd) determines a function in bmoc(Rd,M).
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Then for f and Q as above, we have Kc( f ) = Kc( f1) + Kc( f2) + Kc(1Rd) fQ̃, so

‖Kc( f )‖bmoc 6 ‖Kc( f1)‖bmoc + ‖Kc( f2)‖bmoc + ‖Kc(1Rd)‖bmoc ‖ fQ̃‖M
. ‖ f ‖bmoc + ‖ fQ̃‖M . ‖ f ‖bmoc .

Thus we have proved the bmoc-boundedness of Kc in the general case.
By duality, the boundedness of Kc on hc

1(R
d,M) is equivalent to that of its

adjoint map (Kc)∗ on bmoc
0(Rd,M). It is easy to see that (Kc)∗ is also a singular

integral operator:

(Kc)∗(g) =
∫
Rd

K̃(s− t)g(t)dt,

where K̃(s) = K∗(−s). Obviously, K̃ also satisfies the same assumption as K,
so (Kc)∗ is bounded on bmoc

0(Rd,M). Thus we get the boundedness of Kc on
hc

1(R
d,M). Then, by the interpolation between hc

1(R
d,M) and bmoc(Rd,M) in

Theorem 4.3, we get the boundedness of Kc on hc
p(Rd,M) for 1 < p < ∞. The

assertion is proved.

REMARK 5.2. Under the assumption of the above lemma, Kc(1Rd) is a con-
stant, so it is the zero element in BMOc(Rd,M).

A special case of Lemma 5.1 concerns the Hilbert-valued kernel K. Let H
be a Hilbert space and k : Rd → H be a H-valued kernel. We view the Hilbert
space as the column matrices in B(H) with respect to a fixed orthonormal basis.
Put K(s) = k(s)⊗ 1M ∈ B(H)⊗M. For nice functions f : Rd → L1(M) +M,
Kc( f ) takes values in the column subspace of L1(B(H)⊗M) + L∞(B(H)⊗M).
Consequently,

‖Kc( f )‖Lp(B(H)⊗N ) = ‖Kc( f )‖Lp(N ;Hc).

Since k(s)⊗ 1M commutes withM, Kc( f ) = Kr( f ) for f ∈ L2(N ). Let us denote
this common operator by kc. Here the superscript c refers to the previous con-
vention that H is identified with the column matrices in B(H). Thus, Lemma 5.1
implies the following corollary.

COROLLARY 5.3. Assume that:
(i) sup

ξ∈Rd
‖k̂(ξ)‖H < ∞;

(ii) ‖k(s)‖H . 1
|s|d+ρ , ∀ |s| > 1, for some ρ > 0;

(iii) ‖k(s− t)− k(s)‖H . |t|γ
|s−t|d+γ , ∀ |s| > 2|t|, for some γ > 0.

Then the operator kc is bounded:
(a) from bmoα

0(Rd,M) to bmoα(Rd, B(H)⊗M), where α = c, α = r or we leave
out α;

(b) and from hc
p(Rd,M) to hc

p(Rd, B(H)⊗M) for 1 6 p < ∞.
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Proof. Since Kc( f ) = Kr( f ) on the subspace Lp(N ) ⊂ Lp(B(H)⊗N ), (i) fol-
lows immediately from Lemma 5.1. Let bmoc(Rd, Hc⊗M) (respectively
hc

p(Rd, Hc⊗M)) be the column subspace of bmoc(Rd, B(H)⊗M) (respectively
hc

p(Rd, B(H)⊗M)). Consider the adjoint operator of kc which is denoted by (kc)∗.
It admits the convolution kernel K̃(s) = k̃(s)⊗ 1M, where k̃(s) = k(−s)∗ (so it
is a row matrix). Applying Lemma 5.1 to (kc)∗, we see that (kc)∗ is bounded
from bmoc(Rd, Hc⊗M) to bmoc(Rd,M). Then kc is bounded from hc

1(R
d,M) to

hc
1(R

d, Hc⊗M), and thus bounded from hc
1(R

d,M) into hc
1(R

d, B(H)⊗M). In-
terpolating this with the boundedness of kc from bmoc

0(Rd,M) to
bmoc(Rd, B(H)⊗M), we deduce the desired assertion in (ii).

REMARK 5.4. Let 1 6 p 6 2. Since L∞(N ) ⊆ bmoc(Rd,M), we get
hc

1(R
d,M) ⊆ L1(N ). By Theorem 4.3 and the fact that hc

2(Rd,M) = L2(N ),
we have hc

p(Rd,M) ⊆ Lp(N ). Then Corollary 5.3 ensures that, for any f ∈
hc

p(Rd,M):

‖kc( f )‖Lp(N ;Hc) . ‖kc( f )‖hc
p(Rd ,B(H)⊗M) . ‖ f ‖hc

p(Rd ,M).

6. GENERAL CHARACTERIZATIONS

Applying the operator-valued Calderón–Zygmund theory developed in the
last section, we will show that the Poisson kernel in the square functions which
are used to define hc

p(Rd,M) can be replaced by any reasonable test function. As
an application, we are able to compare the operator-valued local Hardy spaces
hc

p(Rd,M) defined in this paper with the operator-valued Hardy spaces
Hc

p(Rd,M) in [24]. We will use multi-index notation. For m = (m1, . . . , md) ∈ Nd
0

and s = (s1, . . . , sd) ∈ Rd, we set sm = sm1
1 · · · s

md
d . Let |m|1 = m1 + · · ·+ md and

Dm = ∂m1

∂s
m1
1
· · · ∂md

∂s
md
d

.

6.1. GENERAL CHARACTERIZATIONS. Let Φ be a complex-valued infinitely dif-
ferentiable function defined on Rd\{0}. Recall that Γ̃ = {(t, ε) ∈ Rd+1

+ : |t| < ε <

1} and Φε(s) = ε−dΦ( s
ε ). For any f ∈ L1(M; Rc

d) + L∞(M; Rc
d), we define the

local versions of the conic and radial square functions of f associated to Φ by

sc
Φ( f )(s) =

( ∫∫
Γ̃

|Φε ∗ f (s + t)|2 dtdε

εd+1

)1/2
, s ∈ Rd,

gc
Φ( f )(s) =

( 1∫
0

|Φε ∗ f (s)|2 dε

ε

)1/2
, s ∈ Rd.

The function Φ that we use to characterize the operator-valued local Hardy spaces
satisfies the following conditions:
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(1) every DmΦ with 0 6 |m|1 6 d makes f 7→ sc
DmΦ f and f 7→ gc

DmΦ f
Calderón–Zygmund singular integral operators in Corollary 5.3;

(2) there exist functions Ψ, ψ and φ such that

(6.1) φ̂(ξ)ψ̂(ξ) +

1∫
0

Φ̂(εξ)Ψ̂(εξ)
dε

ε
= 1, ∀ ξ ∈ Rd;

(3) the above Ψ and ψ make dµg = |Ψε ∗ g(s)|2 dεds
ε and φ ∗ g satisfy:

max
{∥∥∥ sup +

s∈Q⊂Rd

|Q|<1

1
|Q|

∫
T(Q)

dµg

∥∥∥1/2

q/2
, ‖ψ ∗ g‖q

}
. ‖g‖bmoc

q
for q > 2;

(4) the above φ makes f 7→ φ ∗ f a Calderón–Zygmund singular integral op-
erator in Corollary 5.3.

Fix the four functions Φ, Ψ, φ, ψ as above. The following is one of our main
results in this section, which states that the functions Φ, φ satisfying the above
four conditions give a general characterization for hc

p(Rd,M).

THEOREM 6.1. Let 1 6 p < ∞ and φ, Φ be as above. For any f ∈ L1(M; Rc
d) +

L∞(M; Rc
d), f ∈ hc

p(Rd,M) if and only if sc
Φ( f ) ∈ Lp(N ) and φ ∗ f ∈ Lp(N ) if and

only if gc
Φ( f ) ∈ Lp(N ) and φ ∗ f ∈ Lp(N ). If this is the case, then

(6.2) ‖ f ‖hc
p ≈ ‖s

c
Φ( f )‖p + ‖φ ∗ f ‖p ≈ ‖gc

Φ( f )‖p + ‖φ ∗ f ‖p

with the relevant constants depending only on d, p, and the pairs (Φ, Ψ) and (φ, ψ).

One implication of the above theorem is an easy consequence of conditions
(1) and (4), namely that

‖sc
Φ( f )‖p + ‖φ ∗ f ‖p . ‖ f ‖hc

p ,(6.3)

‖gc
Φ( f )‖p + ‖φ ∗ f ‖p . ‖ f ‖hc

p .(6.4)

In order to prove the converse inequalities, we need the following lemma, which
can be seen as a generalization of Lemma 3.10.

LEMMA 6.2. Let 1 6 p < 2, q be its conjugate index and Φ, φ be the functions
satisfying the above assumption. For f ∈ hc

p(Rd,M)∩ L2(N ) and g ∈ bmoc
q(Rd,M),∣∣∣τ ∫

Rd

f (s)g∗(s)ds
∣∣∣ . (‖sc

Φ( f )‖p + ‖φ ∗ f ‖p)‖g‖bmoc
q
.

Proof. The proof of this lemma is very similar to that of Lemma 3.10, we
will just point out the necessary modifications to avoid duplication. We need two
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auxiliary square functions associated with Φ. For s ∈ Rd, ε ∈ [0, 1], we define

sc
Φ( f )(s, ε) =

( 1∫
ε

∫
B(s,r−ε/2)

|Φr ∗ f (t)|2 dtdr
rd+1

)1/2
,(6.5)

sc
Φ( f )(s, ε) =

( 1∫
ε

∫
B(s,r/2)

|Φr ∗ f (t)|2 dtdr
rd+1

)1/2
.(6.6)

By assumption (ii) of Φ, we have

τ
∫
Rd

f (s)g∗(s)ds

= τ
∫
Rd

1∫
0

Φε ∗ f (s)(Ψε ∗ g(s))∗
dsdε

ε
+ τ

∫
Rd

φ ∗ f (s)(ψ ∗ g(s))∗ds

=
2d

cd
τ
∫
Rd

1∫
0

∫
B(s,ε/2)

Φε ∗ f (t)sc
Φ( f )(s, ε)(p−2)/2sc

Φ( f )(s, ε)(2−p)/2(Ψε ∗ g(t))∗
dtdε

εd+1 ds

+ τ
∫
Rd

φ ∗ f (s)(ψ ∗ g(s))∗ds def
= I + II.

Then by the Cauchy–Schwarz inequality,

|I|2 . τ
∫
Rd

1∫
0

( ∫
B(s,ε/2)

|Φε ∗ f (t)|2 dt
εd+1

)
sc

Φ( f )(s, ε)p−2dεds

· τ
∫
Rd

1∫
0

( ∫
B(s,ε/2)

|Ψε ∗ g(t)|2 dt
εd+1

)
sc

Φ( f )(s, ε)2−pdεds def
= A · B.

Replacing ε ∂
∂ε Pε( f ) and ε ∂

∂ε Pε(g) in the proof of Lemma 3.10 by Φε ∗ f and Ψε ∗ g,
respectively and applying Lemma 6.7 and assumption (3) of Ψ and ψ, we get the
estimates for the terms A and B:

A . ‖sc
Φ( f )‖p

p and B . ‖g‖2
bmoc

q
‖sc

Φ( f )‖2−p
p .

The term II is easy to deal with. By the Hölder inequality, Lemma 6.7 and as-
sumption (3) again, we get∣∣∣τ ∫

Rd

φ ∗ f (s)(ψ ∗ g(s))∗ds
∣∣∣ 6 ‖φ ∗ f ‖p‖ψ ∗ g‖q . ‖φ ∗ f ‖p‖g‖bmoc

q
.

Combining the estimates for A, B and II, we finally get the desired inequality.
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We also need the radial version of Lemma 6.2. To this end, we need to
majorize the radial square function by the conic one. When we consider the Pois-
son kernel, this result follows from the harmonicity of the Poisson integral (see
Lemma 3.13). However, in the general case, the harmonicity is no longer avail-
able. To overcome this difficulty, a more sophisticated inequality has been de-
veloped in [41] to compare non-local radial and conic functions. Observe that
the result given in Lemma 4.3 of [41] is a pointwise one, which also works for
the local version of square functions if we consider integration over the interval
0 < ε < 1. The following lemma is an obvious consequence of Lemma 4.3 in [41].

LEMMA 6.3. Let f ∈ L1(M; Rc
d) + L∞(M; Rc

d). Then

gc
Φ( f )(s)2 . ∑

|m|16d
sc

DmΦ( f )(s)2, ∀ s ∈ Rd.

LEMMA 6.4. Let 16 p<2. For f ∈hc
p(Rd,M)∩L2(N ) and g∈bmoc

q(Rd,M),∣∣∣τ ∫
Rd

f (s)g∗(s)ds
∣∣∣ . (‖gc

Φ( f )‖p + ‖φ ∗ f ‖p)
p/2‖ f ‖1−p/2

hc
p
‖g‖bmoc

q
.

Proof. This proof is similar to that of Lemma 6.2 and we keep the notation
there. Let f ∈ hc

p(Rd,M) with compact support (relative to the variable of Rd).
We assume that f is sufficiently nice so that all calculations below are legitimate.
Now we need the radial version of sc

Φ( f )(s, ε),

gc
Φ( f )(s, ε) =

( 1∫
ε

|Φr ∗ f (s)|2 dr
r

)1/2

for s ∈ Rd and 0 6 ε 6 1. By approximation, we can assume that gc
Φ( f )(s, ε) is

invertible for every (s, ε) ∈ S. By (6.1), (1.12) and the Fubini theorem, we have∣∣∣τ ∫
Rd

f (s)g∗(s)ds
∣∣∣2

. τ
∫
Rd

1∫
0

|Φε ∗ f (s)|2gc
Φ( f )(s, ε)p−2 dεds

ε
· τ
∫
Rd

1∫
0

|Ψε ∗ g(s)|2gc
Φ( f )(s, ε)2−p dεds

ε

+
∣∣∣τ ∫

Rd

φ ∗ f (s)(ψ ∗ g(s))∗ds
∣∣∣2 def

= A′B′ + II′.

II′ is treated exactly in the same way as before,

II′ . ‖φ ∗ f ‖2
p‖ψ ∗ g‖2

q . ‖φ ∗ f ‖p
p‖ f ‖2−p

hc
p
‖g‖2

bmoc
q
.

A′ is also estimated similarly as in Lemma 6.2, we have A′ . ‖gc
Φ( f )‖p

p.
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To estimate B′, we notice that the proof of Lemma 1.3 in [41] also gives

gc
Φ( f )(s, ε)2 . ∑

|m|16d
sc

DmΦ( f )(s, ε)2,

where sc
DmΦ( f )(s, ε) is defined by (6.5) with DmΦ instead of Φ. Then by the above

inequality, Lemma 6.7 and inequality (6.3) with DmΦ instead of Φ, we obtain

B′ . ∑
|m|16d

τ
∫
Rd

1∫
0

|Ψε ∗ g(s)|2sc
DmΦ( f )(s, ε)2−p dεds

ε

. ∑
|m|16d

‖g‖2
bmoc

q
‖sc

DmΦ( f )‖2−p
p . ‖g‖2

bmoc
q
‖ f ‖2−p

hc
p

.

Therefore, we have the following which completes the proof:∣∣∣τ ∫
Rd

f (s)g∗(s)ds
∣∣∣2 . (‖gc

Φ( f )‖p + ‖φ ∗ f ‖p)
p‖ f ‖2−p

hc
p
‖g‖2

bmoc
q
.

Proof of Theorem 6.1. From Lemmas 6.2, 6.4 and Theorem 3.11, we conclude
that if 1 6 p 6 2, we have

‖ f ‖hc
p . ‖s

c
Φ( f )‖p + ‖φ ∗ f ‖p, ‖ f ‖hc

p . ‖g
c
Φ( f )‖p + ‖φ ∗ f ‖p.

For the case 2 < p < ∞, by Theorem 3.19, we can choose g ∈ hc
q(Rd,M) (with q

the conjugate index of p) with norm one such that

‖ f ‖hc
p ≈ τ

∫
Rd

f (s)g∗(s)ds

= τ
∫
Rd

1∫
0

Φε ∗ f (s) · (Ψε ∗ g(s))∗
dsdε

ε
+ τ

∫
Rd

φ ∗ f (s)(ψ ∗ g(s))∗ds.

Then by the Hölder inequality and (6.4) (applied to g, Ψ and q),

‖ f ‖hc
p . ‖g

c
Φ( f )‖p‖gc

Ψ(g)‖q + ‖φ ∗ f ‖p‖ψ ∗ g‖q

. (‖gc
Φ( f )‖p + ‖φ ∗ f ‖p)‖g‖hc

q = ‖g
c
Φ( f )‖p + ‖φ ∗ f ‖p.

Similarly, we have
‖ f ‖hc

p . ‖s
c
Φ( f )‖p + ‖φ ∗ f ‖p.

Therefore, combined with (6.4) and (6.3), we have proved the assertion.

The rest of this subsection is devoted to explaining how Theorem 6.1 gener-
alizes the characterization of hc

p(Rd,M).
Firstly and most naturally, we show how Theorem 6.1 covers the original

definition of hc
p(Rd,M). Let us take Φ = −2π I(P) and φ = P for example. A
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simple calculation shows that we can choose Ψ = −8π I(P) and ψ = 4π I(P) + P
to fulfil (6.1). By the inverse Fourier transform formula, we have

−2π f ∗ I(P)ε(t) = −2π
∫

e2πit·ξ f̂ (ξ)|εξ|e−2πε|ξ|dξ

= ε
∂

∂ε

∫
e2πit·ξ f̂ (ξ)e−2πε|ξ|dξ = ε

∂

∂ε
Pε( f )(t).

So we return back to the original definition of hc
p(Rd,M). Theorem 6.1 implies

that
‖ f ‖hc

p ≈ ‖s
c
Φ( f )‖p + ‖φ ∗ f ‖p ≈ ‖gc

Φ( f )‖p + ‖φ ∗ f ‖p.

In particular, we have the following equivalent norm of hc
p(Rd,M).

COROLLARY 6.5. Let 1 6 p < ∞. Then for any f ∈ hc
p(Rd,M), we have

‖ f ‖hc
p ≈ ‖g

c( f )‖p + ‖P ∗ f ‖p.

Secondly, consider Φ to be a Schwartz function on Rd satisfying:

(6.7)

{
Φ is of vanishing mean;
Φ is nondegenerate in the sense of (1.5).

Set Φε(s) = ε−dΦ( s
ε ) for ε > 0. In the sequel, we will show that every Schwartz

function satisfying (6.7) fulfils the four conditions in the beginning of this subsec-
tion. So they all can be used to characterize hp(Rd,M).

It is a well-known elementary fact (ef. e.g. p. 186 of [36]) that there exists a
Schwartz function Ψ of vanishing mean such that

(6.8)
∞∫

0

Φ̂(εξ)Ψ̂(εξ)
dε

ε
= 1, ∀ ξ ∈ Rd \ {0}.

LEMMA 6.6.
1∫

0
Φ̂(ε·)Ψ̂(ε·)dε

ε is an infinitely differentiable function on Rd if we

define its value at the origin as 0.

Proof. To prove the assertion, it suffices to show that
1∫

0
Φ̂(ε·)Ψ̂(ε·)dε

ε is infin-

itely differentiable at the origin. Given ε ∈ (0, 1], we expand Φ̂(ε·) in the Taylor
series at the origin

Φ̂(εξ) = ∑
|γ|16N

DγΦ̂(0)
ε|γ|1 ξγ

γ!
+ ∑
|γ|1=N+1

Rγ(εξ) ξγ,

with the remainder of integral form equal to

Rγ(εξ) =
(N + 1)εN+1

γ!

1∫
0

(1− θ)N DγΦ̂(θεξ)dθ .
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Since Φ̂(0) = 0, the above Taylor series implies that

Φ̂(εξ) = ∑
16|γ|16N

DγΦ̂(0)
ε|γ|1 ξγ

γ!
+ ∑
|γ|1=N+1

Rγ(εξ) ξγ.

Similarly, we have

Ψ̂(εξ) = ∑
16|β|16N

DβΨ̂(0)
ε|β|1 ξβ

β!
+ ∑
|β|1=N+1

R′β(εξ) ξβ,

where R′β is the integral form remainder of Ψ̂. Thus, both Φ̂(εξ) and Ψ̂(εξ) contain

only powers of ε with order at least 1. Therefore, the integral
1∫

0
Φ̂(εξ)Ψ̂(εξ)dε

ε

(and the integrals of arbitrary order derivatives of Φ̂(εξ) and Ψ̂(εξ)) converge

uniformly for ξ ∈ Rd close to the origin. We then obtain that
1∫

0
Φ̂(εξ)Ψ̂(εξ)dε

ε is

infinitely differentiable at the origin ξ = 0.

It follows immediately from Lemma 6.6 that
∞∫
1

Φ̂(ε·)Ψ̂(ε·)dε
ε is a Schwartz

function if we define its value at the origin by 1. Then we can find two other
functions φ, ψ such that φ̂, ψ̂ ∈ Hσ

2 (Rd), φ̂(0) > 0, ψ̂(0) > 0 and

(6.9) φ̂(ξ)ψ̂(ξ) +

1∫
0

Φ̂(εξ)Ψ̂(εξ)
dε

ε
= 1, ∀ ξ ∈ Rd.

Indeed, for β > 0 large enough, the function (1 + | · |2)−β belongs to Hσ
2 (Rd). On

the other hand, if F ∈ S(Rd), the function (1 + | · |2)βF is still in Hσ
2 (Rd). Thus

we obtain (6.1).
Now let show that conditions (1) and (4) hold for Φ, φ satisfying (6.7). First,

we deal with the case 1 6 p 6 2. Let H = L2((0, 1), dε
ε ). Define the kernel

k : Rd → H by k(s) = Φ·(s) with Φ·(s) : ε 7→ Φε(s). Then it is easy to see that

sup
ξ∈Rd
‖Φ̂(εξ)‖H < ∞, ‖Φε(s)‖H .

1
|s|d+1 , ∀ s ∈ Rd \ {0}

and that

‖∇Φε(s)‖H .
1
|s|d+1 , ∀ s ∈ Rd \ {0}.

Thus, k satisfies the assumption of Corollary 5.3. By Remark 5.4, we have, for any
1 6 p 6 2,

‖Φε ∗ f ‖Lp(N ;Hc) = ‖gc
Φ( f )‖p . ‖ f ‖hc

p .

The treatment of sc
Φ is similar. In this case, we take the Hilbert space H =

L2(Γ̃, dtdε
εd+1 ). On the other hand, φ̂ ∈ Hσ

2 (Rd) implies φ ∈ L1(Rd), then ‖φ ∗
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f ‖Lp(N ) . ‖ f ‖Lp(N ) . ‖ f ‖hc
p . Thus, combining the above estimates, we obtain

‖gc
Φ( f )‖p + ‖φ ∗ f ‖p . ‖ f ‖hc

p , ‖sc
Φ( f )‖p + ‖φ ∗ f ‖p . ‖ f ‖hc

p .

Then, a simple duality argument using (6.1) and Theorem 3.19 gives the above
inequalities for the case p > 2. Moreover, it is obvious that if we replace Φ by
DmΦ, the above two inequalities still hold for any 1 6 p < ∞.

In the end, it remains to check the condition (3) for Ψ, ψ obtained in (6.8)
and (6.9). This can be done by showing a Carleson measure characterization of
bmoc

q by general test functions. The proof of the following lemma has the same
pattern with that of Lemma 2.5, so is left to the reader.

LEMMA 6.7. Let 2 < q 6 ∞, g ∈ bmoc
q(Rd,M) and dµg = |Ψε ∗ g(s)|2 dsdε

ε .
Then dµg is anM-valued q-Carleson measure on the strip Rd × (0, 1). Furthermore, let
ψ be any function on Rd such that

(6.10) ψ̂ ∈ Hσ
2 (Rd) with σ >

d
2

.

We have

max
{∥∥∥ sup +

s∈Q⊂Rd

|Q|<1

1
|Q|

∫
T(Q)

dµg

∥∥∥1/2

q/2
, ‖ψ ∗ g‖q

}
. ‖g‖bmoc

q
.

REMARK 6.8. It is worthwhile to note that, if Ψ and ψ are determined by
(6.8) and (6.9), the opposite of the above lemma is also true. This can be deduced
by a similar argument as that of Corollary 3.12; we omit the details.

By the discussion above, we deduce the following corollary from Theo-
rem 6.1.

COROLLARY 6.9. Let Φ be the Schwartz function on Rd satisfying (6.7) and φ be
the function given by (6.9). Then for any 1 6 p < ∞, we have

(6.11) ‖ f ‖hc
p ≈ ‖s

c
Φ( f )‖p + ‖φ ∗ f ‖p ≈ ‖gc

Φ( f )‖p + ‖φ ∗ f ‖p

with the relevant constants depending only on d, p, Φ and φ.

6.2. DISCRETE CHARACTERIZATIONS. In this subsection, we give a discrete char-
acterization for operator-valued local Hardy spaces. To this end, we need some
modifications of the four conditions in the beginning of last subsection. The
square functions sc

Φ( f ) and gc
Φ( f ) can be discretized as follows:

gc,D
Φ ( f )(s) =

(
∑
j>1
|Φj ∗ f (s)|2

)1/2
,

sc,D
Φ ( f )(s) =

(
∑
j>1

2dj
∫

B(s,2−j)

|Φj ∗ f (t)|2dt
)1/2

.
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Here Φj is the inverse Fourier transform of Φ(2−j·). This time, to get a resolvent
of the unit on Rd, we need to assume that Φ, Ψ, φ, ψ satisfy

(6.12)
∞

∑
j=1

Φ̂(2−jξ) Ψ̂(2−jξ) + φ̂(ξ)ψ̂(ξ) = 1, ∀ ξ ∈ Rd.

In brief, the complex-valued infinitely differentiable function Φ considered in this
subsection satisfies:

(1) every DmΦ with 0 6 |m|1 6 d makes f 7→ sc,D
DmΦ f and f 7→ gc,D

DmΦ f
Calderón–Zygmund singular integral operators in Corollary 5.3;

(2) there exist functions Ψ, ψ and φ that fulfil (6.12);
(3) the above Ψ and ψ make dµD

f = ∑
j>1
|Ψj ∗ f (s)|2ds× dδ2−j(ε) (with δ2−j(ε)

the unit Dirac mass at the point 2−j) and φ ∗ f satisfy:

max
{∥∥∥ sup +

s∈Q⊂Rd

|Q|<1

1
|Q|

∫
T(Q)

rdµD
f

∥∥∥1/2

q/2
, ‖ψ ∗ f ‖q

}
. ‖ f ‖bmoc

q
for q > 2;

(4) the above φ makes f 7→ φ ∗ f a Calderón–Zygmund singular integral op-
erator in Corollary 5.3.

REMARK 6.10. Any Schwartz function that has vanishing mean and is non-
degenerate in the sense of (1.5) satisfies all the four conditions above.

The following discrete version of Theorem 6.1 will play a crucial role in the
study of operator-valued Triebel–Lizorkin spaces on Rd in our forthcoming paper
[39]. Now we fix the pairs (Φ, Ψ) and (φ, ψ) satisfying the above four conditions.

THEOREM 6.11. Let 1 6 p < ∞. Then for any f ∈ L1(M; Rc
d) + L∞(M; Rc

d),
f ∈ hc

p(Rd,M) if and only if sc,D
Φ ( f ) ∈ Lp(N ) and φ ∗ f ∈ Lp(N ) if and only if

gc,D
Φ ( f ) ∈ Lp(N ) and φ ∗ f ∈ Lp(N ). Moreover,

‖ f ‖hc
p ≈ ‖s

c,D
Φ ( f )‖p + ‖φ ∗ f ‖p ≈ ‖gc,D

Φ ( f )‖p + ‖φ ∗ f ‖p

with the relevant constants depending only on d, p, and the pairs (Φ, Ψ) and (φ, ψ).

The following paragraphs are devoted to the proof of Theorem 6.11 which is
similar to that of Theorem 6.1. We will just indicate the necessary modifications.
We first prove the discrete counterparts of Lemmas 6.2 and 6.4.

LEMMA 6.12. Let 1 6 p < 2 and q be the conjugate index of p. For any f ∈
hc

p(Rd,M) ∩ L2(N ) and g ∈ bmoc
q(Rd,M),∣∣∣τ ∫

Rd

f (s)g∗(s)ds
∣∣∣ . (‖sc,D

Φ ( f )‖p + ‖φ ∗ f ‖p) ‖g‖bmoc
q

.
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Proof. First, note that by (6.12), we have

τ
∫
Rd

f (s)g∗(s)ds = τ
∫
Rd

∑
j>1

Φj ∗ f (s)(Ψj ∗ g(s))∗ ds + τ
∫
Rd

φ ∗ f (s)(ψ ∗ g(s))∗ds.

The second term on the right hand side of the above formula is exactly the same
as the corresponding term II in the proof of Lemma 6.2. Now we need the discrete
versions of sc

Φ and sc
Φ: for j > 1, s ∈ Rd, let

sc,D
Φ ( f )(s, j) =

(
∑

16k6j
2dk

∫
B(s,2−k−2−j−1)

|Φj ∗ f (t)|2dt
)1/2

sc,D
Φ ( f )(s, j) =

(
∑

16k6j
2dk

∫
B(s,2−k−1)

|Φj ∗ f (t)|2dt
)1/2

.

Denote sc,D
Φ ( f )(s, j) and sc,D

Φ ( f )(s, j) simply by s(s, j) and s(s, j), respectively. By
approximation, we may assume that s(s, j) and s(s, j) are invertible for every s ∈
Rd and j > 1. By the Cauchy–Schwarz inequality,∣∣∣τ ∫

Rd

∑
j>1

Φj ∗ f (s)(Ψj ∗ g(s))∗ ds
∣∣∣2

=
∣∣∣2d

cd
τ
∫
Rd

∑
j

2dj
∫

B(s,2−j−1)

Φj ∗ f (t)(Ψj ∗ g(t))∗ dt ds
∣∣∣2

. τ
∫
Rd

∑
j

s(s, j)p−2
(

2dj
∫

B(s,2−j−1))

|Φj ∗ f (t)|2 dt
)

ds

· τ
∫
Rd

∑
j

s(s, j)2−p
(

2dj
∫

B(s,2−j−1)

|Ψj ∗ g(t)|2 dt
)

ds def
= A · B.

The term A is less easy to estimate than the corresponding term A in the proof
of Lemma 6.2. To deal with it we simply set sj = s(s, j) and s = s(s,+∞) 6
sc,D( f )(s). Then

A = τ
∫
Rd

∑
j>1

sp−2
j (s2

j − s2
j−1)ds 6 τ

∫
Rd

∑
j

sp−2
j (s2

j − s2
j−1)ds

= τ
∫
Rd

∑
j
(sj − sj−1)ds + τ

∫
Rd

∑
j

sp−2
j sj−1(sj − sj−1)ds,

where s0 = 0. Since 1 6 p < 2, sp−1
j 6 sp−1, we have

τ
∫
Rd

∑
j

sp−1
j (sj − sj−1)ds . τ

∫
Rd

spds 6 ‖sc,D( f )‖p
p.
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On the other hand,

τ
∫
Rd

∑
j

sp−2
j sj−1(sj − sj−1)ds

= τ
∫
Rd

∑
j

s(1−p)/2sp−2
j sj−1s(1−p)/2s(p−1)/2(sj − sj−1)s(p−1)/2ds,

since sj > sj−1 for any j > 1, we have s(1−p)/2sp−2
j sj−1s(1−p)/2 6 1. Thus, by the

Hölder inequality,

τ
∫
Rd

∑
j

sp−2
j sj−1(sj − sj−1)ds 6 τ

∫
Rd

∑
j

s(p−1)/2(sj − sj−1)s(p−1)/2ds

= τ
∫
Rd

spds 6 ‖sc,D
Φ ( f )‖p

p.

Combining the preceding inequalities, we get the desired estimate of A:

A 6 2‖sc,D
Φ ( f )‖p

p.

The estimate of the term B is, however, almost identical to that of B in the
proof of Lemma 6.2. There are only two minor differences. The first one concerns
the square function Sc( f )(s, j) in (3.8): it is now replaced by

Sc( f )(s, j) =
(

∑
16k6j

2dk
∫

B(cm,j ,2−k)

|Φj ∗ f (t)|2 dt
)1/2

if s ∈ Qm,j.

Then we have s(s, j) 6 Sc( f )(s, j). The second difference is about the Carleson
characterization of bmoc

q; we now use its discrete analogue, namely, dµD
g . Apart

from these two differences, the remainder of the argument is identical to that in
the proof of Lemma 6.2.

LEMMA 6.13. Let 1 6 p < 2 and f ∈ hc
p(Rd,M)∩ L2(N ), g ∈ bmoc

q(Rd,M).
Then ∣∣∣τ ∫

Rd

f (s)g∗(s)ds
∣∣∣ . (‖gc,D

Φ ( f )‖p + ‖φ ∗ f ‖p)
p/2 ‖ f ‖1−p/2

hc
p
‖g‖bmoc

q
.

Proof. We use the truncated version of gc,D
Φ ( f ):

gc,D
Φ ( f )(s, j) =

(
∑
k6j
|Φk ∗ f (s)|2

)1/2
.

The proof of Lemma 4.3 in [41] is easily adapted to the present setting to ensure

gc,D
Φ ( f )(s, j)2 . ∑

|m|16d
sc,D

DmΦ( f )(s, j)2 .
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Then ∣∣∣τ ∫
Rd

f (s)g∗(s)ds|2 6 I′ · II′ + |τ
∫

φ ∗ f (s)(ψ ∗ g(s))∗ds
∣∣∣,

where

I′ = τ
∫
Rd

∑
j

gc,D
Φ ( f )(s, j)p−2|Φj ∗ f (s)|2ds ,

II′ = τ
∫
Rd

∑
j

gc,D
Φ ( f )(s, j)2−p|Ψj ∗ g(s)|2ds .

Both terms I′ and II′ are estimated exactly as before, so we have

I′ 6 2‖gc
Φ( f )‖p

p and II′ . ‖ f ‖2−p
hc

p
‖g‖2

bmoc
q

.

This gives the announced assertion.

Armed with the previous two lemmas and the Calderón–Zygmund theory
in Section 5, we can prove Theorem 6.11 in the same way as Theorem 6.1. Details
are left to the reader.

We also include a discrete Carleson measure characterization of bmoc
q by

general test functions. Much as the characterization in Lemma 6.7 and Remark 6.8,
it is a byproduct of the proof of Theorem 6.11.

COROLLARY 6.14. Let 2 < q 6 ∞, ψ and Ψ be given in (6.12). Assume further

ψ̂ ∈ Hσ
2 (Rd) with σ >

d
2

.

Then for every g ∈ bmoc
q, we have

‖g‖bmoc
q
≈ ‖ψ ∗ g‖q +

∥∥∥ sup +

s∈Q⊂Rd

|Q|<1

1
|Q|

∫
Q

∑
j>− log2(l(Q))

|Ψj ∗ g(s)|2ds
∥∥∥1/2

q/2
.

6.3. THE RELATION BETWEEN hp(Rd,M) AND Hp(Rd,M). Due to the noncom-
mutativity, for any 1< p<∞ and p 6= 2, the column operator-valued local Hardy
space hc

p(Rd,M) and the column operator-valued Hardy space Hc
p(Rd,M) are

not equivalent. On the other hand, if we consider the mixture spaces hp(Rd,M)

andHp(Rd,M), then we will have the same situation as in the classical case.
Since ‖P ∗ f ‖p . ‖ f ‖p . ‖ f ‖Hc

p for any 1 6 p 6 2, we deduce the inclusion

(6.13) Hc
p(Rd,M) ⊂ hc

p(Rd,M) for 1 6 p 6 2.

Then by the duality obtained in Theorem 3.19, we have

(6.14) hc
p(Rd,M) ⊂ Hc

p(Rd,M) for 2 < p < ∞.

However, we see from the following proposition that we do not have the
inverse inclusion of (6.13) nor (6.14).
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PROPOSITION 6.15. Let φ be a function on Rd such that φ̂(0) > 0 and φ̂ ∈
Hσ

2 (Rd) with σ > d
2 . Let 2 < p < ∞. If for any f ∈ Hc

p(Rd,M),

(6.15) ‖φ ∗ f ‖p . ‖ f ‖Hc
p ,

then we must have φ̂(0) = 0.

Proof. We prove the assertion by contradiction. Suppose that there exists φ

such that φ̂(0) > 0, φ̂ ∈ Hσ
2 (Rd) and (6.15) holds for any f ∈ Hc

p(Rd,M). Since
bothHc

p(Rd,M) and Lp(N ) are homogeneous spaces, we have, for any ε > 0,

‖φ ∗ f (ε·)‖p = ‖(φε ∗ f )(ε·)‖p = ε−d/p‖φε ∗ f ‖p and ‖ f (ε·)‖Hc
p = ε−d/p‖ f ‖Hc

p .

This implies that

(6.16) ‖φε ∗ f ‖p . ‖ f ‖Hc
p ,

for any ε > 0 with the relevant constant independent of ε. Now we consider a
function f ∈ Lp(N ) which takes values in S+M and such that supp f̂ is compact,
i.e. there exists a positive real number N such that supp f̂ ⊂ {ξ ∈ Rd : |ξ| 6 N}.
Since φ̂(0) > 0, we can find ε0 > 0 and c > 0 such that φ̂(ε0ξ) > c whenever
|ξ| 6 N. Thus, in this case, ‖φε ∗ f ‖p > c‖ f ‖p. Then by (6.16), we have

‖ f ‖p . ‖ f ‖Hc
p ,

which leads to a contradiction when p > 2. Therefore, φ̂(0) = 0.

By the definition of the hc
p-norm and the duality in Theorem 3.19, we get the

following result.

COROLLARY 6.16. Let 1 6 p < ∞ and p 6= 2; hc
p(Rd,M) and Hc

p(Rd,M) are
not equivalent.

Although hc
p(Rd,M) andHc

p(Rd,M) do not coincide when p 6= 2, for those
functions whose Fourier transforms vanish at the origin, their hc

p-norms andHc
p-

norms are still equivalent.

THEOREM 6.17. Let φ ∈ S such that
∫
Rd

φ(s)ds = 1.

(i) If 1 6 p 6 2 and f ∈ hc
p(Rd,M), then f − φ ∗ f ∈ Hc

p(Rd,M) and
‖ f − φ ∗ f ‖Hc

p
. ‖ f ‖hc

p
.

(ii) If 2 < p < ∞ and f ∈ Hc
p(Rd,M), then f − φ ∗ f ∈ hc

p(Rd,M) and
‖ f − φ ∗ f ‖hc

p
. ‖ f ‖Hc

p
.

Proof. (i) Let f ∈ hc
p(Rd,M) and Φ be a nondegenerate Schwartz function

with vanishing mean. By the general characterization of Hc
p(Rd,M) in Lem-

ma 1.1, ‖ f − φ ∗ f ‖Hc
p(Rd ,M) ≈ ‖Gc

Φ( f − φ ∗ f )‖p. Let us split ‖Gc
Φ( f − φ ∗ f )‖p
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into two parts:

‖Gc
Φ( f − φ ∗ f )‖p

.
∥∥∥( 1∫

0

|Φε ∗ ( f − φ ∗ f )|2 dε

ε

)1/2∥∥∥
p
+
∥∥∥( ∞∫

1

|Φε ∗ ( f − φ ∗ f )|2 dε

ε

)1/2∥∥∥
p

=
∥∥∥( 1∫

0

|Φε ∗ ( f − φ ∗ f )|2 dε

ε

)1/2∥∥∥
p
+
∥∥∥( ∞∫

1

|(Φε −Φε ∗ φ) ∗ f |2 dε

ε

)1/2∥∥∥
p
.

In order to estimate the first term in the last equality, we notice that φ ∗ f ∈
hc

p(Rd,M), thus we have f − φ ∗ f ∈ hc
p(Rd,M). Then by Theorem 6.1, this

term can be majorized from above by ‖ f ‖hc
p
.

To deal with the second term, we express it as a Calderón–Zygmund oper-
ator with Hilbert-valued kernel. Let H = L2((1,+∞), dε

ε ) and define the kernel
k : Rd → H by k(s) = Φ·(s) − Φ· ∗ φ(s) (Φ·(s) being the function ε 7→ Φε(s)).
Now we prove that k satisfies the hypotheses of Corollary 5.3. The condition (i)
of that corollary is easy to verify. So we only check the conditions (ii) and (iii)
there. By the fact that

∫
Rd

φ(s)ds = 1 and the mean value theorem, we have

|(Φε −Φε ∗ φ)(s)| =
∣∣∣ ∫
Rd

[Φε(s)−Φε(s− t)]φ(t)dt
∣∣∣

6
∫
Rd

|t| 1
εd+1 sup

0<θ<1

∣∣∣∇Φ
( s− θt

ε

)∣∣∣|φ(t)|dt.

Then we split the last integral into two parts:

∥∥∥(Φ·−Φ· ∗ φ)(s)
∥∥∥

H
.
( ∞∫

1

( ∫
|t|<|s|/2

|t| 1
εd+1 sup

0<θ<1

∣∣∣∇Φ
( s− θt

ε

)∣∣∣|φ(t)|dt
)2 dε

ε

)1/2

+
( ∞∫

1

( ∫
|t|>|s|/2

|t| 1
εd+1 sup

0<θ<1

∣∣∣∇Φ
( s−θt

ε

)∣∣∣|φ(t)|dt
)2 dε

ε

)1/2

def
= I + II.

If |t| < |s|
2 , we have |s− θt| > |s|

2 , thus |∇Φ( s−θt
ε )| . εd+1/2

|s|d+1/2 for any 0 6 θ 6 1.
Then

I .
( ∞∫

1

1
ε2 dε

)1/2 1
|s|d+1/2 .

1
|s|d+1/2 .
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When |t| > |s|
2 , since φ ∈ S , we have

∫
|t|>|s|/2

|t||φ(t)|dt . 1
|s|d+1/2 . Hence

II .
( ∞∫

1

1
ε2d+2

dε

ε

)1/2
· 1
|s|d+1/2 .

1
|s|d+1/2 .

The estimates of I and II imply

‖(Φε −Φε ∗ φ)(s)‖H .
1

|s|d+1/2 .

In a similar way, we obtain

‖∇(Φε −Φε ∗ φ)(s)‖H .
1
|s|d+1 .

Thus, it follows from Corollary 5.3 that
∥∥∥( ∞∫

1
|(Φε − Φε ∗ φ) ∗ f |2 dε

ε

)1/2∥∥∥
p

is also

majorized from above by ‖ f ‖hc
p
.

(ii) The case p > 2 can be deduced from the duality between hc
p and hc

q
(Theorem 3.19) and that between Hc

p and Hc
q (q being the conjugate index of p).

There exists g ∈ hc
q(Rd,M) with norm one such that we have the following which

completes the proof:

‖ f − φ ∗ f ‖hc
p =

∣∣∣τ ∫
Rd

( f − φ ∗ f )(s)g∗(s)ds
∣∣∣ = ∣∣∣τ ∫

Rd

f (s)(g∗ − φ ∗ g∗)(s)ds
∣∣∣

6 ‖ f ‖Hc
p‖g− φ ∗ g‖Hc

q . ‖ f ‖Hc
p‖g‖hc

q = ‖ f ‖Hc
p .

From the interpolation result of mixture local Hardy spaces in Proposi-
tion 4.4, we deduce the equivalence between mixture local Hardy spaces and
Lp-spaces.

PROPOSITION 6.18. For any 1 < p < ∞, hp(Rd,M) = Hp(Rd,M) = Lp(N )
with equivalent norms.

Proof. It is known that Hp(Rd,M) = Lp(N ) with equivalent norms. One
can see Corollary 5.4 of [24] for more details. One the other hand, since L∞(N ) ⊂
bmoc(Rd,M), by duality, we get hc

1(R
d,M) ⊂ L1(N ). Combining (2.2) and the

interpolation result in Theorem 4.3, we deduce that hc
p(Rd,M) ⊂ Lp(N ) for any

1 < p 6 2 and Lp(N ) ⊂ hc
p(Rd,M) for any 2 < p < ∞. Similarly, we also

have hr
p(Rd,M) ⊂ Lp(N ) for any 1 < p 6 2 and Lp(N ) ⊂ hr

p(Rd,M) for any
2 < p < ∞. Combined with (6.13) and (6.14), we get

Hp(Rd,M) ⊂ hp(Rd,M) ⊂ Lp(N ) for 1 < p 6 2, and(6.17)

Lp(N ) ⊂ hp(Rd,M) ⊂ Hp(Rd,M) for 2 < p < ∞.(6.18)
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Then (6.17), (6.18) and Corollary 5.4 of [24] imply the following which completes
the proof:

hp(Rd,M) = Hp(Rd,M) = Lp(N ) for 1 < p < ∞.

7. THE ATOMIC DECOMPOSITION

In this section, we give the atomic decomposition of hc
1(R

d,M). The atomic
decomposition of Hc

1(R
d,M) studied in [24] and the characterizations obtained

in the last section will be the main tools for us.

DEFINITION 7.1. Let Q be a cube in Rd with |Q| 6 1. If |Q| = 1, an hc
1-atom

associated with Q is a function a ∈ L1(M; Lc
2(Rd)) such that:

(i) supp a ⊂ Q;

(ii) τ
( ∫

Q
|a(s)|2ds

)1/2
6 |Q|−1/2.

If |Q| < 1, we assume additionally:
(iii)

∫
Q

a(s)ds = 0.

Let hc
1,at(R

d,M) be the space of all f admitting a representation of the form

f =
∞

∑
j=1

λjaj,

where the aj’s are hc
1-atoms and λj ∈ C such that

∞
∑

j=1
|λj| < ∞. The above series

converges in the sense of distribution. We equip hc
1,at(R

d,M) with the following
norm:

‖ f ‖hc
1,at

= inf
{ ∞

∑
j=1
|λj| : f =

∞

∑
j=1

λjaj; aj’s are hc
1 -atoms, λj ∈ C

}
.

Similarly, we define the row version hr
1,at(Rd,M). Then we set

h1,at(Rd,M) = hc
1,at(R

d,M) + hr
1,at(Rd,M).

THEOREM 7.2. We have hc
1,at(R

d,M) = hc
1(R

d,M) with equivalent norms.

Proof. First, we show the inclusion hc
1,at(R

d,M) ⊂ hc
1(R

d,M). To this end,
it suffices to prove that for any atom a in Definition 7.1, we have

(7.1) ‖a‖hc
1
. 1.

Recall that the atomic decomposition of Hc
1(R

d,M) has been considered in [24].
AnHc

1-atom is a function b ∈ L1(M; Lc
2(Rd)) such that, for some cube Q,

(1) supp b ⊂ Q;
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(2)
∫
Q

b(s)ds = 0;

(3) τ
( ∫

Q
|b(s)|2ds

)1/2
6 |Q|−1/2.

If a is supported in Q with |Q| < 1, then a is also anHc
1-atom, so ‖a‖hc

1
. ‖a‖Hc

1
.

1. Now assume that the supporting cube Q of a is of side length one. We use the
discrete characterization obtained in Theorem 6.11, i.e.

‖a‖hc
1
≈
∥∥∥( ∞

∑
j=1
|Φj ∗ a|2

)1/2∥∥∥
1
+ ‖φ ∗ a‖1.

Apart from the assumption on Φ and φ in Theorem 6.1, we may take Φ and φ
satisfying

supp Φ, supp φ ⊂ B1 = {s ∈ Rd : |s| 6 1}.
Then

supp φ ∗ a ⊂ 3Q and supp Φε ∗ a ⊂ 3Q for any 0 < ε < 1.

By the Cauchy–Schwarz inequality we have

‖φ ∗ a‖1 6
∫

3Q

( ∫
Q

|φ(t− s)|2ds
)1/2

· τ
( ∫
|a(s)|2ds

)1/2
dt . 1.

Similarly,∥∥∥( ∞

∑
j=1
|Φj ∗ a|2

)1/2∥∥∥
1
= τ

∫
3Q

( ∞

∑
j=1
|Φj ∗ a(s)|2

)1/2
ds . τ

( ∫
3Q

∞

∑
j=1
|Φj ∗ a(s)|2ds

)1/2

= τ
( ∫
Rd

∞

∑
j=1
|Φ̂(2−jξ)â(ξ)|2dξ

)1/2
6 τ

( ∫
|a(s)|2ds

)1/2
6 1.

Therefore, hc
1,at(R

d,M) ⊂ hc
1(R

d,M).
Now we turn to proving the reverse inclusion. Observe that Hc

1-atoms
are also hc

1-atoms. Then by the duality between Hc
1(R

d,M) and BMOc(Rd,M)

and the atomic decomposition of Hc
1(R

d,M), every continuous functional ` on
hc

1,at(R
d,M) corresponds to a function g lying in BMOc(Rd,M). Moreover, since

L1(M; Lc
2(Q)) ⊂ hc

1,at(R
d,M) for any cube Q with side length one, ` induces a

continuous functional on L1(M; Lc
2(Q)) with norm less than or equal to ‖`‖(hc

1,at)
∗ .

Thus, the function g satisfies the condition that

(7.2) g ∈ BMOc(Rd,M) and sup
Q⊂Rd , |Q|=1

‖g|Q‖L∞(M;Lc
2(Q)) 6 ‖`‖(hc

1,at)
∗ .

Consequently, g ∈ bmoc(Rd,M) and

`( f ) = τ
∫
Rd

f (s)g∗(s)ds, ∀ f ∈ hc
1,at(R

d,M).
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Thus, hc
1,at(R

d,M)∗ ⊂ bmoc(Rd,M). On the other hand, by the previous re-
sult, bmoc(Rd,M) ⊂ hc

1,at(R
d,M)∗. Thus, hc

1,at(R
d,M)∗ = bmoc(Rd,M) with

equivalent norms. Since hc
1,at(R

d,M) ⊂ hc
1(R

d,M) densely, we deduce that
hc

1,at(R
d,M) = hc

1(R
d,M) with equivalent norms.
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