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OPERATOR-VALUED LOCAL HARDY SPACES
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ABSTRACT. This paper gives a systematic study of operator-valued local
Hardy spaces, which are localizations of the Hardy spaces defined by Mei. We
prove the hy-bmo duality and the hy-h; duality for any conjugate pair (p,q)
when 1 < p < co. We show that hy (R?, M) and bmo(RR?, M) are also good
endpoints of Lp(Lw(Rd)@M) for interpolation. We obtain the local version
of Calderén-Zygmund theory, and then deduce that the Poisson kernel in our
definition of the local Hardy norms can be replaced by any reasonable test
function. Finally, we establish the atomic decomposition of the local Hardy

space h§ (R?, M).
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1. INTRODUCTION AND PRELIMINARIES

This paper is devoted to the study of operator-valued local Hardy spaces.
It follows the current line of the investigation of noncommutative harmonic anal-
ysis. This field arose from the noncommutative integration theory developed
by Murray and von Neumann, in order to provide a mathematical foundation
for quantum mechanics. The objective was to construct and study a linear func-
tional on an operator algebra which plays the role of the classical integral. In [30],
Pisier and Xu developed a pioneering work on noncommutative martingale the-
ory; since then, many classical results have been successfully transferred to the
noncommutative setting, see for instance, [11, [3], [12], [14], [19], [20], [21], [22],
[26], [28], [32], [33], [34].

Inspired by the above mentioned developments and the Littlewood—Paley-
Stein theory of quantum Markov semigroups (cf. [15], [16], [18]), Mei [24] stud-
ied operator-valued Hardy spaces, which are defined by the Littlewood-Paley g-
function and Lusin area integral function associated to the Poisson kernel. These
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spaces are shown to be very useful for many aspects of noncommutative har-
monic analysis. In [41], we obtain general characterizations of Mei’s Hardy spaces,
which state that the Poisson kernel can be replaced by any reasonable test func-
tion. This is done mainly by using the operator-valued Calderén—-Zygmund the-
ory.

In the classical setting, the theory of Hardy spaces is one of the most im-
portant topics in harmoic analysis. The local Hardy spaces hp(Rd) were first in-
troduced by Goldberg [10]. These spaces are viewed as local or inhomogeneous
counterparts of the classical real Hardy spaces H,(R?) [6]. Goldberg’s motivation
of introducing these local spaces was the study of pseudo-differential operators.
It is known that pseudo-differential operators are not necessarily bounded on
the classical Hardy space #;(R?), but bounded on h; (R?) under some appropri-
ate assumptions. Afterwards, many other inhomogeneous spaces have also been
studied. Our references for the classical theory are [7], [10], [37]. However, they
have not been investigated so far in the operator-valued case.

Motivated by [24], [41], [42], we provide a localization of Mei’s operator-
valued Hardy spaces on R in this paper. The norms of these spaces are partly
given by the truncated versions of the Littlewood—-Paley g-function and Lusin
area integral function. Some techniques that we use to deal with our local Hardy
spaces are modelled after those of [41]; however, some highly non-trivial modi-
fications are needed. This happens since with the truncation, we only know the
Ly-norms of the Poisson integrals of functions on the strip R? x (0,1), and lose
information when the time is large. This brings some substantial difficulties that
the non-local case does not have, for example, in the duality problem. Moreover,
the noncommutative maximal function method is still unavailable in this setting,
while in the classical case it is efficiently and frequently employed. However,
based on tools developed recently, for instance, in [14], [18]], [20], [24], [25], [30],
[32], [33], we can overcome these difficulties.

Let us present here the four main results of this paper. The first family
of results concerns of the operator-valued local Hardy spaces h;(Rd,./\/l) and
bmo®(R?, M). The first major result of this part is the hi-bmoj, duality for 1 <
p < 2, where g denotes the conjugate index of p. In particular, when p = 1, we
obtain the operator-valued local analogue of the classical Fefferman-Stein theo-
rem. The pattern of the proof of this theorem is similar to that of Mei’s non-local
case. We also show that

h (RY, M) = bmo§(RY, M) for2 < q < oo

like in the martingale and non-local settings. Thus the dual of hj, (R4, M) agrees
with h§(R?, M) when 1 < p < 2.

The second major result shows that the local Hardy spaces behave well with
respect to both complex and real interpolations. In particular, we have

(bmo* (RY, M), h§ (RY, M)y, = b (BY, M)
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for 1 < p < co. We reduce this interpolation problem to the corresponding one
on the non-local Hardy spaces in order to use Mei’s interpolation result in [24].
This proof is quite simple.

The third major result concerns the Calderén-Zygmund theory. We know
that the usual M-valued Calderén-Zygmund operators which satisfy the Hor-
mander condition are in general not bounded on inhomogeneous spaces. Thus,
in order to guarantee the boundedness of a Calderon-Zygmund operator on
hy, (R?, M), we need to impose an extra decay at infinity to the kernel.

The Calderén—-Zygmund theory mentioned above will be applied to the
general characterization of hf,(]Rd, M) with the Poisson kernel replaced by any
reasonable test function. This characterization will play an important role in our
recent study of (inhomogeneous) Triebel-Lizorkin spaces on R, see [39].

1.1. NOTATION. In the following, we collect some notation which will be fre-
quently used in this paper. Throughout, we will use the notation A < B, which is
an inequality up to a constant: A < ¢B for some constant ¢ > 0. The relevant con-
stants in all such inequalities may depend on the dimension d, the test function
P or p, etc., but never on the function f in consideration. The equivalence A ~ B
will mean A < B and B < A simultaneously.

The Bessel and Riesz potentials are J* = (1 — (271)724)*/2 and I* =
(—(271)72A)*/2, respectively. If & = 1, we will abbreviate J as J and I' as I.
We denote also [, (&) = (1+ |&[2)*/2 on R? and (&) = |&|* on R\ {0}. Then J,
and I, are the symbols of the Fourier multipliers J* and I%, respectively.

We denote by H§(R?) the potential Sobolev space, consisting of all tem-
pered distributions f such that J7(f) € Ly(R%). If o > %, the elements in HS (R?)
will serve as important convolution kernels in the sequel.

1.2. NONCOMMUTATIVE L,-SPACES. Now we recall some preliminaries on non-
commutative L,y-spaces and operator-valued Hardy spaces. We start with a brief
introduction to noncommutative L,-spaces. Let M be a von Neumann algebra
equipped with a normal semifinite faithful trace T and SL be the set of all pos-
itive elements x in M with 7(s(x)) < oo, where s(x) denotes the support of x,
i.e., the smallest projection e such that exe = x. Let S be the linear span of SX/I.
Then every x € S has finite trace, and S 1 is a w*-dense *-subalgebra of M.

Let1 < p < co. Forany x € Sy, the operator |x|? belongs to S}, (recalling
|x| = (x*x)1/2). We define

x]lp = (x(lx[P)1.

One can prove that || - ||, is a norm on Sy. The completion of (Su, | - [p) is
denoted by L, (M), which is the usual noncommutative L,-space associated to
(M, 7). In this paper, the norm of L, (M) will be often denoted simply by || - ||,
if there is no confusion. But if different L,-spaces appear in a same context, we
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will precise their norms in order to avoid possible ambiguity. We refer the reader
to [44] and [31] for further information on noncommutative Lj-spaces.

Let us now introduce noncommutative Hilbert space-valued L,-spaces
Ly(M; H®) and L,(M; H"), which are studied at length in [18]. Let H be a Hilbert
space and v € H with ||v|| = 1, and p, be the orthogonal projection onto the one-
dimensional subspace generated by v. Then define the following row and column
noncommutative L,-spaces:

Ly(M;H') = (po @ Im)Lp(B(H)@M) and
Ly(M;HS) = Ly(B(H)@M)(po @ 1),

where the tensor product B(H)®.M is equipped with the tensor trace while B(H)
is equipped with the usual trace, and where 1, denotes the unit of M. For
f € Ly(M; HS),
11y (e = NG -

A similar formula holds for the row space by passing to adjoint: f € L,(M;H")
if and only if f* € Lp(M;HC), and |||, (rmr) = 17|z, (m;me)- 1t is clear that
Ly(M;HS) and L,(M; H") are 1-complemented subspaces of L,(B(H)®M) for
any p.

1.3. OPERATOR-VALUED HARDY SPACES. Throughout the remainder of the pa-
per, unless explicitly stated otherwise, (M, ) will be fixed as before and N' =
Leo(RY) &M, equipped with the tensor trace. In this subsection, we introduce
Mei's operator-valued Hardy spaces. Contrary to the custom, we will use letters
s, t to denote variables of R? since letters x,y are reserved for operators in non-
commutative Ly-spaces. Accordingly, a generic element of the upper half-space
R4 will be denoted by (s, ¢) with e > 0, where Ri*! = {(s,¢) : s € RY, ¢ > 0}.
Let P be the Poisson kernel on R?:
1

with c; the usual normalizing constant and |s| the Euclidean norm of s. Let

P(s) = ¢y

1 s €
Pe(s) = ;dP(E) =t (|s]2 + e2) @72

For any function f on R? with values in Ly (M) + M, its Poisson integral, when-
ever it exists, will be denoted by P¢(f):

Pe(f)(s) = / Po(s — B)f(B)dt, (s,e) € R,
R4

Note that the Poisson integral of f exists if

feL(MLs(RY, 1+(|i;|d+1)> + Loo (M; Ls (R, 1+C|1tt|d+1))
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This space is the right space in which all functions considered in this paper live
as far as only column spaces are involved. As it will appear frequently later, to

simplify notation, we will denote the Hilbert space L, (Rd, ﬁ) by Ry:
dt
_ d
(1.1) Rd_L2<]R,1+|t|d+l>.
The Lusin area square function of f is defined by

2 s = ([ 2rape o] LI semt
r

where I is the cone {(t,¢) € R‘fl . |t| < e}. For 1 < p < oo define the column
Hardy space H, (R, M) to be
Hy (R, M) = {f 2 || fllag, = IS°(F)llp < 0}

Note that [24] uses the gradient of P¢(f) instead of the sole radial derivative in
the definition of S¢ above, but this does not affect H;(Rd, M) (up to equivalent

norms). At the same time, it is proved in [24] that H;(Rd,/\/l) can be equally
defined by the Littlewood-Paley g-function:

[e)

(1.3) G(f)(s) = (/e ‘%Ps(f)(s)rds)l/z, s € RY
0

Thus

1fllzg = IGS(Nlp, £ € My (R, M).
The row Hardy space ’H;(Rd, M) is the space of all f such that f* € H;(Rd, M),
equipped with the norm || f HH; = |If* ||H§, . Finally, we define the mixture space

HP(Rd,M) as

Hp(RY, M) = HG (R, M) + H (R, M) for 1< p <2
equipped with the sum norm

1 fll3, = inf{l| fll g + I f2llagg, : f = f1 + f2},  and

Hp(RY, M) = HG (R, M) N H, (R, M) for2 < p < oo
equipped with the intersection norm

£ 1120, = max(l] flls 11 fll9)-
Observe that
HS(RY, M) = HE(RT, M) = Ly(N)) with equivalent norms.
It is proved in [24] that for 1 < p < co
Hp(RY, M) = L,(N) with equivalent norms.
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The operator-valued BMO spaces are also studied in [24]. Let Q be a cube
in R (with sides parallel to the axes) and |Q| its volume. For a function f with
values in M, fo denotes its mean over Q:

1
m—@!mw

The column BMO norm of f is defined to be

1 1/2
(L4) Iflavios = sup || [ 1£6) = folPa|
Q

QCRA

Then

BMO®(R?, M) = {f € Loo(M;R) - | fllpvios < o0}
Similarly, we define the row space BMO*(RY, M) as the space of f with the
property that f* lies in BMO®(R?, M), and BMO(R?, M) = BMO®(R?, M) N
BMO* (R, M) with the intersection norm.

It is showed in [24] that the dual of H{(R?, M) can be identified with
BMO® (R4, M). This is the operator-valued analogue of the celebrated Fefferman—
Stein H;-BMO duality theorem.

On the other hand, one of the main results of [41] asserts that the Poisson
kernel in the definition of Hardy spaces can be replaced by more general test
functions.

Take any Schwartz function @ with vanishing mean. We will assume that ¢
is nondegenerate in the following sense:

(1.5) V& e R\ {0} 3 > 0, such that (&) # 0.

Set P.(s) = s’dcb(g) for ¢ > 0. The radial and conic square functions of f asso-
ciated to @ are defined by replacing the partial derivative of the Poisson kernel P
in S¢(f) and G°(f) by @:

1/2
(1.6) Se(f)(s) = /|<D£>f<f s+t)|2d;ff> , seR? and
de\1/2
(1.7) GS(f /l(Pg*f &P)

The following two lemmas are taken from [41]. The first one says that the two
square functions above define equivalent norms in #S (Rd, M).

LEMMA 1.1. Let 1 < p < coand f € Li(M;R) + Loo(M;RG). Then f €
H;(]Rd, ) if and only if G5, (f) € Ly(N) if and only if SG,(f) € Lp(N). If this is the
case, then

1GS (Nl = 1156 (Nlp = [1f Il

with the relevant constants depending only on p,d and &.
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The above square functions Gg and Sg, can be discretized as follows:

() = (L 10+ FR)”

j=—00
(1.8) o
sym@:(zﬂt/@ﬁqwmfz
j=—00

B(s,277)

Here B(s, r) denotes the ball of RY with center s and radius r. To prove that these
discrete square functions also describe our Hardy spaces, we need to impose
the following condition on the previous Schwartz function @, which is stronger

than (L.5):
(190  V&eR¥\ {0} 30 <2a <b < oo suchthat ®(ef) #0, Ve e (a, b].
The following is the discrete version of Lemma

LEMMA 1.2. Let 1 < p < coand f € Li(M;R§) + Loo(M;RS). Then f €
H;(]Rd, ) ifand only szpr(f) € Ly(N) ifand only szpr(f) € Lp(N). Moreover,

1GE7(Dllp = 158° (Nlp = I flla
with the relevant constants depending only on p,d and &.

Finally, let us give some easy facts on operator-valued functions. The first
one is the following Cauchy-Schwarz type inequality for the operator-valued
square function,

(110) | [oeseas| < [lo)rs [156)Pds,
RY R4 R4

where ¢ : R? — Cand f : R — L;(M) + M are functions such that all
integrations of the above inequality make sense. We also require the operator-
valued version of the Plancherel formula. For sufficiently nice functions f : R? —
Li(M) + M, for example, for f € L,(R%) @ Lo(M), we have

(1.1 J1£6)Pas = [ 1f(@)Pac.
R4 R4

Given two nice functions f and g, the polarized version of the above equality is

(1.12) /f s)ds = /f

The paper is orgamzed as follows. In the next section, we give the defini-
tions of operator-valued local Hardy and bmo spaces. Section B]is devoted to the
proofs of duality results, including the hy-bmo duality and the h,-h; duality for
1<p<2and % + 1 = 1. Section {4 gives the results on interpolation. In Sec-
tion[5} we develop Calder6n-Zymund theory that is suitable for our local version
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of Hardy spaces. In Section@ we prove general characterizations of h;(Rd, M),
and then connect the local Hardy spaces h;(Rd, M) with Mei’s non-local Hardy
spaces H, (R, M). In the last section of this paper, we give the atomic decompo-
sition of h§ (R?, M).

2. OPERATOR-VALUED LOCAL HARDY SPACES

2.1. OPERATOR-VALUED LOCAL HARDY SPACES. In this subsection, we give the
definition of operator-valued local Hardy spaces as well as some basic facts on
them. Let f € Li(M;R) + Leo(M;RG) (recalling that the Hilbert space Ry is de-
fined by (L.1)). Then the Poisson integral of f is well-defined and takes values in
Li(M) + M. Now we define the local analogue of the Lusin area square function

of f by

(1)) = ([ |2rps+n[ U 5w,
r

where I is the truncated cone {(t,¢) € R‘i‘“ . |f| < e < 1}. It is the intersection
of the cone {(t,¢) € Rfl :|t] < e} and the strip S C Riﬂ defined by:
S={(s,e):s €R%,0<e<1}.
For 1 < p < oo define the column local Hardy space hlcg(]Rd, M) to be
b (R, M) = {f € Ly (M;RY) + Lo(MRS) : [ fllys < o0,
where the h;(Rd, M)-norm of f is defined by
1l = 15y ) + P % £l -

The row local Hardy space hy, (R% M) is the space of all f such that f*¢ hj (R M),
equipped with the norm || f Hhiz = |If* ||h% . Moreover, define the mixture space

h,(RY, M) as follows:
hy(R?, M) =h§(RY, M) +hj (R, M) for 1 < p <2
equipped with the sum norm
I£lln, = inf{l|gllns + Ihllks : £ = g +h, g € h§(RY, M), h € hjy(RY, M)}, and
hy (R?, M) =h(RY, M) Nhj,(RY, M) for2 < p < o
equipped with the intersection norm

£l = max{[| fllng 1w }-
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The local analogue of the Littlewood-Paley g-function of f is defined by

/2
d
/‘an ede) , s€RY
We will see in Section 6] that, for all 1 < p < oo,

IS COp + 1P fllp = (18O lp + P £l

In the following, we give some easy facts that will be frequently used later.
Firstly, we have

(2.1) IsCA I3 + 1P+ £113 = [I£1I3-
Indeed, by (1.11), we have

[ 2ran@fas = [|2r@fIFoRd - [ 4o e
Rd Rd Rd
Then

/ / !al’s Sdsds 4/ (1 — e 78l — 47rigje*0) | F(&)2de,

R 0 R4
Therefore
0 ZdEdt 2dsdt
2_ -
I (PI=7 [ [ [P+ 0] Gora // / [P 0] s
R4 [
1 a
/ JiEss eol.scts—Z o[ (1—e 4 —arlgle 4 (g P,
d 0 R4

where ¢, is the volume of the unit ball in R?. Meanwhile,

1P f3 =7 [ el 7).
R4
Then we deduce from the equality

SINIB+ 1P« £15 = 7 [ (1= aigle ) F(O)Pg

R4

and the fact that 0 < 477|¢le=*"l < L for every ¢ € R?. Passing to adjoint, 2.1
also tells us that ”f”hE R AM) P ||f* ||2 = [|f|l2. Then we have, with equivalent
norms,

(2.2) hS(RY, M) = hs (R, M) = L(N).
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Next, if we apply (1.12) instead of (1.11)) in the above proof, we get the fol-
lowing polarized version of (2.1] ﬂ,

/f ds—4//a Pe(f P¢(g)*(s)ededs

RY 0

—0—/P*f(s)(P % g(s))*ds+47 [ Pxf(s)(I(P)*g(s))*ds

. R
:%/// %Pe(f)(S—H)%ps(g) (S_H)dtdsd
RI T

+/P*f(s)(P>kg(s))*ds+47'c P x £(s)(I(P) * g(s))"ds
R4 R4
for nice f, g € L1(M;RS) + Leo(M;RY) (recalling that I is the Riesz potential of
order 1).

(2.3)

2.2. OPERATOR-VALUED BMO SPACES. Now we introduce the noncommutative
analogue of bmo spaces defined in [10]. For any cube Q C R?, we denote its
center by ¢, its side length by /(Q), and its volume by |Q|. Let f € Leo(M;RY).
The mean value of f over Q is denoted by fg := ﬁ J f(s)ds. We set

(2.4) ||f||bmoc=ma><{ZTEH(@!UfQIZdt)l 2‘ sup H /|f\2dt 2 m

Then we define
bmo(R?, M) = {f € Leo(M;RG) ¢ || fllpmes < o0}
Respectively, define bmo' (R?, M) to be the space of all f € L*(M;RY) such that

Hf*HbmoC <

with the norm || f||pmor = |1 /¥ c. And bmo (R4, M) is defined as the intersec-

tion of these two spaces
bmo(RY, M) = bmo®(R?, M) Nbmo* (R?, M)
equipped with the norm

[1£llbmo = max{ || fllbmoe. 1./ lomor }-

REMARK 2.1. Let Q be a cube with volume k4 < |Q| < (k4 1)? for some
positive integer k. Then Q can be covered by at most (k + 1)? cubes with volume
1, say Qj’s. Evidently,

Hbmo

(k+1)4

‘Q|/\f|2dt k- /|f|2dt<kd Z /|f|2dt
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Hence,

’M Q=1

1 s 1/2
sur (i f Par)

- 1/2
< 24/2 sup H /|f|2dt) HM
Q

Thus, if we replace the second supremum in (2.4) over all cubes of volume one
by that over all cubes of volume not less than one, we get an equivalent norm of
bmo® (R, M).

PROPOSITION 2.2. Let f € bmo®(R%, M). Then
1 zwmir) S If lomos-

Moreover, bmo(RR¢, M), bmo®(RY, M) and bmo" (]Rd, M) are Banach spaces.

Proof. Let Qg be the cube centered at the origin with side length 1 and Q,;, =
Qo +m for each m € Z“. For f € Loo(M;RY),

12 ey = / HW e, <
1

Hmm,m /|f |zdtH <||f||bmozwwnf||bmo

f(1))? dtH
1+ |t]"’+l M

It is then easy to check that bmoc(]Rd, M) is a Banach space. &

PROPOSITION 2.3. We have the inclusion bmo®(R?%, M) C BMOS(R?, M).
More precisely, there exists a constant C depending only on the dimension d, such that

for any f € bmo®(R%, M),
(2.5) [ £llBmos < Cllf lomos-

1/2
Proof. By virtue of Remark 2.1} it suffices to compare H (H@ JIf |2dt) HM
Q

1/2
and H (“12% |f —fQ|2dt) HM for |Q| > 1. By the triangle inequality and (L.10),

we have the following which leads immediately to (2.5):

(0 g £ folar) ., <[ (g ! 2at) |+ ol

<2| (g J ar)

Classically, BMO functions are related to Carleson measures (see [9]). A
similar relation still holds in the present noncommutative local setting. We say



394 RUNLIAN XIA AND XIAO XIONG

that an M-valued measure dA on the strip S = RY x (0,1) is a Carleson measure if

N(A) = sup {LH / d/\” :QCR? cube} < 0o,
FER M
T(Q)
where T(Q) = Q x (0,1(Q)]-
LEMMA 2.4. Let g € bmo*(R%, M). Then dA, = |%P€(g)(s)|2£dsde is an

M-valued Carleson measure on the strip S and

max{N(Ag)"2, [IP# gllLon)} < 18 lbmes-

Proof. Given a cube Q with |Q| < 1, denote by 2Q the cube with the same
center and twice the side length of Q. We decompose § = g1 + g2 + g3, where

81 = (§—820)1ag and g2 = (g — 820) La\g- Since f%PS(s)ds = 0 for any
e >0, we have £P:(g) = #P:(g1) + %Pe(g2). By (LI0),
N(/\g) < 2(N(7\g1) + N(Ag,))-

We first deal with N(Ag, ). By (L.1I) and 2.5), we have

/ ‘8 Pe(g1)( edsds //‘a Pe(g1)( sdsds

T(Q) R? 0
719,
_ // ‘ae ’ 181(€) Pededs
R4 0
S [ls(s)Pds = ﬂg&wmﬂmmmo
R4
Thus, N(Ag,) < [Igl12,,.c- Since ’ ’ < (s+\s\ (e applying (1.10), we obtain
9 1 8(t) — &20/
g 2.1 _1o\7) 78201

R4\2Q

The integral on the right hand side of the above inequality can be treated by a
standard argument as follows: for any (s,¢) € T(Q),

/Iﬂ)@&dK/"M)&dw<Z 8 — 0P,

J o (e+]s—t])dt1 t —coldtt t —coldt!
ARG =<l Ehnd g @l
1 1
St L2 omig [ 18(0)-g20ldtS 1o I8
Z(Q)kgzl ‘2k+lQ| g —820 (Q) 8llbmo

2k+10Q
where cg is the center of Q. Then, it follows that N(Ag,) < [|g|2 .
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Now we deal with the term ||P * g(s)|| o. Let Qi = Qo + m be the translate

of the cube with volume one centered at the origin, so R = U Qm. By (1.10),
me7z4

for any s € R, we have

P+ (s ||M—Hz/ gls— |

/2
/|P |2dt - sup

mez4

(Q/ (s — t)|2dt)1/2HM

(67 ! 20Pd) | % lhmes

Thus, [P *g|l 1) = sup [[P*g(s)|m S lI8llbmos, which completes the proof.
seR?

N

Q=1

Reexamining the above proof, we find that the facts used to prove N (Ag)l/ 2

< HgHbmoC are:

(o)fe s)ds =0forVe < 0;

(o) supf‘sang ‘ % < oo;
ZeR4 0

() |edePe(s)| £ g

It is easy to see that if we replace S%Pg above by ¥, = eld‘f’(g), where ¥ is a

Schwartz function such that #(0) = 0, the corresponding three conditions still
hold. On the other hand, the only fact used for proving the inequality
1P * 8l (r) S 1I8llbmos s that

/ |P(t) |2dt & < oo.

Qum
Recall that H§(R?) denotes the potential Sobolev space, consisting of distribu-
tions f such that J(f) € Ly(R%). It is equipped with the norm ||f|| HY(RY) =
||]‘7f||L2(Rd). If ¢ is a function on R? such that ¢ € HS(RY) for some ¢ > %, we

have
1/2 1 1/2 2
2 < 2\o 2 < -
= ([ we)Par) S (X qgmpye) (/d<1+ [sP)?19(s)Pds) " S 11l
m R
Based on the above observation, we have the following generalization of Lem-

ma 2.4

LEMMA 2.5. Let i be the (inverse) Fourier transform of a function in HY (R?),
and ¥ be a Schwartz function such that ¥(0) = 0. If g € bmo®(R?, M), then dpg =
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|¥e + g(s)[>998 is an M-valued Carleson measure on the strip S and

(2.6) max{N(pg)""2, [l #8llL.(rn} < l18]lomor-
In particular,
2.7) max{N(jig)""%, [I1(P) %8l } < 118 lomos-

Proof. follows from the above discussion; is ensured by and
the fact that (1 + |¢]?)"/2e~27¢l € HJ(R?), which can be checked by a direct
computation. 1

REMARK 2.6. We will see in the next section that the converse inequality of

also holds.

3. THE DUAL SPACEOF hy; FOR1 < p <2

In this section, we describe the dual of h;(Rd, M) for1l < p < 2 as bmo

type spaces. We call these spaces bmo;(Rd, M) (with g the conjugate index of p).
The argument used here is modelled on the one used in [10] when studying the
duality between H, (R?, M) and BMOy (R?, M). However, due to the truncation
of the square functions, some highly non-trivial modifications are needed.

3.1. DEFINITION OF bmo,. Let 2 < g < co. We define bmo;(Rd,M) to be the
space of all f € Lq(M,RC) such that

nmm¢=pr|@/v deH ] sup

/|f q/z

<OO.
s€QCRA seQCRA |Q| q/Z
|Ql<1 [Ql=1

If g = o0, bmog (R, M) coincides with the space bmo®(R?, M) introduced in the
previous section.

Note that the norm H sup Ta; ’ P is just an intuitive notation since the point-
i q

wise supremum does not make any sense in the noncommutative setting. This
is the norm of the Banach space L, /(N lw); we refer to [14], [22], [29] for more
information.

If 1 < p < coand (4;);cz is a sequence of positive elements in L, (N), it has
been proved by Junge (see Remark 3.7 of [14]) that

' = sup{ Y t(aib) : b € Ly(N
b i€Z, i€Z

It is also known that a positive sequence (x;); belongs to L, (N Eoo) if and only if
thereisana € L, (N) such that x; < a for all i, and moreover,

1)ty vty = inf{lally : @ € Ly(A), ;< 0, Vi),

(3.1) H sup Ta;
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Then we get the following fact (which can be taken as an equivalent definition):
fe bmo;(Rd, M) if and only if

Ja € Ly/»(N) such that |1Q| / |f(t) — fol*dt < a(s),
Q

(3.2) Vse Qand VQ C R with |Q| <1 and
1
3b € Lya(N) such that o / F(1)2dt < b(s),
Q

(3.3) Vs e Qand VQ c RY with |Q| = 1.
If this is the case, then

||f||bmo§, = inf{(||aHZ;§ + ||b||ZZ)1/‘7 ta,basin (3.2) and (3.3), respectively}.

In fact, the cubes considered in the definition of bmog (R%, M) can be re-

duced to cubes with dyadic lengths. Let QX denote the cube centered at s and
with side length Z_k k € Z. Set

| foyl?dt and /| (1)2dt.
= 1am / 0o s |Q°| 7
LEMMA 3.1. Ifq > 2, then
4 )12 s1q/2\ 171
(Hskgxl) kaq/erllf 1973)
gives an equivalent norm in bmoy (R4, M).

Proof. It is obvious from the definition that
1/2
< c #1172 < c
[sup A < Wl amd 1717 < 1 Tomes

We notice that for any cube Q with |Q| < 1and s € Q, there exists k > —1 such
that Q C QFand |Qk| < 4%Ql. Thus

al e 105 P, < swe <2 s st
— < su su .
44 ch]R |Q| © q/2 p kligr2 k>11D kligr2
Q<1
Similarly,
Glsup e S irwpar <21
4 EQCRde‘Q a2 9z
Q=1

Thus the lemma is proved. &

From the proofs of Proposition[2.2land Lemma[2.4} it is easy to see that their
g-analogues still hold in the present setting. We leave the proofs to the reader.
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PROPOSITION 3.2. Let g > 2 and f € bmog(R?, M). Then

1ALy (amirg) S I1f lomog -
LEMMA 3.3. Let f € bmoy (R?, M) and assume that the operators a and b satisfy
and (B.3), respectively. Then dA is a g-Carleson measure in the following sense:

\Q| / ‘an sdtds<a( ), VseQand YQ C R with |Q| < 1.
T(Q)
Moreover, | x f(s)|> < b(s) forany s € RY, if ¢ is the (inverse) Fourier transform of a
function in H (RY).

3.2. A BOUNDED MAP. In the sequel, we equip the truncated cone I' = {(s,¢) €
R4 : |s| < € < 1} with the measure ddtff Forany 1 < p < oo, we will embed

hicg(]Rd,./\/l)mtoalargerspaceLp(./\/ LS(r ))EBL,,( ). Here L, (N LS(I° ))EBLP( )

is the /,-direct sum of the Banach spaces Lp(/\/' ;LS(I)) and Ly(N), equlpped
with the norm

_ p 1/
I = AL g ) ISIE, )7
for f € Ly(N;LS(T)) and g € L,(N'), with the usual modification for p = co.
DEFINITION 3.4. We define a map E from h (R, M) to L,(N;L§(I)) @B
P
Lp(N) by
E(f)(s,0) = (£ 2Pe(f)(s + ), P+ £(5))
7ty ae € 7 7

and a map F for sufficiently nice h = (i, h"") € L,(N;LS(T)) ? L,(N) by

F(h)(u):/[é/ h’(s,t,e)%Pg(s—i—t— )%M"( )(P+471(P)) (s — )| ds.

By definition, the map E embeds h, (R, M) isometrically into L, (N; LS(T))
@ Ly(N). The following results, Theorems 3.8 and [3.18 show that by identifying
P

he (Rd,/\/l) as a subspace of L,(N;LS(T")) ? Ly(N) viaE, h;(Rd,/\/l) is comple-

mented in L, (N LS(T)) @ L,(N) for every 1 < p < oo by virtue of the map F.

PROPOSITION 3.5. Let 1 < p < oo. Then for any nice f € Li(M;RS) +
Leo (M;RG), we have

F(E(f)) = f.
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Proof. Applying (2.3), we get the following which completes the proof, for
any nice function g,

/F (u)du /[://;)sPE(f)(s—l—t)iPs(s—i-t—u)(:;iifg(u)du
r

R4

P f(s) / (P(s — u) + 471 (P)(s — u))g (u)du] ds
:4{3//&&0%+ﬂim@ﬁ+w$f
R4 r
+Px f(s)(Px g+4mnI(P) ds /f 1

The following dyadic covering lemma is known. Tao Mei [24] proved this
lemma for the d-torus and also for the real line. For the case RY with d > 1, we
refer the interested readers to [5], [13], [23] for more details. In the following, we
give a sketch of the way how we choose the dyadic covering.

LEMMA 3.6. There exist a constant C > 0, depending only on d, and d + 1 dyadic
increasing filtrations D' = {D]l'}jeZ of o-algebras on RY for 0 < i < d, such that for

any cube Q C RY, there is a cube D’ ;€ D’ satisfying Q C D! and D!, | C|Q].

Proof. Let {txi};j:o be a sequence in the interval (0, 1) such that min;_.; |at —
a’'| > 0. Then we define

gﬁ.

j=0,
(3.4) tX;’-: i+ 1277 -1) j<0and —jeven,
o' —1(2741) j<O0and —jodd.

= Q=

The o-algebra Dlﬁ is generated by the cubes
Di (tx + my27 0 4 (my +1)277] x (oc +mg27] +(md+1)2 i,

forall m = (my,...,my) € 7% '
For any cube Q C RY, there exist a constant C, depending only on {a f 0
and d, and a dyadic cube D!, jsuchthatQ C Dl and D, | ClQl.

To show the boundedness of the map F, we need the following assertion by
Mei, see Proposition 3.2 of [24]; we include a proof for this lemma, since the one
in [24] is the one dimensional case. Let 1 < p < o0, and f € L,(N') be a positive
function. Let Q be a cube centered at the origin, and denote Q; = t 4+ Q. Then we

define
1 n
ﬂw=mgﬂws
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LEMMA 3.7. Let1 < p < oo and let (fi) ez be a positive sequence in L,(N') and
(Q")kez be a sequence of cubes centered at the origin. Then

| 26, =] 2],

keZ keZ

Proof. Similarly to the proof of Proposition 3.2 in [24], we are going to apply
Theorem 0.1 of [14] for noncommutative martingales. By Lemma we can
cover every QF by some D and thus by some D’ _1,which has twice the side

lengthof D!, . . Moreover, \D C|Qk. ObV1ously, t + Q¥ is still covered by
t+ Din -1/ but the later is not necessarily a dyadic cube in D;:k_l. Let us adjust the

m,ji 1|

translation vector ¢ = (tl, .., tg) as follows. Write Q¥ = (—a,a] x --- x (—a,a]
and Dm 1= = (b1, by] x -+ x (by, by], then either by —a > 27/k or —a — by > 27k,
Without loss of generality, we can assume by —a > 27 Jk, Now set f = (?1,. . .,?d)
with ¢; the largest real number in the set 27/¥Z less than ;. Then it is easy to see

that t + Qk is covered by F+ Dfn 1 and that the later is a dyadic cube. Thus,

(f0< <c Y. E(filD

0<i<d

where [E(- |D]1) denotes the conditional expectation with respect to D; Then the
lemma follows from Theorem 0.1 in [14]. 1

THEOREM 3.8. For 2 < p < oo, the map F extends to a bounded map from
Ly(N;LS(T ))@LP( ) to bmo, (Rd M).

Proof. We have to show that for any h = (K, h"") € L,(N;LS(T)) ? Ly(N),

HF(h)Hbmoc S ||hHLp(N;L§(f))@PL,,(N)‘
Fix h = (W,h") € L,(N;LS(I’ ))@LP(J\/’) and set ¢ = F(h). We will apply

Lemma to estimate the bmop—norm of F(h). For v € R? and k € N, denote by
Qi‘, the cube centered at v and with side length 27k, then we have Q§ =0v+ Q’é.
We set

Wy (s, t,e) = H'(s, te)lyea(s), W (s, t,e) = ' (s,t, €)1 pi1yc(s) and
1

ot©) = 158 [ lo(w) = gg; P
o Ak

Let
k
0

BQlé(v) = /// (%PS)Q (s,t,0)h5(s,t, e)d;ciigds

Ré T
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with (2P,)< 6(s,t,0) = f 9 Pe(s +t — u)du. Then, we have

IQ"I

1
o) S 15p / |@(u) — B (0)[2du

Qk|/’ / / (s, t,€) Ps(5+t u)— (aang>Q6(s,t, )} di}cl‘c'ds‘ du
(Qk 1 ~

|Qk|/‘// Wy (s, t ) Pg(s—l—t—u dt—deds‘d
Qb ot r

+ 1 / ‘ /hf/(s)[P(s —u)+4rI(P)(s — u)]ds‘zdu.

Whens € (Q1), u € Qf and (t,¢) € T, wehave s+t —u| + e ~ |s —v| +¢
with uniform constants. Then,

[flrts e = (30) P[4
r

1
5//( 2 )dtdeg/ 2 d de
(|s+t—u|+e)dt2/ g1 ) )(|s—v\2+82)d+2 gd-1
1

- Zk —2k
<
Cdo/ (s — o2 + €2 d+2d ~ s — o2

Let (ag)ken be a positive sequence such that H Y ag < 1, where 7’ denotes

k>1 H (p/2)
the conjugate index of r. Let

2% 1 , ,dtde
AL T / / |s—z;|d+1 / m/f\hz(sftel a1 ds - ax(v)do
) (@51 F

k>1 RY (0

v

L/ o L [ [tz gl o at
= C Qk o1 T

=1 /|Qk| /’/hll P(s —u) +4”I(P>(S—M)]ds‘zdwak(v)dv.

Then,

Z /qok Jag(v)do S A+B+C.
k=1
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First, we estimate the term A. Applying the Fubini theorem and the Holder in-
equality, we arrive at

Ay et [ oleest [ s e 2 4 (0) o
. 8
I

SRt (e

< H/N/h/z(',t,gﬂzjfieup/z H Z 7k / |U_5‘7d71 dUH 12y
r

1 o

S sy | E2FD [ 2V aopel|

k>1 j<k ] Z\Q] 1

Here and in the context below, || - |, /2y is the norm of L, /2 (') with respect

to the variable s € RY. Now we apply Lemma to estimate the second factor of
the last term:

H Y Y 2li-1 / 2kl de( /2 < H Yy ok 1“"“

(p/2)
k>1j<k _ o JEZ k=)
Q! k>1

| B

=1 w2y

Then we move to the estimate of B:

B<Z/2kd /‘// Hy(s,t,e)a* (v )a%Pg(s—l-t )dt—deds‘dd

k>1

R4 Qk 1 F
QZ/ZM sup ///h’ste 172 );Pg(f)("’t%d‘d
Blge  Wf=1' Gl F ¢

Since hS(R?, M) = L(N) with equivalent norms, by the Cauchy-Schwarz in-
equality and Lemma[3.7, we get

B < z/zkd / / I, (s, t, € dsak( 0)do- [[fllug

k>1p o1 T

<Yt ///|h’ d;ffzkd / ax(v)dods

k>1 s o
R Q!

2 kd
< |k ||LP(N;Lg(f))HI§12 / ak(v)de(p/z)’

k—1
s

< 2d|1/]12 B H ‘
<2 Hh ”LP(N?LE(F)) ];ak (p/2) < ’ HL p(NGLS(F
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The techniques used to estimate the term C are similar to that of B:

C=)r1 /de / ‘/h” P(s —u) +47TI(P)(S—u)]ds’zak(v)dvdu

k21 pa Qk-1 Rd

<Hk>212kd / ak(v)de(p /h” +4n1(P)(s.)]ds]2Hp/2
okt
< H’/h +4n1(1>)(s—.)]ds] Hm.

Take f € L, (N') with norm one such that
H]/ "(s)[P(s—u +4nI(P)(s—u)}ds‘2Hp/z—‘r/ "(s) [P f(s)+47I(P) * f(s)]ds ?
Rd

Then
2
/hu s) +47I(P) f(s)]ds‘ <P IZIP £+ 47 (P) + 2,

SIEBIAS = 1013
Combining the estimates of A, B and C with (3.1), we obtain

H + _#
k=1

It remains to establish the L, /,-norm of ¢*(s) = ‘Ql—o‘ [ |o(t)|>dt, which is
o0

, S Il

pWSLS (D) @y Ly(N)

relatively easy. For any positive operator a such that ||a|| Lipay ) S 1, we have

/(p dv<~r//’// W (st e) Pg(s+t d;ffds‘ du - a(v)do

RdQO R T
2
e J1 R st -
R4 QO R4
def B 1C.

The terms B’ and C’ are treated in the same way as B and C, respectively. The
results are

dtde
o [ [[ W tePSS [atdods <IHIZ o lallray

C < HQ/Q a(v)de(p/Z)’

QO
JHP(s — )+ 4m1(P)(s - .)]dspr/z < 0.
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So we obtain
<
19* 112 < IIBII7 PSS (F) @) Ly(N)°
Thus, Lemma3.1|ensures the followmg which proves the theorem:
1B omog, < WA, (nis (7)) @, Ly () B

COROLLARY 3.9. Let 1 < p < 2. Forany f € L,(M; L§(R?, (1 + [t|4F1)dt)),
we have

£l S AN (vtirs (e, 1+ -

Proof. To simplify notation, we denote Ly(R?, (1 + [¢t|4F1)dt) by W,. Let q
be the conjugate index of p. By duality, we can choose h = (I, h") € Ly(N; LS) B
q

Ly(N') with norm one such that
1< COlp + (1P f1I

=[]/ %Pe(f)(wt)h'*(s,t,s)%ds+T/P*f(s)h”*(s)ds
RS T

R4
— |z / FOF(h)* (u)du
dtde

(3.5) F(h)(u):/[/N h’(s,t,s)%Pg(sH— u) S+ I (s)P (s —u)]ds.

RE T

where

Following the proof of Theorem it is easy to see that F is also bounded from
Ly(N;LS(T)) EB Ly(N) tobmog (R¥, M). They applying Proposition3.2|and The-

orem 3.8 we have the following and thus we obtain the desired assertion:

v [ FEFm) (5)ds| S REC

H(PHbmo ]Rd M
ds ‘

< d+1 *
S sup <l\r/<1+|s| )8 ) o

|\(P|\Lq(M,-R§)\
= [+ 181D fllL, (mirs) = I, vwe)- W

3.3. DUALITY. Now we are going to present the h{-bmoj duality for 1 < p < 2.
We begin this subsection by a lemma which will be very useful in the sequel.

LEMMA 3.10. Let1 < p < 2and q be its conjugate index. For f € h?;,(]Rd,./\/l) N
Ly(N)and g € bmo;(Rd,M),

\T/ £($)8*(5)ds| < 11 £l 18 omos-
R4
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Proof. It suffices to prove the lemma for compactly supported (relative to
the variable of RY) f € h;,(]Rd, M). We assume that f is sufficiently nice that all
calculations below are legitimate. We need two auxiliary square functions. For
s € RYand ¢ € [0,1], we define

0 / / ‘2%)1/2/

(s,r—e/2)

2dtdr 1/2

(3.7) / / rd—l) .
€ B(s,r/2)

Both 5(f)(s,€) and s°(f)(s, €) are decreasing in € and s(f)(s,0) = s(f)(s). In
addition, it is clear that 5°(f) (s, &) < s°(f)(s,€). Let (e;);c] be an increasing family
of T-finite projections of M such that e; converges to 1,4 in the strong operator
topology. Then we can approximate s¢(f)(s, e) by s¢(e;fe;)(s, ). Thus we can as-
sume that T is finite; under this finiteness assumption, for any small § > 0 (which
will tend to zero in the end of the proof), consider s°(f)(s,€) + 01, instead of
s¢(f)(s, &), we can assume that s¢(f)(s, ¢) is invertible in M for every (s, ¢) € S.
By and the Fubini theorem, we have

1
o[ O] S| [ [ 3P 5Pee)" (s)edecs|

R4 0
+|e / P f(5)(P+g(s))"ds + 7 [ P f(s)(1(P) g(5))"ds
R4
- —r// [ rp)n) opee) () e
R4 0 B(se/2)

+’ /P*f (Pxg(s) dS+T/P*f )*g(s))*ds}.
Then,
- / f(©)g"(5)ds

// / =P (F)(s,€)P~2726( £)(s,6) @ za)/zaa P.(g)" ()(:;iifds

RdOBss/2

/P*f (Pxg(s) ds‘—i—‘ /P*f (P)*g(s))" dst—EfI—t—H
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The term I is easy to deal with. By the Holder inequality and (2.7), we get

<[P+ fllplP*gllg + [P+ £l L(P) * gllg-
Then by Proposition V.3 and Lemma V.3.2 of [35] we have

[P gllg S 1T(P)*gllg,  and [ I(P) *gllg < [IT(P) * gllg-
Hence, by Lemma
IS 118 lbmog I1.f Ihg -

Now we estimate the term I. By the Cauchy-Schwarz inequality

</ / / <f><t>\2€f%1)s%f> (5,€)P2deds

R4 0 B(se/2)

// / (g><t)‘2;i_tl>sc(f)(sf £)> Pdeds &' A - B.

R4 0 B(se/2)

Note here that s¢(f) (s, ¢) is the function of two variables defined by (3.6), which is
differentiable in the w*-sense. We first deal with A. Using5°(f)(s, &) < s°(f)(s, ),

we have
<t / [ 2eno] s (nearSas

R4 0 B(se/2)

-/ / (25()(s,€) () s, €)Pdeds

RY 0

= —2T/ /EC Ss “(f)(s,e)deds.

R4 0

Sincel <p <2 and 8°(f)(s, €) is decreasing in ¢, 5°(f) (s, &)P =1 < 5(f)(s,0)P~ 1.
At the same time, ass “(f)(s, &) < 0. Therefore,

1
AS—T/ /ai sededs<r/ (f)(s,O)”ds:||fol%.
0

R4 R4

The estimate of B is harder. For any j € N, we need to create a square net
partition in R? as follows:

Quj = (\}H(ml _1)21,;&,,112]} x ! (md—l)Zj,\}Emdzj]

(L
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withm = (my,...,my) € Z%. Let cm,j denote the center of Q,, ;. Define

1. .
68 sNen=(/ [ ‘%Pr(f)(t)‘z%)l/z if s € Q.
2-j B(cm,j,t)

For any s € R? and k € Ny (N being the set of nonnegative integers), we define

d(s, k) = S°(f) (s, k)* 77 = S°(f) (s, k — 1)*"

Since B(s,r — 5) C B(cy,j,7) whenevers € Q,, jand e > 27 J, we have

s(f)(s,e) <S(f)(s,]), Ys€Quje=> 271,
It is clear that S°(f)(s, j) is increasing in j, so d(s, k) > 0. At the same time, d(s, k)
is constant on Q,,x and ¥ d(s, k) = S¢(f)(s,j)*>~P. Therefore,
k<

2- j+1

B 2 X [ [ (] |ardmf 5)se (s veds
“Qmj 277 Blse/2)

2—j+1

— 1 d(s,k);/( / ]%PS(g)(t)f%)dsds
2k,

d(s, k) / / / g(g)(t)‘zsj—fl)deds.

Qmr 0 B(s,e/2)

Since ¢ € bmoj, Lemma ensures the existence of a positive operator a €
Ly/2(N) such that lallg/2 < IIgllbmog and

|Q\ /'agPs £dtds<u( ) and for s € Q and for all cubes Q with |Q| < 1.
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Let @m,k be the cube concentric with Q,, x and having side length 27¥+1. By the
Fubini theorem and Lemma[2.4) we have

2—k+1 2—k+1
d 2 dt
/ / / ‘aePg(g()‘ a1 1 dsds Zd/ / sdsds
ka 0 55/2 Qm,k 0
9 2
_nd e
=2 ~/ ‘ang(g)(s)) ededs
T(Qm,k)
S / a(s)ds.
Qm,k

Then we deduce

B<St) ), / d(s,k)a(s)ds = T/ Y d(s, k)a(s)ds

" k>1ka R4 k21
C 2— c 2 c 2—p
=7 [ S(f) (s +o0) Pa(s)ds = T [ S°(F)(9)* Pa(s)ds < IS(AIF " allys2
RA R4

Hfllhc Plallgz < ||f||hc pl\g\lbmo
Combining the estimates of A, B and II, we complete the proof. 1

The following is the main theorem of this section.

THEOREM 3.11. Let 1< p <2and q be its conjugate index. We have h‘;,(Rd, M)*
= bmof](]Rd,M) with equivalent norms. More precisely, every § € bmo;(Rd,M)
defines a continuous linear functional on h‘;,(]Rd, M) by

0o (f) :T/f(s)g*(s)ds, Vf € Ly(M;WS).
Conwversely, every { € h;(Rd,M)* can be written as above and is associated to some
g € bmo (R, M) with
1€l )+ = 118 llbmog -
Proof. First, by Lemma we get
(3.9) €5 ()] < 11&llbmog 1S g

Now we prove the converse. Suppose that ¢ € h (Rd M)*. By the Hahn-
Banach theorem, £ extends to a continuous functional on L, (N; L§ (I r)) EB Ly(N)

with the same norm. Thus, there exists h = (W', k") € Ly(N;L§(I’ ))EBLq( )
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such that

Hh”Lq (WLS(T ))@ Ly(N ”EH h$)* and

n=<[ff &Pe(f)(s+t)h’*(s,t,e)%ds+T/P*f(s)h"*(s)ds
R T R4
- r/f(u)i(h)*(u)du,
Rd

where F is the map defined in (3.5).
Let ¢ = F(h). Following the proof of Theorem we have

18[bmog < 1€l ng)«  and

f) = T/f(s)g*(s)ds, Vf € Ly(M;Wyg).

Thus, we have accomplished the proof of the theorem. 1

The following corollary gives an equivalent norm of the space bmo;. Note
that it is a strengthening of the one-sided estimates in Lemmas[2.4]and @
COROLLARY 3.12. Let 2 < q < co. Then g € bmo;(Rd, M) if and only if

dAg = |%Ps (8)(s)|?edsde is an M-valued Carleson g-measure on S and || J(P) x g ||, <
oo. Furthermore,

~ || su P, ( sdtde + ||J(P) =
18 SGJQWIQI / 5ere |1, @ gl

|Ql<1
Proof. From the proof of Lemma it is easy to see that if

9 2
dAg = ‘ng(g)(s)‘ edsde

is an M-valued Carleson g-measure on S and [(P) * ¢ € Ly;(N), then g defines a
continuous functional on hy, (R, M):

(f) :T/f(s)g*(s)ds, and

1l < | i‘;de|Q| / 522t 0 e 11P) gl
Q<1
According to Theoremm there exists a function g’ € bmoj (R?, M) such that
I/ hmes < || 0 7 [ |ePeto) ()] e+ 1) = gl
EQCRd|Q‘ a l]/2

o<1 1@
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/f ds—T/f (

forany f € hj, (R4, M). Thus, g = ¢’ with

and that

”gHbmo;

<|sup* & [ [ 2Rele)o) e[+ 11P) # sl
: SEQCW\@ ol /2 q
lQf<1

The inverse inequality is already contained in Lemmas[2.4/and 2.5 We obtain the
desired assertion. 1

3.4. THE EQUIVALENCE h; =bmo,. We now show that h{ (RE M) =bmoy (R M)
for 2 < g < oo. Thus according to the duality obtained in the last subsection, the
dual of hj, (R, M) agrees with hg (R%, M)when1 < p < 2. Let us begin with two
lemmas concerning the comparison of s(f) and g°(f). We require an auxiliary
truncated square function. For s € Rifande e [0, %}, we define:

2/3
1/2
(3.10) g( /‘8 P, (f rdr) .

LEMMA 3.13. We have

8 (f)s,e) Ss°(f)(s 3),
where the relevant constant depends only on the dimension d.

Proof. By translation, it suffices to prove this inequality for s = 0. Given
e €0, %], for any r such that e < r < %, let us denote the ball centered at (0, )

and tangent to the boundary of the cone {(t u) € RTL .t < Mu} by B,.
We notice that the radius of B, is greater than or equal to \[ By the harmonicity
of %P, (f), we have

Then by (1.10), we arrive at

d+1
oo < B [ lgnanefa

Cd+1
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where ¢y 1 is the volume of the unit ball of R9*!. Integrating the above inequality,
we get

. %
(3.11) / ’gp,( rdr / T / ’auPu dtdudr
€

Since (t,u) € B, implies \/‘g/ilu <r< \/\g/iu and § < u < 1, the right hand side
of (3.11) can be majorized by

2u

1
i < C € 2
cdﬂ //\a Pu(f /rddrdfdu\cm (0,92,

u/2

where C is a constant depending only on d. Therefore, $°(f)(0,€) Ss(f)(0,5). 1

LEMMA 3.14. Let 1 < p < oo. Then for any f € h (Rd M), we have

IS Clp + 1P fllp S N8 (Hp + [P £l

Proof. We first deal with the case when 1 < p < 2. Let g be a function in
bmoy (Rd M) (g is the conjugate index of p). Following a similar calculation as
(2.3), it is easy to see that

v [£)g"(5)ds
R4

2/3
_4'(/ / 3% —P(f P¢(g)*(s)ededs
(T [P fO)Prys = g()ds + ST [P f)(I(Pyj3) wg(s) )
R4 R4
L

The term II can be treated in the same way as in the proof of Lemma

ISP fllp - (1T (Pry3) * fllp-

Applying Lemma 3.3} we have

1S 1P £l - 18 fomes.
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Concerning the term I, we have

i
2/3 )
< / SR NE] T Zededs ] [|SPlg) ()] 7 () (5,8 Pedeas
R4 0 B D
4. B

Following the argument for the estimate of A in the proof of Lemma we
deduce similarly that A’ < [|g°(f) |- Now we deal with term B’. By Lemma
we have

2/3 a 2 C €
T/ / ‘ng(g)(s)‘ s(f) (s, 5)ededs.
R4 0

Then we apply almost the same argument as in the estimate of B. There is
only one minor difference: when ¢ > 27/ and s € Q,,;, we have s°(f)(s, 5) <
S¢(f)(s,j+1). We conclude that

2—
B S 118 lIpmec 15 (Ol
Combining the estimates of I, A’ and B’ with Theorem we get

IS COlp + P+ fllp SN CHp + 1P+ fllp SN U lp + P+ £l

The case p = 2 is obvious. For p > 2, choose a positive g € L, /5 (N) with
norm one such that,

2dtde

2

= PR+ G|
1Al = H//‘a el el 1‘17/2

_t / / | ]$Pa<f><s+t>\2%g<s>ds
_T//‘ang Zf;df / <(s)ds.

R 0 B(te)

By the noncommutative Hardy-Littlewood maximal inequality (the one dimen-
sion R case is given by Theorem 3.3 of [24], the case R is a simple corollary of (3.1)
and Lemma , there exists a positive a € L(,, /5 (N') such that [[al|(,/») < 1and

|B(t12k)| / g(s)ds <a(t), VteR? Ve>o.
’ B(t27k)
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Therefore,
1
d 2dtds
2 _
Is(iE=7/ [|arno] G5 [ sts ds<cdr//)apg ea(t)dide
R0 B(t,e) R4 0
%H/ 5P ] el 2y < cal gl

Then the assertion for the case p > 2 is also proved. 1

To proceed further, we introduce the definition of tent spaces. These spaces
are closely related to Hardy spaces and were initially defined by Coifman, Meyer
and Stein in [4]. In the noncommutative setting, the operator-valued tent spaces
were first defined and studied by Mei [25].

DEFINITION 3.15. For any function defined on R? x (0,1) = S with values
in Ly (M) 4+ M, whenever it exists, we define

aE) = ([ +50PS2) ", sere

For1 < p < co, we define

Ty(RT, M) = {f : A°(f) € Lp(N)}
equipped with the norm || f HT;(RV’, M) = | A(f)||p- For p = oo, define the operator-
valued column Ty, norm of f as

|f||Tg°:Zu§1H |Q| / £ (s, |2d5d£>1/2HM/

and the corresponding space is

TSR M) = {f || fllzg, < oo}

REMARK 3.16. By the same arguments used in the proof of Theorem
it is straightforward to prove the duality that T;(Rd, M)* = T;(Rd, M) for1 <
p < oo and %—l— % = 1. For the case p = 1, it suffices to replace 2P¢(f)(s)
and %Pg (g)(s) in the proof of Lemma by f(s,e) and g(s, €), respectively. A
similar argument will give us the inclusion that TS (R, M) C T¢(R?, M)*. On
the other hand, since Leo(N;L§(I)) C TS (R, M), we get the reverse inclusion.
For1 < p < oo, the tent space T;(Rd,M) we define above is a complemented

subspace of the column tent space defined in [24]. So by Remark 4.6 in [41], we
obtain the duality that T;(Rd, M)* = T;(Rd, M).

THEOREM 3.17. For2 < q < oo, hf](Rd,./\/l) = bmo;(Rd,M) with equivalent
norms.



414 RUNLIAN XIA AND XIAO XIONG

Proof. First, we show the inclusion hg(Rd, M) C bmog(Rd, M). By Theo-
rem it suffices to show that hg(Rd, M) C hj (R, M)*. Applying @.3), for
any f € hf](Rd,./\/l) and g € h;(Rd,M), we have

o s s =2 [ [[ Lo+ 03Pl (s 0G5 ds
R4 R [

+ [ Prg(s) (P £(s))ds + 47 [ 1(P) () (P« £(s))"ds
R4 R4
Then, by the Holder inequality,
0

. 9,
«fst0r 0] < 2005, 0|

FI®+IP)) *gllp - 1P+ fllg
< (Is*@llp + 1P+ 1(P)) * &llp) | fllng-
Now, we show that forany 1 < p < 2and g € hy (R%, M), we have ||(P +
I(P)) xgllpy S Hth;,- Since 2 < g < oo, we have 1 < 1 < oo. Applying the
noncommutative Hardy-Littlewood maximal inequality, we get

1 r 1/2
Il < || sup 57 [LAPa| S AP = 1
Q

s€QCRA

Pe(f)|

Lg(NLo(T))

This implies that Ly(N) C bmog(Rd,M) for any 2 < g < co. Then by Theo-
rem we get h‘;,(Rd, M) C Ly(N). Therefore we deduce that

(3.12) [P +IP))glly S lIglp < I8 llng-
Thus,

v [ 8 (s)ds| S Il gl

We have proved h{ (RT, M) C bmoy (R, M).

Let us turn to the reverse inclusion bmo¢ (R4, M) C hg(]Rd, M). We need
to make use of the tent spaces in Definition We claim that for g > 2, every
fe bmo;(Rd, M) induces a linear functional on T;(Rd, M) G;? Ly(N). Indeed,

forany h = (W', 1) € T;(Rd, M) @ Ly(N), we define
P

1
h) = T//h’(s,s)%PS(f)*(s)deds

(3.13) Rd D
—i—T/h” [(P# F)*(s) + 47c(I(P)  £)*(s)]ds.
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Set

1 1
aws=[ [ WeIPSY, Aw) =] [ WPy

€B(s,r—e/2) €B(s,r/2)

Then by the Cauchy-Schwarz inequality, we arrive at

s (e[ (] roof ) mueor2a)”

R4 0 B(se/2)

// / (f)(t)‘2%)?(}1’)(3,8)2‘%@5)1/2

Ré 0 B(se/2)

/h” (P % £(s) ds’—i—‘/h” « f(s))"ds|

Following a similar argument as in the proof of Lemma we obtain that
£ (TS (I llzg + 1E7 L) f lomes S 1PlTs @, £, - [ lbmog-

which implies that |[¢]| < ¢ql|f ||bm0c So the claim is proved.

Next we show that || f ||h[ci ~< C gll¢fll. By definition, we can regard Ty as
a closed subspace of L,(N;L5(I')) in the natural way. Then, {¢ extends to a
linear functional on L, (\;L§(I)) @ Ly(N). Thus, there exists g = (g/,8") €

Ly(N;LS(T ))EBLq(N) such that

181, vt P @, 1) < 1

and for any h = (h',h") € L,(N;LS(T)) @Lp( )s

h) = T// h’(s,e)g’*(s,t,e)%ds+r/h”(s)g”*(s)ds
R T : R
1
:T// 5,¢€) /g (s, t,e)d +/h” (
R4 0 (s,€)

Comparing the equalities above with (3.13)), we get

%Pe(ﬁ(s):ed% / ¢(s,t,e)dt and Pxf+4mI(P)«f=g".

B(0,e)
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By Lemma 3.14} we have

1
£l 5 [ [ |32Petr)| s0e) | + 1< 1
0

5 1/2
/ T / '(s,t, )| dtds) H + [P fll4
o © i

B(0,)
~ ||g HLq(N;Lg(f)) + [P *f”q

Now let us majorize the second term ||P x f||; by ||g”||;. Indeed, consider the
function

oo

G(s) = Zn/efszg(s)ds.

0

It is easy to see that G € Li(R%), |G|y < 1and G(&) = (1+|¢|)~!. This means
that the operator (14 I)~! is a contractive Fourier multiplier on Ly(\). There-
fore,

[P fllg < 1P+ I(P))  fllg < 478" -

Finally, we conclude that || f[|lne < [[€¢]] < Hf“bmof] and then we have hj (R, M) =
bmoy (R, M) with equivalent norms. &

Armed with the theorem above, we are able to extend the content of Theo-

rem[3.8
THEOREM 3.18. (i) The map F extends to a bounded map from Leo(N; Lg(f)) 45

Loo(N) into bmo®(R?, M) and
HF(h)Hme HhHLw _/\/'LC( ))GBOQLOO(N)

(i) For 1 < p < oo, F extends to a bounded map from L,(N;LS(T)) @ Ly (N) into
p
hs,(RY, M) and

IE) s, < 1L, wras (7)) @, V)

Proof. (i) is already contained in Theorem 3.8 When p > 2, (ii) follows from
Theoremﬂand Theorem [3.17} The case p = 2 is trivial. For the case 1 < p < 2,
according to Theorem we have

[E()lg S sup |7 [ F()(s)f*(s)ds].
Hf“bmoggl



OPERATOR-VALUED LOCAL HARDY SPACES 417

Then, by Theorem 3.17|and B.12), for h = (W, ") € L,(N;LS(T)) GBLP(N)

have the following and the desired inequality is proved:

sup ‘T F(h)(s)f*(s)ds‘
Hf“bmocgl R

< sup |t / //h’sts S P(f)" (s-+)dide-+H" (5)([P-+4mT(P)] « £*(5)) ] ds|
Il <1
§”h||Lp<N;L;<f>>@,,Lp(N)' '

The above theorem shows that, for any 1 < p < oo, h;(]Rd, M) is a com-
plemented subspace of L,(N; LS (I I)) 69 Ly(N). Thus, we deduce the following

duality theorem.

THEOREM 3.19. We have hg(Rd, M) = hg(Rd, M) with equivalent norms for
any 1 < p < oo

4. INTERPOLATION

In this section we study the interpolation of local Hardy and bmo spaces by
transferring the problem to that of the operator-valued Hardy and BMO spaces
defined in [24]. We begin with an easy observation on the difference between

brno; and BMOf] norms.

LEMMA 4.1. For2 < q < oo, we have

18llbmog ~ (18 o + 17(P) =gl

Proof. Repeating the proof of Proposition with || - ||m replaced by

I IlL, »(Ait), We have Hg||BMO; < ||g|]bm03. By Lemma it is also evident
that || J(P) * gl < HSHbmog- Then we obtain

(18 gmmos + IT(P) #1118 lomo;
On the other hand, by Corollary we have
<[sup* b [ | ope(s) o) [edede]| 7 + 1P gl
" lseqeme Ql de q/2 T
1Ql<1
Clearly, the first term on the right side can be estimated from above by || g||BMO;

(see Theorem 3.4 of [41]]). Therefore, we have the following and thus, the lemma
is proved:

18llbmos < N8 llsvog + IT(P) # gllg & (Nglamor + 17(P) % glpte.

”gHbmo;
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Define F;(N) to be the space of all f € L;(M;R) such that ||J(P) * f||; <
c0. From the above lemma, we see that bmoy, (R%, M) and BMOy (R4, M) @ E,(N)
q

have equivalent norms. By the interpolation between BMOZ(Rd,M) and
BMO®(RY, M) (see [24] for more details), we deduce the following lemma.

LEMMA 4.2. Let2 < g < ocoand 0 < 0 < 1. Then
(bmof (R?, M), bmo®(RY, M) C bmo(R?, M) with ¢ = %
Proof. By Lemma 4.1} we see that
bmof (R?, M) = BMOS(R?, M) ) F,(N)
q
with equivalent norms. Define a map
Y, Fj(N) — Lg(N)
fr—=]P)*f.

Thus, Y; defines an isometric embedding of F; () into L; (). Then by the inter-

polation between BMOj, (R, M) and BMO®(RY, M), we get the following which
completes the proof:

(me;(Rd,M),meC(Rd,M))G
(BMOC (R4, M @Pq ), BMO®(RY, M) @ Fuo (N ))

— (BMog(Rd,M),BMOC(Rd, M))g P (Fy(N), Eo(N))g
Q
C BMOS(RY, M @FQ = bmo§(R?, M). &

0

THEOREM 4.3. Let 1 < p < oo. We have
(bmo®(R?, M), h{ (R?, M))1,, = hS,(R?, M).

Proof. Let1l < p < 2and 1 = 1_9 + 6. Since the map E in Definitionis
an isometry from h;,(Rd, M) to LP(N LC( r)) EB Ly(N), we have

(4.1) (h,(RY, M), h§ (RY, M))g C b (RY, M).

By Theorem h}, is a reflexive Banach space. Then applying Corollary 4.5.2 of
[2], we know that the dual of (h§(R?, M),h$(R?, M))g is (bmof(R?, M),
bmo® (R4, M))g. Therefore, if the inclusion is proper, we will get the proper
inclusion

bmoé(Rd,M) - (bmo;(Rd,M),bmoc(Rd,./\/l))g,
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which is in contradiction with Lemma Thus, we have

(4.2) (h,(RY, M), h§(R?, M))g = hS, (R, M).

By duality and Corollary 4.5.2 of [2] again, the above equality implies that for
9 =1le

(4.3) (h§ (R, M), bmo® (R?, M))g = he, (R, M).

For the case where 1 < py,pp < oo, the interpolation of h}, (R, M) and

h‘;,z (Rd, M) is much easier to handle. Indeed, by Theorem we }lave, for any

1<p<oo, hz(Rd,M) is a complemented subspace of L,(N;L5(I")) @ Ly(N)
P

via the maps E and F in Definition 3.4} This implies that, for any 1 < pq, p < oo,

(hS, (R%, M), kS, (R?, M))g = hS (R, M),

with % = 1;—19 + %. Combining this equivalence with {#.2), (.3), and applying

Wolff’s interpolation theorem (see [38]), we get the desired assertion. &

The following theorem is the mixed version of Theorem [4.3] which states
that hy (R?, M) and bmo(R?, M) are also good endpoints of L, ().

THEOREM 4.4. Let 1 < p < oco. We have (X,Y )1/, = Ly(N) with equivalent
norms, where X = bmo(R?, M) or Leo(N'), and Y = hy(R%, M) or L1 (N).

Proof. By the same argument as in the proof of Theorem we have the
inclusion

(bmo, (RY, M), bmo(R?, M))y C bmoy R, M) ¢ = %,
which ensures by duality that
(hp (R, M), hy (R, M))g D hy (RY, M) = Ly (N)

for - = % + 6. Then by Propositionm

1
Il
Ly(N) C (hy(RY, M), by (RY, M))g = (Lp(N), hy (R, M))p.
Since hy (R, M) C L1 (N), then
(hp(R, M), hi (R, M))g C (Lyp(N), Li(N))g = Ly ().
Combining the estimates above, we have
(hp(R, M), hy (RY, M))g = Ly (A).

Again, using duality and Wolff’s interpolation theorem, we conclude the proof
by the same trick as in the proof of Theorem[d.3} 1

We end this section by some real interpolation results.
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COROLLARY 4.5. Let 1 < p < oo. Then we have:
(i) (bmo® (R, M), h§ (R, M))1,,,, = h;—,(Rd,M) with equivalent norms;
(i) (X,Y)1/pp = Lp(N) with equivalent norms, where X = bmo(R?, M) and
Y =hy(RY, M), 0r X = Leo(N) and Y = Ly (N).

Proof. Both (i) and (ii) follow from Theorem 4.7.2 of [2]; we only prove (i).
Let1l < p1 <p < p2 < o0 with % = 110;177 + % By Theorem 4.7.2 of [2], we write
(bmo® (R, M), h{(R?, M))1/p,
= ((bmo®(R?, M), h{(R?, M))1p,, (bmo®(R?, M), h{ (R?, M))1/p, ), p-

Then (i) follows from Theorem 4.4 and the facts that (Lp, (N'),Ly,(N))yp =
Ly(N) and that hg(Rd,./\/l) is a complemented subspace of Ly(N;LS(T )?

Ly(N). 1

(4.4)

5. CALDERON-ZYGMUND THEORY

We introduce the Calderén—-Zygmund theory on operator-valued local
Hardy spaces in this section. It is closely related to the similar results of [11],
[17], [27] and [43]. The results in the following will be used in the next section to
investigate various square functions that characterize local Hardy spaces.

Let Kbe an L1 (M) + M)-valued tempered distribution which coincides on
R?\ {0} with a locally integrable Li(M) + M-valued function. We define the
left singular integral operator K¢ associated to K by

K((s) = [ Kis = Df(hat,
R4

and the right singular integral operator K" associated to K by

K(F)(s) = [ FOK(s = et
R4

Both K¢(f) and K*(f) are well-defined for sufficiently nice functions f with val-
ues in L1 (M) N M, for instance, for f € S ® (L1(M) N M).

Let bmo§(R?, M) denote the subspace of bmo®(R?, M) consisting of com-
pactly supported functions. The following lemma is an analogue of Lemma 2.1 in
[41] for inhomogeneous spaces. Notice that the usual Calderén-Zygmund oper-
ators (the operators satisfying the condition (i) and (iii) in the following lemma)
are not necessarily bounded on hj (R?, M). Thus, we need to impose an extra
decay at infinity on the kernel K.

LEMMA 5.1. Assume that:
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(i) the Fourier transform of K is bounded: sup ||K(&)||x < oo;
EcRd
(ii) K satisfies the size estimate at infinity: there exist C1 and p > 0 such that

G
< — >

||K(S)||M ~ |S|d+p’ V‘S| /1/

(iii) K has the Lipschitz reqularity: there exist Co and -y > 0 such that
Lk
[K(s —t) = K(s)[| m < C2m,
Then K€ is bounded on h;(Rd, M) for 1T < p < oo and from bmof(R?, M) to
bmo® (R, M).
A similar statement also holds for K™ and the corresponding row spaces.

Vs > 2]t].

Proof. First suppose that K® maps constant functions to zero. This amounts
to requiring that K¢(1gs) = 0. Let Q C R be a cube with |Q| < 1. Since the
assumption of Lemma 2.1 in [41] are included in the ones of this lemma, we get

(g [ 19 = K<(r)afae) ], < Uflowcr < 1 ome
Q

Now let us focus on the cubes with side length 1. Let Q be a cube with |Q| = 1
and Q = 2Q be the cube concentric with Q and with side length 2. Decompose f
as f = fi+ fo, where fy = 15f and fo = Iy 5f. Then K¢(f) = K*(f1) + K*(f2).
We have

H|é|/|KC(f)|2dSHM S H|é/|[<c(f1)|2dsHM+ H|1Q|/|Kc(f2)2dsHM
Q 0 5
The first term is easy to estimate. By assumption (i) and ,

I Jreiad, < I [rof@r], < [ JICEER

=H|(12|~/If(s)|2d S s H|Q|/|f Ps||, -
Q

To estimate the second term, using assumption (ii) and (1.10) again, we have

KS(f2) (s _’/sttfz dt‘ | / K(sft)f(t)dt‘z
RI\Q
/ IK(s = Dlledt - [ K(s = DK = 05 (1)
RN\Q R\Q

[ IKG=0lulfOrats [ —mlrora

RI\G RN\Q
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Set Q. = Q+ 2m for every m € Z%. Then R4 \ Q= U Q. Continuing the
m70
estimate of |K°(f2)(s)|?, for any s € Q, we have

1
RO E / ol 0P = o s [0S 1 o
m m <
Qm

Combining the previous estimates, it is easy to see that K° is bounded from
bmo§(R?, M) to bmo® (R, M).

Now we illustrate that the additional requirement K°(1p4) =0 is not needed.
First, a similar argument as above ensures that for every compactly supported
f € Lo(N), IKU)lbmot S |Ifllo- Then we follow the argument of Proposi-
tion I1.5.15 in [8] to extend K€ on the whole Lo (N'), as

KC(f)(S)=li]m[1<c(f113j)(s)— / K(ft)f(t)dt}, Vs eRY,

1<)t

where B; is the ball centered at the origin with radius j. Let us show that the
sequence on the right hand side converges pointwise in the norm || - || and
uniformly on any compact set 2 C R¥. To this end, we denote by gj the j-th term

of this sequence. Let [ be the first natural number such that ! > 2sup |s|. Then for
seN
s € andj > [, wehave

gi(s) = gi(s) + / (K(s — t) — K(—£)) f(£)dt.
I<|t|<j)

By assumption (iii), the integral on the right hand side is bounded by a bounded
multiple of || f||e, uniformly on s € . This ensures the convergence of gj, so
K¢(f) is a well-defined function. Now we have to estimate the bmo“-norm of
K°(f). Taking any cube Q C RY, by the uniform convergence of gjon Qin M,
we have

(- o) |, =um|( 10~ wrars) ],
Q

Similarly,

I/ rerepas) ], = im lgere) ],
Q

Hence, by the fact that g; and K(f1 B].) differ by a constant, we obtain
HRECA) bmos = Timm 3 lbmos S lim sup [[KE(f5;) fomos + [1flleo S 11 flleo
J

Therefore, K¢ defined above extends to a bounded operator from Lo (N) to
bmo®(R%, M). In particular, K°(1gs) determines a function in bmo(R%, M).
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Then for f and Q as above, we have K¢(f) = K°(f1) + K°(f2) + KC(]le)fé, so

IKE(F ) lbmoe < 1K (1) lbmoe + 1K (f2) llbmoe + 1K (Ta) llomoe | fll a1
S 1 lbmoe + 1 fgllat S 11 lomoe -

|
|
Thus we have proved the bmo®-boundedness of K€ in the general case.

By duality, the boundedness of K¢ on h{ (R?, M) is equivalent to that of its
adjoint map (K)* on bmo§j(R?, M). It is easy to see that (K°)* is also a singular
integral operator:

(K)'(8) = [ K(s=t)g(na,
R4

where K(s) = K*(—s). Obviously, K also satisfies the same assumption as K,
so (K°)* is bounded on bmo§(R?, M). Thus we get the boundedness of K on
h$ (R, M). Then, by the interpolation between h$(R?, M) and bmo®(R?, M) in
Theorem we get the boundedness of K° on h;(Rd, M) forl < p < co. The
assertion is proved. 1

REMARK 5.2. Under the assumption of the above lemma, K°(14) is a con-
stant, so it is the zero element in BMO®(RY, M).

A special case of Lemma [5.1| concerns the Hilbert-valued kernel K. Let H
be a Hilbert space and k : R? — H be a H-valued kernel. We view the Hilbert
space as the column matrices in B(H) with respect to a fixed orthonormal basis.
Put K(s) = k(s) ® 1y € B(H)®M. For nice functions f : RY — L;(M) + M,
Ke(f) takes values in the column subspace of L1(B(H)®M) + Leo(B(H)®M).
Consequently,

1K O, 3any = IKS)IIL, (vme)-

Since k(s) ® 1, commutes with M, K¢(f) = K*(f) for f € Lo(N). Let us denote
this common operator by k°. Here the superscript c refers to the previous con-
vention that H is identified with the column matrices in B(H). Thus, Lemma
implies the following corollary.

COROLLARY 5.3. Assume that:
(i) sup [[k(S)I|H < oo;
R4
@) k() |lg < \s\%ﬂ” V[s| > 1, for some p > 0;

(iif) [|k(s — ) — k(s) || < % V|s| > 2|t|, for some y > 0.

Then the operator k€ is bounded:

(a) from bmofj (R4, M) to bmo® (R4, B(H)®M), where &« = ¢, & = r or we leave
out o;

(b) and from h;(Rd,M) to hg(Rd,B(H)®M)for 1<p<oo.
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Proof. Since K°(f) = K*(f) on the subspace L,(N') C L,(B(H)®N), (i) fol-
lows immediately from Lemma Let bmo®(RY, H'®M) (respectively
hlcg(]Rd, H®M)) be the column subspace of bmo®(R¢, B(H)®M) (respectively
hs, (R?, B(H)®&M)). Consider the adjoint operator of k® which is denoted by (k°)*.
It admits the convolution kernel K(s) = k(s) ® 1,4, where k(s) = k(—s)* (so it
is a row matrix). Applying Lemma [5.1| to (k)*, we see that (k°)* is bounded
from bmo®(R?, H*®.M ) to bmo®(IR?, M). Then k® is bounded from h$ (R, M) to
hS(RY, H®M), and thus bounded from h§(R?, M) into h$(RY, B(H)®M). In-
terpolating this with the boundedness of k¢ from bmo§(RY, M) to
bmo®(R?, B(H)®M), we deduce the desired assertion in (ii).

REMARK 5.4. Let 1 < p < 2. Since Lo(N) € bmo®(R%, M), we get
h§ (R, M) C Ly(N). By Theorem [4.3{and the fact that h§(RY, M) = Ly(N),
we have h;(Rd,M) C Ly(N). Then Corollary [5.3| ensures that, for any f €
h$ (R, M):

ch(f)”L,,(N;Hc) S ch(f)”hC(Rd B(H)@M) ~ S Hf”hC(RdM

6. GENERAL CHARACTERIZATIONS

Applying the operator-valued Calderén—-Zygmund theory developed in the
last section, we will show that the Poisson kernel in the square functions which
are used to define hj, (R%, M) can be replaced by any reasonable test function. As
an application, we are able to compare the operator-valued local Hardy spaces
h;(]Rd, M) defined in this paper with the operator-valued Hardy spaces
H;(]Rd,/\/l) in [24]. We will use multi-index notation. For m = (my,...,my;) € N&
and s = (s1,...,84) € R, we set s = s;"l . 's;"d. Let |m|y = m;+ -+ +my and

nll amd
pm— 9" .. )
leml as;"d

6.1. GENERAL CHARACTERIZATIONS. Let @ be a complex-valued infinitely dif-
ferentiable function defined on R%\ {0}. Recall that I' = {(t,¢) € R‘fl | <e<
1} and ®¢(s) = e 9P(£). Forany f € L1(M;RS) 4 Loo(M;RS), we define the
local versions of the conic and radial square functions of f associated to @ by

5000) = ( [[10ce fls+nPUINT, e
r

1
5(N6) = ([10ex fOPEY", s et
0

The function @ that we use to characterize the operator-valued local Hardy spaces
satisfies the following conditions:
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(1) every D"® with 0 < |m|; < d makes f — shuef and f = ghugf
Calderén-Zygmund singular integral operators in Corollary 5.3}
(2) there exist functions ¥, ¢ and ¢ such that

1
(6.1) FOPE) + [ BP0 S =1, vier,
0

(3) the above ¥ and ¢ make dyg = | ¥ * g(s)[>94* and ¢ * ¢ satisfy:

max{[[sup 2 [ ] % 18l } S gl for >

seQcR?
[Ql<1

(4) the above ¢ makes f +— ¢ * f a Calderén—Zygmund singular integral op-
erator in Corollary[5.3]

Fix the four functions @, ¥, ¢, i as above. The following is one of our main
results in this section, which states that the functions &, ¢ satisfying the above
four conditions give a general characterization for h;}(]Rd, M).

THEOREM 6.1. Let 1 < p < coand ¢, @ be as above. For any f € Li(M;RG) +
Leo(M;RY), f € h(RY, M) if and only if s, (f) € Lp(N) and ¢ x f € Ly(N) if and
only if §5(f) € Ly(N') and ¢ * f € L,(N'). If this is the case, then

(62) £ llng, = Mlse (llp + 19+ fllp = 1180 (Hllp + [1¢* £l

with the relevant constants depending only on d, p, and the pairs (®,¥) and (¢, ).

One implication of the above theorem is an easy consequence of conditions
(1) and (4), namely that

(63) s (N)lp + 1@ fllp < £ lIng/
(6:4) 18 (Nlp + 1@ fllp S Il.fllng-

In order to prove the converse inequalities, we need the following lemma, which
can be seen as a generalization of Lemma[3.10]

LEMMA 6.2. Let 1 < p < 2, q be its conjugate index and D, ¢ be the functions
satisfying the above assumption. For f € hS (Rd M)NLy(N) and g € bmof (Rd M),

v [ £5)g"(5)as] S (Is (Pl + 119 F11) 1 hmos
R4

Proof. The proof of this lemma is very similar to that of Lemma we
will just point out the necessary modifications to avoid duplication. We need two
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auxiliary square functions associated with ®@. For s € R?, & € [0, 1], we define

dtdry\1/2
2
6.5) s, / / M) ,
(s,r—e/2)
dtdr 1/2
6.6) S (f / / d+1) .
€ B(s,r/2)

By assumption (ii) of @, we have

4 / F(5)g"(5)ds
dsde

_T//@e*f )(Fe *x g(s) 7+T/47* )(p = g(s))*d
Rd 0
PR ,
Zo [ [ [ @es sih)s,0) 2125 (1) (5,6 02w g(1)) s

N Cq .
R4 0 B(se/2)

o [ e fo)p5e)ds Eem
R4

Then by the Cauchy-Schwarz inequality,

s f / [ 1@cx FOP 55 )55 () (s, 2deds

R4 0 B(se/2)
of / [ e (0P )5 (1) (5,02 veleds € 4,
&
RY 0 B(se/2)

Replacing sng (f) and sng (g) in the proof of Lemma by & * f and ¥; * g,
respectively and applying Lemma [6.7]and assumption (3) of ¥ and 1, we get the
estimates for the terms A and B:

2—
AL se(Ally and B < [I8llmeg 156 (Il

The term II is easy to deal with. By the Holder inequality, Lemma |6.7| and as-
sumption (3) again, we get

/fP* )@+ g(s))"ds| < g fllplly*gllg < N+ fllpllglomog-

Combining the estimates for A, B and II, we finally get the desired inequality. 1
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We also need the radial version of Lemma To this end, we need to
majorize the radial square function by the conic one. When we consider the Pois-
son kernel, this result follows from the harmonicity of the Poisson integral (see
Lemma . However, in the general case, the harmonicity is no longer avail-
able. To overcome this difficulty, a more sophisticated inequality has been de-
veloped in [41] to compare non-local radial and conic functions. Observe that
the result given in Lemma 4.3 of [41] is a pointwise one, which also works for
the local version of square functions if we consider integration over the interval
0 < &€ < 1. The following lemma is an obvious consequence of Lemma 4.3 in [41]].

LEMMA 6.3. Let f € Li(M;RG) + Leo(M;RS). Then
85N S Y shue(f)s)? VseR”
[m|<d

LEMMA 6.4. Let 1<p <2. For f €h$,(R?, M)NLy(N) and g €bmol (R, M),
* 1-p/2
‘T/f(S)g (S)dS‘ S (lga(H)llp + ||<P*f|\p)”/2|\f|lhg, v 18 lbmog-
R4

Proof. This proof is similar to that of Lemma [6.2|and we keep the notation
there. Let f € h;,(Rd, M) with compact support (relative to the variable of R?).
We assume that f is sufficiently nice so that all calculations below are legitimate.
Now we need the radial version of s, (f)(s, €),

1
(N0 = ( [1oref5)P)

fors € R and 0 < e < 1. By approximation, we can assume that g5 (f)(s, ) is
invertible for every (s, ¢) € S. By (6.1), (1.12) and the Fubini theorem, we have

[« [ 1) @]
R4

2 pdeds
€

1 1
St [ 1o 6P (50728 ot [ [ [ gl ()(5.0)
R4 0 Rd 0

M ‘T/‘P * f(s)(y *g(S))"dS‘2 L AB 4.
R4

Il is treated exactly in the same way as before,
2 2 2— 2
WS 19 flpl 81l S N9 £l Il N8 Bmo-

A’ is also estimated similarly as in Lemma we have A" < |85 (f) H;
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To estimate B’, we notice that the proof of Lemma 1.3 in [41] also gives

85N e? S Y shre(f)(s.e),

m|;<d

where 5§, (f) (s, €) is defined by with D™ @ instead of ®@. Then by the above
inequality, Lemmal6.7]and inequality with D" ® instead of ®, we obtain

2 pdeds
€

1
BS ¥ [ [ ¥exg(s)Psbualf)(se)

[mhi<d pa o

2 2
S D L E o ey Y e
[m|y<d

Therefore, we have the following which completes the proof:

* 2 2—
[ [ F6)g"©ds| S Ugs (Pl + 195 Flp) I g Pl B
R4
Proof of Theorem From Lemmas and Theorem we conclude
thatif 1 < p <2, we have

1 llng < 1soCHlp 19 fllp 1 £llng S 18 CHIlp + 9+ fllp-

For the case 2 < p < oo, by Theorem we can choose g € hg (R, M) (with g
the conjugate index of p) with norm one such that

Ifllng = 7 [ £(5)g" (s)ds
Rd

:T//l@*f(s)~(‘f’e*g(5))

R4 0
Then by the Holder inequality and (applied to g, ¥ and ),

€

([ g fe) e gls)) s
R4

1£llng, S 180 () lpllgs(8)llg + [l@* fllp Il gllg
S (18Nl + 1o fllp)lglng = o (Hllp + 9+ flp-

Similarly, we have

1 £llng < Nlsa(Ollp + ll¢* flp-
Therefore, combined with and (6.3), we have proved the assertion. i

The rest of this subsection is devoted to explaining how Theorem 6.1| gener-
alizes the characterization of hy (R, M).

Firstly and most naturally, we show how Theorem [6.1| covers the original
definition of hj, (R, M). Let us take ® = —27I(P) and ¢ = P for example. A
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simple calculation shows that we can choose ¥ = —87I(P) and ¢ = 4nI(P) +P
to fulfil (6.I). By the inverse Fourier transform formula, we have

=27tf « I(P)e(t) = —271/eZ”it'gf(cj)|£§\e’2”g“3|dg

=2 [@mafz)elag = o2 p(p)(0)

So we return back to the original definition of h;(Rd, M). Theorem [6.1{implies
that

1 £llng 2 [lsa (H)lp + 119 fllp = g (Hllp + 9+ flp-

In particular, we have the following equivalent norm of hy, (R4, M).
COROLLARY 6.5. Let 1 < p < oo. Then forany f € h‘;,(Rd,M), we have

1£llng = 18 COlp + 1P+ fIp-

Secondly, consider @ to be a Schwartz function on R satisfying:

67) {(IJ is of vanishing mean;

@ is nondegenerate in the sense of (L.5).

Set @.(s) = s_dd)(%) for e > 0. In the sequel, we will show that every Schwartz
function satisfying fulfils the four conditions in the beginning of this subsec-
tion. So they all can be used to characterize hp(Rd, M).

It is a well-known elementary fact (ef. e.g. p. 186 of [36]) that there exists a
Schwartz function ¥ of vanishing mean such that

68) /@@ﬂ@%:L‘weWww
0

&

1
LEMMA 6.6. [ ®(e-)¥(e) % is an infinitely differentiable function on R? if we
0

define its value at the origin as 0.

1
Proof. To prove the assertion, it suffices to show that [ @ (e-)¥ (e) % is infin-
0

itely differentiable at the origin. Given ¢ € (0,1], we expand ®(e-) in the Taylor
series at the origin

elvher

®(eg) = Y. D7®(0) Y Ry(0)&,

I7l1<N T h=Nt1

with the remainder of integral form equal to

eN+1
R,(e¢) = w

1
(1—0)ND7®(0eF)do .
Cat
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Since ®(0) = 0, the above Taylor series implies that

elrher

P(ef)= Y, D'P(0) Y Ry (ed)g".

1<[yh <N i I7i=N+1

Similarly, we have

_ ~elhgp ,
F(e) = 1<\,%<N DP¥(0) 5 wENH Rj(eg) &,
where R/, 5 is the integral form remainder of ¥. Thus, both ®(&Z) and ¥ (¢¢) contain
only powers of ¢ with order at least 1. Therefore, the integral fl D(e6)¥ )
(and the integrals of arbitrary order derivatives of ®(e&) and ‘%(s@) ) converge
uniformly for & € R¥ close to the origin. We then obtain that fl P(e) ¥ (e¢) e £ is
0

infinitely differentiable at the origin { = 0. 1

It follows immediately from Lemma !that [ @(e)¥(e-)% is a Schwartz

function if we define its value at the origin by 1 Then we can find two other
functions ¢, ¢ such that ¢, ¢ € H5(R?), $(0) > 0,$(0) > 0and

1
©9) FOPE) + [ BP0 =1, vEeR
0

Indeed, for B > 0 large enough, the function (1 + | - |?) P belongs to Hy (R?). On
the other hand, if F € S(R), the function (1 + | - |?)PF is still in H§(R?). Thus
we obtain (6.1).

Now let show that conditions (1) and (4) hold for @, ¢ satisfying (6.7). First,
we deal with the case 1 < p < 2. Let H = L((0,1), %) Define the kernel
k:R? — Hbyk(s) = ®.(s) with ®.(s) : & — D¢(s). Then it is easy to see that

~ 1
sup [|B(e)||m < oo, [|Pe(s)lltr S g Vs € RT\ {0}
ZeRd Is|

and that

Vs e R\ {0}.

HV(DS(S)HH S |S|d+1/

Thus, k satisfies the assumption of Corollary[5.3] By Remark[5.4]} we have, for any
I<sp<2

1Pe* fllL, (avme) = 1180 () llp < I1fllng-
The treatment of sg is similar. In this case, we take the Hilbert space H =
Ly(T, ddtff) On the other hand, ¢ € H§(R?) implies ¢ € L;(R?), then ||¢ *
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£l Ly(N) < £ Ly(N) <|If th . Thus, combining the above estimates, we obtain

182 (Nlp + 1@ fllp S U flleg, lIsa(lp + 1@+ fllp < Il fllng-

Then, a simple duality argument using and Theorem gives the above
inequalities for the case p > 2. Moreover, it is obvious that if we replace @ by
D™, the above two inequalities still hold for any 1 < p < oo.

In the end, it remains to check the condition (3) for ¥, ¢ obtained in
and (6.9). This can be done by showing a Carleson measure characterization of
bmoj by general test functions. The proof of the following lemma has the same
pattern with that of Lemma so is left to the reader.

LEMMA 6.7. Let2 < g < 0, g € bmo;(Rd,M) and dug = |¥; * g(s)[>dsde.
Then dpg is an M-valued q-Carleson measure on the strip R? x (0,1). Furthermore, let
W be any function on RY such that

(6.10) ¥ € HY(RY)  with o > g.
We have

1 1/2
max {| sup * = [ dgl| 98l S 1o
seQcR? =1 q/
Q<1

REMARK 6.8. It is worthwhile to note that, if ¥ and ¢ are determined by
and (6.9), the opposite of the above lemma is also true. This can be deduced
by a similar argument as that of Corollary we omit the details.

By the discussion above, we deduce the following corollary from Theo-
rem[6.1]

COROLLARY 6.9. Let @ be the Schwartz function on RY satisfying and ¢ be
the function given by (6.9). Then for any 1 < p < oo, we have

(6.11) £ llng, = lIsa (Ol + [1¢* fllp = 8o (Hllp + @ * fllp
with the relevant constants depending only on d, p, @ and ¢.

6.2. DISCRETE CHARACTERIZATIONS. In this subsection, we give a discrete char-
acterization for operator-valued local Hardy spaces. To this end, we need some
modifications of the four conditions in the beginning of last subsection. The
square functions s (f) and g5, (f) can be discretized as follows:

()6 = (T lo £ R)

j>1

PO = (520 [ 10+ fopar)”

>
21 psn-y
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Here &; is the inverse Fourier transform of @®(27J-). This time, to get a resolvent
of the unit on R, we need to assume that @, ¥, ¢, P satisfy

(6.12) f B2 I5) T2 IE) +POFE) =1, ViR

In brief, the complex-valued infinitely differentiable function @ considered in this
subsection satisfies:
(1) every D"® with 0 < |m|; < d makes f + s3hof and f — g%h,
Calderén-Zygmund singular integral operators in Corollary 5.3}
(2) there exist functions ¥, 1 and ¢ that fulfil ;
(3) the above ¥ and 1 make dy? = ;1 |¥; * f(s)[*ds x dé,(e) (with 6, (e)
=

the unit Dirac mass at the point 277) and ¢ * f satisfy:

mac{sop gy / [ 1971} S e for 4> 2

s€QC
|QI<1

(4) the above ¢ makes f +— ¢ * f a Calderén—-Zygmund singular integral op-
erator in Corollary[5.3]

REMARK 6.10. Any Schwartz function that has vanishing mean and is non-
degenerate in the sense of (1.5) satisfies all the four conditions above.

The following discrete version of Theorem [6.1|will play a crucial role in the
study of operator-valued Triebel-Lizorkin spaces on R? in our forthcoming paper
[39]. Now we fix the pairs (P, ¥) and (¢, ) satisfying the above four conditions.

THEOREM 6.11. Let 1 < p < co. Then for any f € Li(M;RG) 4+ Leo(M;RS),
£ € RS(RY, M) if and only if SSP(f) € Ly(N) and g« f € Ly(N') if and only if
SSISD(f) € Ly(N)and ¢ x f € Ly(N'). Moreover,

£ llng, = 1sG” ())llp + 119 % fFllp = 185 Al + o+ flp

with the relevant constants depending only on d, p, and the pairs (®,¥) and (¢, ).

The following paragraphs are devoted to the proof of Theorem which is
similar to that of Theorem We will just indicate the necessary modifications.
We first prove the discrete counterparts of Lemmas|6.2]and [6.4]

LEMMA 6.12. Let 1 < p < 2 and q be the conjugate index of p. For any f €
h$ (R, M) N Ly(N) and g € bmo§(RY, M),

7 [ £6)g"©)ds| S U5l + 195 Fll) I homos
R4
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Proof. First, note that by (6.12), we have
/f dS—T/ZCDj*f(S)(‘Fj*g( ds+T/¢* §) (¢ % g(s))"ds.
R4 ]>1

The second term on the right hand side of the above formula is exactly the same
as the corresponding term II in the proof of Lemma[6.2] Now we need the discrete
versions of sg, and 5G: forj > 1,5 € R4, let

SSPD(f)(s,j)z( Yy 2% / |<D]->x<f(t)|2dt)1/2

1<ksi B(s,sz'—szfl)

N6 = (T 2% [ leyepwpar)”

1<k B(s,27k-1)

Denote s (f)(s, j) and 557 (f) (s, j) simply by s(s, j) and 5(s, j), respectively. By
approximation, we may assume that s(s, j) and 5(s, j) are invertible for every s €
R? and j > 1. By the Cauchy-Schwarz inequality,

o [ Loy« s o))" d

‘2
Rd j=1

= —T/ZZ’Z] / @ f(£) (¥ * g(t ))*dt‘ds‘2

B(s,27i71)

<T/ZS s,7)P2 2‘1] / \tbj*f(t)|2dt)ds

R¢ B(s27/1)
/Z (s,)> ¥ (27 / %+ g()]2dt)ds “ A -B.
Rd B(s2i-1)

The term A is less easy to estimate than the corresponding term A in the proof
of Lemma To deal with it we simply set 5; = 5(s,j) and § = 5(s, +-00) <
s%P(f)(s). Then

—T/ZS (57 —571)d /Zs (57— 57 1)ds

R4 21 R4 J
—T/Z =5 ds+T/Zs ’-_ (5 —5j_1)ds,
R4 ] R4 ]

_ . _p—1 _
wheresp = 0. Since1 < p <2, sP < sP~1 we have

© [ L5765 0ds ST [$ds < [P ()]

R R4
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On the other hand,
/Zs 5j_1(5; —5j-1)ds
R4 ]

— / Il I Ll L R L

R4 j
since s; > 5,1 forany j > 1, we have 5(1-p)/25 p_ 5j-15 5(1-P)/2 < 1. Thus, by the
Holder inequality,
/Zs 7', (5j —5- /Zsp /23, i =51 1)5P-1/245
Rd R
=7 [ds < |55 (NI}
R4

Combining the preceding inequalities, we get the desired estimate of A:

,D
A <2 (A1

The estimate of the term B is, however, almost identical to that of B in the
proof of Lemma(6.2} There are only two minor differences. The first one concerns
the square function S°(f)(s, j) in (3.8): it is now replaced by

sNEN=( X 2% [ lepefwPa)” ifse o,

<k<j
1\k\] B(Cm,jrzik)

Then we have s(s,j) < S°(f)(s,j). The second difference is about the Carleson
characterization of bmog; we now use its discrete analogue, namely, d‘ug . Apart

from these two differences, the remainder of the argument is identical to that in
the proof of Lemma 1

LEMMA 6.13. Let1 < p < 2and f € h$(R?, M) NLy(N), g € bmo§(R?, M).
Then

' x ; 1—p/2
« [ £6)s" ()] 5 (185 )l + 16 112 11" sl -
R4
Proof. We use the truncated version of g5" (f):

1/2
8N ) = (L leex o))
k<]
The proof of Lemma 4.3 in [41] is easily adapted to the present setting to ensure

8fp 5]2< Z SD”'(D )2'

m|,<d
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Then
/f (s)dsP <T- 11/+|r/¢> F(s)( # g(s))*ds],

where

U= [ TS8P (F) (5, 21y % f(5) s,
R4 ]

—T/Zg s]2p|‘f’>kg()|2ds.
R4 ]

Both terms I' and I’ are estimated exactly as before, so we have

'<2)ge(AHlp and IS |fle" 181 lEmet -
This gives the announced assertion.

Armed with the previous two lemmas and the Calderén-Zygmund theory
in Section 5} we can prove Theorem [6.11]in the same way as Theorem [6.1] Details
are left to the reader.

We also include a discrete Carleson measure characterization of bmog by
general test functions. Much as the characterization in Lemma[6.7jand Remark[6.8}
it is a byproduct of the proof of Theorem [6.11}

COROLLARY 6.14. Let2 < q < oo, P and ¥ be given in (6.12). Assume further
~ . d
¥ € HS(RY)  witho > 5

Then for every g € bmog, we have

1/2
||g||bm0; ~ || *qu + H Sup |Q| / |1F] *g(S)|2d5H /2
seQCcR4 0 J=— log (Q)) q
|Ql<1

6.3. THE RELATION BETWEEN h,,(R?, M) AND H,(R?, M). Due to the noncom-
mutativity, for any 1 < p < co and p #2, the column operator-valued local Hardy
space h‘};(Rd, M) and the column operator-valued Hardy space ’H;(Rd, M) are
not equivalent. On the other hand, if we consider the mixture spaces h,, (R, M)

and H, (R?, M), then we will have the same situation as in the classical case.
Since [P f[l, S fllp S Hf”Hf, for any 1 < p < 2, we deduce the inclusion

(6.13) H5(RY, M) C h§(RY M) for1<p<2.
Then by the duality obtained in Theorem 3.19 we have
(6.14) h (R?, M) € HG(RY, M) for2 < p < co.

However, we see from the following proposition that we do not have the
inverse inclusion of (6.13) nor (6.14).
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PROPOSITION 6.15. Let ¢ be a function on RY such that $(0) > 0 and ¢ €
HY(RY) with o > §. Let 2 < p < co. Iffor any f € H5(RY, M),

(6.15) = fllp < 11 f [l

then we must have ¢(0) = 0.

Proof. We prove the assertion by contradiction. Suppose that there exists ¢
such that $(0) > 0, ¢ € HJ(R?) and (6.15) holds for any f € ’H;(Rd,/\/i). Since
both (RY, M) and L, (N') are homogeneous spaces, we have, for any ¢ > 0,

g f(e)llp = 1(@e* )(e)llp =& Plipex fllp and |f(e)llag =PIl flls-
This implies that

(6.16) e * fllp < M1f g

for any & > 0 with the relevant constant independent of e&. Now we consider a
function f € L,(N') which takes values in S/tl and such that supp f is compact,

i.e. there exists a positive real number N such that supp f ¢ {& € R? : |¢| < N}.
Since ¢(0) > 0, we can find g9 > 0 and ¢ > 0 such that $(go&) > ¢ whenever
|&] < N. Thus, in this case, ||¢e * f|, = c||f||- Then by (6.16), we have

11y S s,

which leads to a contradiction when p > 2. Therefore, ¢(0) = 0. &

By the definition of the hy-norm and the duality in Theorem we get the
following result.

COROLLARY 6.16. Let 1 < p < oo and p # 2; h$(R?, M) and HS(R?, M) are
not equivalent.

Although hj, (R, M) and HY, (R?, M) do not coincide when p # 2, for those
functions whose Fourier transforms vanish at the origin, their hj,-norms and H-
norms are still equivalent.

THEOREM 6.17. Let ¢ € S such that [ ¢(s)ds = 1.
R4
() If1 < p < 2and f € WR, M), then f—¢xf € H,(RY, M) and
||f—<P*f||H<,; S ||f||h§,-
(i) If2 < p < coand f € H;(R, M), then f — ¢ f € h(RT, M) and
1F = 9% Fllug S 1F s

Proof. (i) Let f € h;,(Rd, M) and @ be a nondegenerate Schwartz function
with vanishing mean. By the general characterization of ’H;(Rd,/\/l) in Lem-

ma 1f = ¢ fllygmarg) = [1Go(f = ¢ f)llp- Let us split [|Gg,(f — ¢+ )l
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into two parts:

1G5(F — ¢+ Pl
! den 172 dey1/2
sH(ZVm*u—¢*ﬂF:) [, ([ 1@extr=pepP )|

In order to estimate the first term in the last equality, we notice that ¢ * f €
hj, (R?, M), thus we have f — ¢ * f € h;(Rd,M). Then by Theorem this
term can be majorized from above by || f ||h§ .

To deal with the second term, we express it as a Calderc’)n—Zygmund oper-
ator with Hilbert-valued kernel. Let H = L,((1,+00), 9) and define the kernel
k:RY — Hbyk(s) = ®.(s) — @ * ¢(s) (P.(s) being the function & — Pg(s)).
Now we prove that k satisfies the hypotheses of Corollary The condition (i)
of that corollary is easy to verify. So we only check the conditions (ii) and (iii)

there. By the fact that [ ¢(s)ds = 1 and the mean value theorem, we have
R4

(@ = @exg)(5)] = | [[@els) = Pels — D)p(t)at

R4

1 s — 0t
</Hbﬂ1$§\V@(
R4

)|lg(t)1at.

0<o<1

Then we split the last integral into two parts:

H(CD —D.xp)(s /°° / |t£d1+10i1;}<)1‘vq5(

1 Jt<]s|/2

%) lgeyjar) L)
+([( ] g sup [vo () loiar) 5) ™

1 t>]s|/2

defy 4,

gd+1/2

If |t < |2|,we have [s — 0t| > 3, thus |[VO(=2)| < \s\d+1/2 forany 0 < 6 < 1.

Then

1 1/2 _ 1
/szs s |d+1/2 ~ JsfAr1rz
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When |t| > 5l since p € S, wehave [ |t]|¢(t)|dt S

1
S ez Hence
|t|>]s] /2

qe ([ Ldeyiz 1 1
~ (/ e2d+2 ?) |s[dFIZ ¥ Jg|dri/2”
1

The estimates of I and II imply

1
[(Pe — Pe ) ()l S [sFFi2

In a similar way, we obtain

1
[V (Pe = Pex ) (s)|ln < o1

o0 1/2
Thus, it follows from Corollary [5.3|that H ( J (@ — Pex @) x f |Z%) H is also
1 P

majorized from above by || f/ .-

(ii) The case p > 2 can be deduced from the duality between hj, and hy
(Theorem 3.19) and that between #}, and H; (q being the conjugate index of p).

There exists g € hj (R?, M) with norm one such that we have the following which
completes the proof:

If =@+ fllg = |7 [(F= 9+ A)g"©)ds| = |7 [ F5)(g" —p+g")(s)ds
R4 R4
< U llus g = @ % &llws S 1l gllng = Il m

From the interpolation result of mixture local Hardy spaces in Proposi-
tion we deduce the equivalence between mixture local Hardy spaces and
L,-spaces.

PROPOSITION 6.18. Forany1 < p < o0, h,(RY, M) = H,(RY, M) = L,(N)
with equivalent norms.

Proof. 1t is known that H,(R%, M) = L,(N') with equivalent norms. One
can see Corollary 5.4 of [24] for more details. One the other hand, since Lo (N) C
bmo®(R?, M), by duality, we get h§(R?, M) C Ly (N). Combining and the
interpolation result in Theorem 4.3} we deduce that h, (RT, M) C L, (N) for any
1 < p<2and Ly(N) C hy(RY, M) forany 2 < p < co. Similarly, we also
have h;(Rd,./\/l) C Ly(N) forany 1 < p < 2and Ly(N) C h;(Rd,/\/l) for any
2 < p < oo. Combined with and (6.14), we get

(6.17) Hp(RY, M) C hy(R, M) C L,(N) forl<p<2, and
(6.18) Ly(N) C hy(RY, M) C Hp(RI, M) for2 < p < co.
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Then (6.17), (6.18) and Corollary 5.4 of [24] imply the following which completes
the proof:

hy(RY, M) = Hp(RT, M) = Lp(N) forl<p<co. 1

7. THE ATOMIC DECOMPOSITION

In this section, we give the atomic decomposition of h{ (R%, M). The atomic
decomposition of H%(Rd, M) studied in [24] and the characterizations obtained
in the last section will be the main tools for us.

DEFINITION 7.1. Let Q be a cube in RY with |Q| < 1. If |Q| = 1, an h§-atom
associated with Q is a function a € Ly (M; L§(R?)) such that:
(i) suppa C Q;

@ t( [ la(s)Pds) " <o 172
Q

If |Q| < 1, we assume additionally:
(iii) [ a(s)ds = 0.
Q

Let h{

1,at(Rd, M) be the space of all f admitting a representation of the form

f=)_ 7,
=1

[e9)
where the a;’s are h{-atoms and A; € C such that }_ |A;| < co. The above series
j=1

converges in the sense of distribution. We equip h(i,at(Rd/ M) with the following

norm:
=)

[ee]
1l , = inf{ 21 Al f = Z%Ajaj; aj’s are hS -atoms, A € C}.
= j=

Similarly, we define the row version h! _ (R%, M). Then we set

1,at
hl,at(Rdf M) = hg,at (Rdr M) + h{,at(Rdr M)
THEOREM 7.2. We have hiat(Rd, M) = h$(R4, M) with equivalent norms.

Proof. First, we show the inclusion h(lj,at(Rd’ M) C h§ (Rd, M). To this end,
it suffices to prove that for any atom a in Definition [7.1} we have
71) lalls S 1.
Recall that the atomic decomposition of H§ (R4, M) has been considered in [24].
An HS-atom is a function b € Ly (M; LS(R?)) such that, for some cube Q,
(1) suppb C Q;
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@) [ b(s)ds =
Q

1/2
©) r(g b(s)Pds) < [QI72

If a is supported in Q with Q| < 1, then a is also an H{-atom, so [[a||ne < [|afl#s <
1. Now assume that the supporting cube Q of a is of side length one. We use the
discrete characterization obtained in Theorem|6.11} i.e.

o0 1/2
lallng ~ || ( X2 15 %al2) || +llg<al.
=1
Apart from the assumption on ¢ and ¢ in Theorem we may take ¢ and ¢
satisfying
supp @, suppp C By = {s e R? : |s| < 1}.
Then
suppp*a C3Q and suppP.+a C3Q foranyO <e<1.

By the Cauchy-Schwarz inequality we have
g+ ally < / /|4> (t—s |2ds /|a s)|2ds Par<a
3Q

Similarly,

|(X 12+a?)
j=1

1/2 / i D; *a )l/zdsgr(/i|@j*a(s)|2ds>l/2

:T(/i (277&)a ]2d§ 2 /|a |2ds 2 <1

Therefore, h§ ,(R?, M) C h§ (R, M).

Now we turn to proving the reverse inclusion. Observe that H{-atoms
are also hS-atoms. Then by the duality between HS(RY, M) and BMO®(R4, M)
and the atomic decomposition of H (R, M), every continuous functional ¢ on
h{ +(R%, M) corresponds to a function g lying in BMO®(R¥, M. Moreover, since
Ly(M;L3(Q)) C hy (R%, M) for any cube Q with side length one, £ induces a
continuous functional on L; (M; LS(Q)) with norm less than or equal to || £| (S )
Thus, the function g satisfies the condition that

(72) ¢ € BMO‘(R, M) and sup  [|8lollemis(@) < IHllng )+
QCR?, |Q|=1 ’

Consequently, ¢ € bmo®(R%, M) and
=7 [ £5)g"(s)ds, ¥ f € b (BT, M),
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Thus, hiat(Rd,M)* C bmo(R?%, M). On the other hand, by the previous re-
sult, bmo(RY, M) C h§_(RY, M)*. Thus, h (R, M)* = bmo®(R?, M) with

equivalent norms. Since h(lj,at(Rd’M) C h§ (R?, M) densely, we deduce that

hﬁlat(Rd, M) = h§(R¢, M) with equivalent norms. &
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