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ABSTRACT. We introduce a topology on the ideal space of any C∗-inductive
limit built by an inverse limit of topologies and produce conditions for when
this topology agrees with the Fell topology. With this topology, we impart
criteria for when convergence of ideals of an AF-algebra can provide conver-
gence of quotients in the quantum Gromov–Hausdorff propinquity building
from previous joint work with Latrémolière. This bestows a continuous map
from a class of ideals of the Boca–Mundici AF-algebra equipped with various
topologies, including Jacobson and Fell topologies, to the space of quotients
equipped with the propinquity topology.
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1. INTRODUCTION

Latrémolière’s quantum Gromov–Hausdorff propinquity [24], [28], [29] pro-
vides a powerful tool for studying and constructing new continuous families of
compact quantum metric spaces [35], [36], as seen in [22], [24], [25] and [38], [40],
[42]. Compact quantum metric spaces, introduced by Rieffel [35] and motivated
by A. Connes [9], [10], are unital C∗-algebras equipped with certain metrics on
their state spaces built from noncommutative analogues of the Lipschitz semi-
norm on the algebra of continuous functions on metric spaces. A key contribu-
tion of the quantum propinquity to noncommutative metric geometry is that, as
a metric, it is compatible with the C∗-algebraic structure [29]. The space of two-
sided, closed ideals of a given C∗-algebra can be equipped with some natural
topologies, and it is natural to investigate any relationship between these topolo-
gies and the propinquity. In particular, as the quotient C∗-algebras of a unital
C∗-algebra by non-trivial ideals are again unital, it is reasonable to ask about
the continuity of the process of taking the quotient from the space of ideals of a
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quantum compact metric space, to the space of its quotients endowed with the
propinquity. This paper addresses this question by exhibiting sufficient condi-
tions for the continuity of this process. Thus, it is with continuity that we will
establish a nontrivial connection between topologies on ideals and the topology
formed by quantum propinquity. Therefore, this paper claims to advance both
the study of topologies on ideals and noncommutative metric geometry by way
of the quantum propinquity topology.

The class of C∗-algebras we shall consider are AF-algebras of Bratteli [7],
and in particular, unital AF-algebras with faithful tracial states. Our work with
Latrémolière in [2] already provides the quantum metrics we will use on these
particular AF-algebras. This will allow us to focus on the continuity question
raised in this paper. After a background section, we develop a topology on the
ideal space of any C∗-inductive limit. The main application of this topology is
to provide a notion of convergence for inductive sequences that determine the
quotient spaces as fusing families (Definition 2.12) — a notion introduced in [1]
to provide sufficient conditions for convergence in quantum propinquity of AF-
algebras. This topology on ideals has close connections to the Fell topology on
the ideal space. The Fell topology was introduced in [17] as a topology on closed
sets of a given topology. Fell then applied this topology to the closed sets of the
Jacobson topology in [16] to provide a compact Hausdorff topology on the set of
all ideals of a C∗-algebra. The topology on the ideal space of C∗-inductive limits
introduced in this paper is always stronger than the Fell topology, and we provide
conditions for when this topology agrees with the Fell topology by way of condi-
tions on the algebraic and analytical properties on the types of ideals themselves.
In particular, our topology will agree with the Fell topology for any AF-algebra,
in which case we provide an explicit metric that metrizes the topology, and we
note that this result is valid for both unital and non-unital AF-algebras. We make
other comparisons, including taking into consideration the restriction to primi-
tive ideals and comparison of the Jacobson topology, as well as an analysis on
unital commutative AF-algebras and unital C∗-algebras with Hausdorff Jacobson
topology.

Next, Section 4 provides an answer to the question of when convergence of
ideals can provide convergence of quotients. In Section 4.1, we recall the defi-
nition of the Boca–Mundici AF-algebra given in [6], [31], which arises from the
Farey tessellation. Next, we prove some basic results pertaining to its Bratteli
diagram structure and ideal structure, and then apply our criteria for quotients
converging to a subclass of ideals of the Boca–Mundici AF-algebra, in which each
quotient is ∗-isomorphic to an Effros–Shen AF-algebra. In [6], Boca proved that
this subclass of ideals with its relative Jacobson topology is homeomorphic to the
irrationals in (0, 1) with its usual topology, which provided our initial interest
in our question about convergence of quotients. The main result of this section,
Theorem 4.30, produces a continuous function from a subclass of ideals of the
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Boca–Mundici AF-algebra to its quotients as quantum metric spaces in the quan-
tum propinquity topology, where the topology of the subclass ideals is home-
omorphic to both the Jacobson and Fell topologies and thus with the topology
introduced in this paper as well. Hence, we have an explicit example of when
a metric geometry on quotients is related to a metric geometry on ideals by a
continuous map. We note that the results in [6] concerning the convergence of
ideals motivated the work of this paper along with our results in [2], where the
convergence of the Effros–Shen algebras in propinquity were a main example.
However, in this paper, the convergence of the Effros–Shen algebras will be pro-
vided by different Lip-norms than those found in [2] arising from the different
inductive sequences produced by the quotients of the Boca–Mundici AF-algebra,
which is a main hurdle that must be overcome in Section 4.1.

2. PRELIMINARIES: QUANTUM METRIC GEOMETRY AND AF-ALGEBRAS

The purpose of this section is to discuss our progress thus far in the realm of
quantum metric spaces with regard to AF-algebras, and thus it places more focus
on the AF-algebra results. We also provide a cursory overview of the material
on quantum compact metric spaces. We refer the reader to the survey by Latré-
molière [27] for a much more detailed and insightful introduction to the study of
quantum metric spaces.

NOTATION 2.1. The norm of a normed vector space E will be denoted by
‖ · ‖E by default. The unit of a unital C∗-algebra A will be denoted by 1A. The
state space of A will be denoted by S (A) and the self-adjoint part of A will be
denoted sa(A).

DEFINITION 2.2 ([28], [29], [35]). A (C, D)-quasi-Leibniz quantum compact met-
ric space (A, L), for some C > 1 and D > 0, is an ordered pair where A is unital C∗-
algebra and L is a seminorm defined on a dense Jordan–Lie subalgebra dom(L)
of sa(A) such that:

(i) {a ∈ sa(A) : L(a) = 0} = R1A;
(ii) L is a (C, D)-quasi-Leibniz Lip-norm, i.e. for all a, b ∈ dom(L):

max
{

L
( ab + ba

2

)
, L
( ab− ba

2i

)}
6 C(‖a‖AL(b) + ‖b‖AL(a)) + DL(a)L(b);

(iii) the Monge–Kantorovich metric defined, for all two states ϕ, ψ ∈ S (A), by

mkL(ϕ, ψ) = sup{|ϕ(a)− ψ(a)| : a ∈ dom(L), L(a) 6 1}

metrizes the weak* topology of S (A);
(iv) the seminorm L is lower semi-continuous with respect to ‖ · ‖A.

A primary interest in developing a theory of quantum metric spaces is the
introduction of various hypertopologies on classes of such spaces, thus allowing
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us to study the geometry of classes of C∗-algebras and perform analysis on these
classes as for instance with this current paper. A classical model for these hyper-
topologies is given by the Gromov–Hausdorff distance [19], [20]. While several
noncommutative analogues of the Gromov–Hausdorff distance have been pro-
posed — most importantly Rieffel’s original construction of a quantum version
of the Gromov–Hausdorff distance [37] — we shall work with a particular met-
ric introduced by Latrémolière, [29], as we did in [2]. This metric, known as the
quantum propinquity, is designed to be best suited to quasi-Leibniz quantum
compact metric spaces, and in particular, is zero between two such spaces if and
only if they are quantum isometric, a notion defined in the next theorem, which
implies in particular that the C∗-algebras of these spaces are ∗-isomorphic.

THEOREM-DEFINITION 2.3 ([28], [29]). Fix C ∈ R, D ∈ R such that C > 1
and D > 0. Let QQCMSC,D be the class of all (C, D)-quasi-Leibniz quantum compact
metric spaces. There exists a class function ΛC,D fromQQCMSC,D ×QQCMSC,D to
[0, ∞) ⊆ R such that:

(i) for any (A, LA), (B, LB) ∈ QQCMSC,D we have:

ΛC,D((A, LA), (B, LB)) 6 max{diam(S (A), mkLA), diam(S (B), mkLB)};

(ii) for any (A, LA), (B, LB) ∈ QQCMSC,D we have:

0 6 ΛC,D((A, LA), (B, LB)) = ΛC,D((B, LB), (A, LA));

(iii) for any (A, LA), (B, LB), (C, LC) ∈ QQCMSC,D we have:

ΛC,D((A, LA), (C, LC)) 6 ΛC,D((A, LA), (B, LB)) + ΛC,D((B, LB), (C, LC));

(iv) for any (A, LA), (B, LB) ∈ QQCMSC,D and for any bridge γ from A to B

defined in Definition 3.6 in [29], we have:

ΛC,D((A, LA), (B, LB)) 6 λ(γ|LA, LB),

where λ(γ|LA, LB) is defined in Definition 3.17 in [29];
(v) for any (A, LA), (B, LB) ∈ QQCMSC,D, we have:

ΛC,D((A, LA), (B, LB)) = 0

if and only if (A, LA) and (B, LB) are quantum isometric, i.e. if and only if there exists
a ∗-isomorphism π : A→ B with LB ◦ π = LA;

(vi) if Ξ is a class function fromQQCMSC,D ×QQCMSC,D to [0, ∞) which satis-
fies properties (ii), (iii) and (iv) above, then, for all (A, LA) and (B, LB) inQQCMSC,D,

Ξ((A, LA), (B, LB)) 6 ΛC,D((A, LA), (B, LB)).

The quantum propinquity is, in fact, a special form of the dual Gromov–
Hausdorff propinquity [23], [26], [28] also introduced by Latrémolière, which is a
complete metric, up to quantum isometry, on the class of Leibniz quantum com-
pact metric spaces, and which extends the topology of the Gromov–Hausdorff
distance as well. Thus, as the dual propinquity is dominated by the quantum
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propinquity [26], we conclude that all the convergence results in this paper are valid
for dual Gromov–Hausdorff propinquity as well.

In this paper, all our quantum metrics will be (2, 0)-quasi-Leibniz quantum
compact metric spaces. Thus, we will simplify our notation as follows in the next
convention.

CONVENTION 2.4. In this paper, Λ will be meant for Λ2,0.

Now, we recall some results from [1], [2]. The Lip-norms from our work
in [2] turn out to be (2, 0)-quasi-Leibniz Lip-norms. To express our Theorem 2.6,
which is Theorem 3.5 in [2], we will need the following notations.

In this paper, we will denoteN = {0, 1, 2, . . .}.

NOTATION 2.5. Let I = (An, αn)n∈N be an inductive sequence, in which An
is a C∗-algebra and αn : An → An+1 is a ∗-homomorphism for all n ∈ N, with
limit A = lim−→I . We denote the canonical ∗-homomorphisms An → A by αn

−→ for
all n ∈ N (see Chapter 6.1 in [32]).

We display our Lip-norms built from faithful tracial states which will be
utilized throughout the paper. These Lip-norms were motivated by the work of
E. Christensen and C. Ivan in [8].

THEOREM 2.6 (Theorem 3.5 in [2]). Let A be a unital AF-algebra endowed with
a faithful tracial state µ. Let I = (An, αn)n∈N be an inductive sequence of finite dimen-
sional C∗-algebras with C∗-inductive limit A, with A0 ∼= C and where αn is unital and
injective for all n ∈ N. Let π be the GNS representation of A constructed from µ on the
space L2(A, µ). For all n ∈ N, let:

E(· | αn
−→(An)) : A→ A

be the unique conditional expectation of A onto the canonical image αn
−→(An) of An in A,

and such that µ ◦E(· | αn
−→(An)) = µ.

Let β : N→ (0, ∞) have limit 0 at infinity. If, for all a∈sa(⋃n∈Nαn
−→(An)), we set

L
β
I ,µ(a) = sup

{‖a−E(a | αn
−→(An))‖A

β(n)
: n ∈ N

}
,

then (A, L
β
I ,µ) is a (2, 0)-quasi-Leibniz quantum compact metric space. Moreover,

Λ((An, L
β
I ,µ ◦ αn

−→), (A, L
β
I ,µ)) 6 β(n)

for all n ∈ N, and thus:

lim
n→∞

Λ((An, L
β
I ,µ ◦ αn

−→), (A, L
β
I ,µ)) = 0.

CONVENTION 2.7. If we have a unital AF-algebra A =
⋃

n∈N
An
‖·‖A , where

An is a unital finite dimensional C∗-subalgebra of A and An ⊆ An+1 for all n ∈ N
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with A0 = C1A, equipped with a faithful tracial state µ, then we denote the se-
quence of subalgebras by U = (An)n∈N. And in Theorem 2.6, we use the inclusion
mapping ιn : An → A in place of αn

−→ for each n ∈ N, the same results of Theo-
rem 2.6 will follow in this setting given the same hypotheses, where we denote
the Lip-norm by L

β
U ,µ.

In [2], the fact that the defining finite-dimensional subalgebras provide ex-
plicit approximations of the inductive limit with respect to the quantum Gromov–
Hausdorff propinquity allowed us to prove that both the UHF algebras and the
Effros–Shen AF-algebras are continuous images of the Baire space with respect to
the quantum propinquity. Our pursuit was motivated by the fact that the Effros–
Shen algebras were used by Pimsner and Voiculescu to classify the irrational rota-
tion algebras [34], while Latrémolière showed continuity of the irrational rotation
algebras in propinquity with respect to their irrational parameters in [24]. We list
the Effros–Shen algebra result here, since we will utilize both the definition of the
Effros–Shen algebras and the continuity result in Section 4.1 extensively.

We begin by recalling the construction of the Effros–Shen algebras, denoted
by AFθ , constructed in [15] for any irrational θ in (0, 1). For such θ, let (aj)j∈N be
the unique sequence inN such that

(2.1) θ = lim
n→∞

[a0, a1, . . . , an],

where [a0, a1, . . . , an] denotes the standard continued fraction. The sequence of
natural numbers (aj)j∈N is called the continued fraction expansion of θ, and we will
simply denote it by writing θ = [a0, a1, a2, . . .] = [aj]j∈N. We note that a0 = 0
(since θ ∈ (0, 1)) and an ∈ N \ {0} for n > 1.

We fix θ ∈ (0, 1) \Q, and let θ = [aj]j∈N be its continued fraction decompo-
sition. We then obtain the sequence (pθ

n/qθ
n)n∈N of convergents of θ with pθ

n ∈ N,
qθ

n ∈ N \ {0} by setting:

(2.2)



(
pθ

1 qθ
1

pθ
0 qθ

0

)
=

(
a0a1 + 1 a1

a0 1

)
,(

pθ
n+1 qθ

n+1

pθ
n qθ

n

)
=

(
an+1 1

1 0

)(
pθ

n qθ
n

pθ
n−1 qθ

n−1

)
for all n ∈ N \ {0}.

We note that pθ
n/qθ

n = [a0, a1, . . . , an] for all n ∈ N, and (pθ
n/qθ

n)n∈N converges to
θ (see [21]).

Expression (2.2) contains the crux for the construction of the Effros–Shen
AF-algebras.

NOTATION 2.8. Throughout this paper, we shall employ the notation x ⊕
y ∈ X ⊕ Y to mean that x ∈ X and y ∈ Y for any two vector spaces X and Y
whenever no confusion may arise, as a slight yet convenient abuse of notation.
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NOTATION 2.9. Let θ ∈ (0, 1) \Q and θ = [aj]j∈N be the continued fraction
expansion of θ. Let (pθ

n)n∈N and (qθ
n)n∈N as in (2.2). We set AFθ,0 = C and

AFθ,n =M(qθ
n)⊕M(qθ

n−1), αθ,n : a⊕ b∈AFθ,n 7−→


a

. . .
a

b

⊕ a∈AFθ,n+1,

where a appears an+1 times on the diagonal of the right hand side matrix above.
We also set α0 to be the unique unital ∗-morphism fromC to AFθ,1. We thus define
the Effros–Shen C∗-algebra AFθ , after [15],

AFθ = lim−→(AFθ,n, αθ,n)n∈N = lim−→Iθ .

We now present our continuity result for Effros–Shen AF-algebras from [2].
We note that the Baire space is homeomorphic to the space of irrational numbers
in (0, 1). A proof of this can be found in Proposition 5.10 in [2].

THEOREM 2.10 (Theorem 5.14 in [2]). Using Notation 2.9, the function

θ ∈ ((0, 1) \Q, | · |) 7−→ (AFθ , L
βθ
Iθ ,σθ

) ∈ (QQCMS2,0, Λ)

is continuous from (0, 1) \Q, with its topology as a subset of R, to the class of (2, 0)-
quasi-Leibniz quantum compact metric spaces metrized by the quantum propinquity Λ,
where σθ is the unique faithful tracial state on AFθ , and βθ(n) = dim(AFθ,n)

−1 for all
n ∈ N.

In [1], we generalized the convergence results in [2] utilizing the notion of a
fusing family of inductive sequences. We will utilize this notion and this general
convergence theorem in this paper for our quotient convergence results. We list
the appropriate definitions and results here.

We now define a notion of fusing inductive sequences in Definition 2.12.
Fusing inductive sequences are an equivalent description for the convergence of
ideals in an AF-algebra, as will be seen in Lemma 3.23.

NOTATION 2.11. LetN = N∪{∞} denote the Alexandroff compactification
of N with respect to the discrete topology of N. For N ∈ N, let N>N = {k ∈ N :
k > N}, and similarly, forN>N .

DEFINITION 2.12 (Definition 3.5 in [1]). For each k ∈ N, let (Ak,n, αk,n)n∈N
be an inductive sequence with inductive limit, Ak = lim−→I(k), where I(k) =

(Ak,n, αk,n)n∈N. We say that the family of C∗-algebras {Ak : k ∈ N} is a fusing
family of C∗-algebras if:

(i) there exists (cn)n∈N ⊆ N non-decreasing such that lim
n→∞

cn = ∞, and

(ii) for all N ∈ N, if k ∈ N>cN , then (Ak,n, αk,n) = (A∞,n, α∞,n) for all n ∈
{0, 1, . . . , N}.
If this occurs, then we call the sequence (cn)n∈N the fusing sequence.
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CONVENTION 2.13. If for each k ∈ N we are given a C∗-algebra Ak =⋃
n∈N

Ak,n
‖·‖

Ak such that Ak,n is a C∗-subalgebra of Ak and Ak,n ⊆ Ak,n+1 for all

n ∈ N, and there exists a C∗-algebra B such that Ak,n is a C∗-subalgebra of B for
all k ∈ N, n ∈ N, then we will call {Ak : k ∈ N} a fusing family if both (i) and
(ii) of Definition 2.12 are satisfied with (Ak,n, αk,n) = (A∞,n, α∞,n) replaced with
Ak,n = A∞,n given the same conditions on k, n. This is simply done by replacing
αk,n, αk,∞ with the appropriate inclusion mappings.

Next, we provide our general criteria for convergence of AF-algebras in
propinquity using the notion of fusing family along with suitable notions of con-
vergence of the remaining tools used to build our faithful tracial state Lip-norms.

THEOREM 2.14 (Theorem 3.10 in [1]). For each k ∈ N, let (Ak,n, αk,n)n∈N be an
inductive sequence with inductive limit, Ak = lim−→I(k), where I(k) = (Ak,n, αk,n)n∈N,
such that Ak,0 = Ak′ ,0

∼= C and αk,n is unital and injective for all k, k′ ∈ N, n ∈ N. If:
(i) {Ak : k ∈ N} is a fusing family with fusing sequence (cn)n∈N;

(ii) {τk :Ak→C}k∈N is a family of faithful tracial states such that for each N∈N, we
have that (τk◦αN

k−→
)k∈N>cN

converges to τ∞◦αN
∞−→

in the weak* topology on S (A∞,N); and

(iii) {βk : N → (0, ∞)}k∈N is a family of convergent sequences such that for all
N ∈ N if k ∈ N>cN , then βk(n) = β∞(n) for all n ∈ {0, 1, . . . , N} and there exists
B : N→ (0, ∞) with B(∞) = 0 and βm(l) 6 B(l) for all m, l ∈ N;
then:

lim
k→∞

Λ((Ak, L
βk

I(k),τk ), (A
∞, L

β∞

I(∞),τ∞)) = 0,

where L
βk

I(k),τk is given by Theorem 2.6.

This theorem generalized the UHF and Effros–Shen algebra convergence
results of [2], in which we showed this in the Effros–Shen algebra case in the
proof of Theorem 3.14 in [1].

3. A TOPOLOGY ON THE IDEAL SPACE OF C∗-INDUCTIVE LIMITS

For a fixed C∗-algebra, the ideal space may be endowed with various natu-
ral topologies. We may identify each ideal with a quotient, which is a C∗-algebra
itself. Now, this defines a function from the ideal space, which has natural topolo-
gies, to the class of C∗-algebras. If each quotient has a quasi-Leibniz Lip-norm,
then this function becomes much more intriguing as we are able to discuss its con-
tinuity by endowing its codomain with the topology of the propinquity. Towards
this, we develop a topology on ideals of any C∗-inductive limit that is compatible
with this goal. The purpose of this is to allow fusing families of ideals to pro-
vide fusing families of quotients in Proposition 3.26 — a first step in providing
convergence of quotients in quantum propinquity. While our new topology is
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strongly motivated by the Fell topology, it may be stronger, though it does co-
incide with the Fell topology for AF-algebras. As a side-product, we will also
provide a metric for the Fell topology in the case of AF-algebras. In order to con-
struct our topology, we will use the given inductive sequence of a C∗-inductive
limit to construct an inverse limit topology from the Fell topologies of the limit
of the inductive sequence. Also, our new topology is designed to fit our problem
more naturally than the Fell topology — even when it actually agrees with the
latter, in which case our new topology becomes a more adequate description of
the Fell topology for our purpose. But, we first define the Fell topology on ideals
and prove some basic results, which requires the Jacobson topology on the class
of primitive ideals. In the next definition, we recall a possible definition of the
Jacobson topology for our purpose and refer to [32] for a study of this topology.

DEFINITION 3.1. Let A be a C∗-algebra. Denote the set of norm closed two-
sided ideals of A by Ideal(A), including the trivial ideals {0} and A. Denote by
Prim(A) the set

{J ∈ Ideal(A) : J = ker π, π 6= 0 irreducible ∗-representation of A}.

Note that A 6∈ Prim(A).
The Jacobson topology is the topology on Prim(A), denoted by Jacobson, such

that for each closed set F there exists a unique ideal IF∈Ideal(A) such that F={J∈
Prim(A) : J⊇ IF} (see Theorem 5.4.2, Theorem 5.4.6, and Theorem 5.4.7 in [32]).

CONVENTION 3.2. Given a C∗-algebra A and I ∈ Ideal(A), an element of
the quotient A/I will be denoted by a + I for some a ∈ A. Furthermore, the
quotient norm will be denoted by ‖a + I‖A/I = inf{‖a + b‖A : b ∈ I}.

Now, we may define the Fell topology, which is a topology on all ideals of a
C∗-algebra. We begin by presenting the definition of the Fell topology on closed
sets of any topological space along with some facts, which will help with some
later proofs.

DEFINITION 3.3 ([17]). Let (X, τ) be a topological space (no further assump-
tions made). Let C l(X) denote the set of closed subsets of X. Let K be a compact
set of X, and let F be a finite family of non-empty open subsets of X. Define:

U(K, F) = {Y ∈ C l(X) : Y ∩ K = ∅ and Y ∩ A 6= ∅ for all A ∈ F}.

The Fell topology τC l(X) on C l(X) is generated by the topological basis

{U(K, F) ⊆ C l(X) : K ⊆ X is compact and F ⊆ τ \ {∅}, F finite}.
We list some facts about this topology and the striking conclusion that the

Fell topology on C l(X) is always compact and Hausdorff when X is locally com-
pact.

LEMMA 3.4 (Lemma 1 and Theorem 1 in [17]). If (X, τ) is a topological space,
then the topological space (C l(X), τC l(X)) is compact.
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If (X, τ) is a locally compact space, then the topological space (C l(X), τC l(X)) is
compact Hausdorff.

Next, we are in a position to apply this to build a topology on the ideal space
of a C∗-algebra.

DEFINITION 3.5 ([16]). Let A be a C∗-algebra. Let C l(Prim(A)) be the set
of closed subsets of (Prim(A), Jacobson) with compact Hausdorff topology, de-
noted by τC l(Prim(A)), given by Theorem 2.2 in [16] and more generally [17] and
Lemma 3.4. Define

f ell : I ∈ Ideal(A) 7→ {J ∈ Prim(A) : J ⊇ I},
where f ell(Ideal(A)) = C l(Prim(A)) by Theorem 5.4.7 in [32].

The Fell topology on Ideal(A), denoted Fell, is given by

Fell = {U ⊆ Ideal(A) : U = f ell−1(V), V ∈ τC l(Prim(A))}

and f ell is continuous by definition. Also, (Ideal(A), Fell) is compact Hausdorff
since f ell is a bijection.

The following lemma is stated in Section 2 in [3], where the Fell topology
Fell is denoted τs. We provide a proof.

LEMMA 3.6. Let A be a C∗-algebra. Let (Iµ)µ∈∆ ⊆ Ideal(A) be a net and I ∈
Ideal(A). The net (Iµ)µ∈∆ converges to I with respect to the Fell topology if and only if
the net (‖a + Iµ‖A/Iµ

)µ∈∆ ⊆ R converges to ‖a + I‖A/I ∈ R for all a ∈ A.

Proof. Let Y ∈ C l(Prim(A)). By Theorem 2.2 in [16], define:

MY : a ∈ A 7−→ sup{‖a + I‖A/I : I ∈ Y} ∈ R.

By the first proof line of Theorem 2.2 in [16], we note that
⋂

I∈Y
I ∈ Ideal(A) and

(3.1) MY(a) =
∥∥∥a +

⋂
I∈Y

I
∥∥∥
A/(

⋂
I∈Y I)

for all a ∈ A : .

Let P ∈ Ideal(A), then f ell(P) = {J ∈ Prim(A) : J ⊇ P} ∈ C l(Prim(A)) by
Definition 3.5. Note that

⋂
H∈ f ell(P)

H = P by Theorem 5.4.3 in [32]. Thus, by (3.1)

(3.2) M f ell(P)(a) = ‖a + P‖A/P.

Now, assume that (Iµ)µ∈∆ ⊆ Ideal(A) converges to I ∈ Ideal(A) with
respect to the Fell topology. Since f ell is continuous, the net ( f ell(Iµ))µ∈∆ ⊆
C l(Prim(A)) converges to f ell(I) ∈ C l(Prim(A)) with respect to the topology on
C l(Prim(A)). By Theorem 2.2 in [16], the net of functions (M f ell(Iµ))µ∈∆ converges
pointwise to M f ell(I), which completes the forward implication by (3.2).

For the reverse implication, assume that (‖a + Iµ‖A/Iµ
)µ∈∆ ⊆ R converges

to ‖a + I‖A/I ∈ R with respect to the usual topology on R for all a ∈ A and
for some net (Iµ)µ∈∆ ⊆ Ideal(A) and I ∈ Ideal(A). But then, by (3.2) and
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the assumption, the net (M f ell(Iµ))µ∈∆ converges pointwise to M f ell(I). By The-
orem 2.2 in [16], the net ( f ell(Iµ))µ∈∆ ⊆ C l(Prim(A)) converges to f ell(I) ∈
C l(Prim(A)) with respect to the topology on C l(Prim(A)). However, as f ell is a
continuous bijection between the compact Hausdorff spaces (Ideal(A), Fell) and
(C l(Prim(A)), τC l(Prim(A))), the map f ell is a homeomorphism. Thus, we con-
clude that (Iµ)µ∈∆ converges to I with respect to the Fell topology.

Now, the Fell topology induces a topology on Prim(A) via its relative topol-
ogy. But, the set Prim(A) can also be equipped with the Jacobson topology (see
Definition 3.1). Thus, a comparison of both topologies is in order in Proposi-
tion 3.7, which can be proven using Lemma 3.6.

PROPOSITION 3.7. The relative topology induced by the Fell topology of Defini-
tion 3.5 on Prim(A) contains the Jacobson topology of Definition 3.1 on Prim(A).

Proof. Let F ⊆ Prim(A) be closed in the Jacobson topology. Then, there
exists a unique IF ∈ Ideal(A) with F = {J ∈ Prim(A) : J ⊇ IF} by Definition 3.5.

Let J ∈ Prim(A) such that there exists a net (Jµ)µ∈∆ ⊆ F that converges
to J ∈ Prim(A) in the Fell topology. Let x ∈ IF, then x ∈ Jµ for all µ ∈ ∆.
Thus (‖x + Jµ‖A/Jµ)µ∈∆ = (0)µ∈∆, and this net also converges to ‖x + J‖A/J by
Lemma 3.6. Thus ‖x + J‖A/J = 0, which implies that x ∈ J. Hence J ⊇ IF, and
since J ∈ Prim(A) we have J ∈ F.

Thus, F is closed in the relative topology on Prim(A) induced by the Fell
topology, which verifies the containment of the topologies.

Now, we want to build a topology on the ideal space of a C∗-inductive limit
using the inverse limit of the Fell topologies on the ideal spaces of each C∗-algebra
of the inductive sequence. In order to build an inverse limit, we need continuous
maps, gifted to us by the next lemma.

LEMMA 3.8. If A and B are C∗-algebras such that there exists a ∗-monomorphism
π : A −→ B, then the following map is continuous with respect to the associated Fell
topologies:

πi : J ∈ Ideal(B) 7→ π−1(J) ∈ Ideal(A).

Proof. The map πi is well-defined since π is a ∗-homomorphism. For conti-
nuity, we first prove the following helpful claim.

CLAIM 3.9. Let A be a C∗-algebra and let Ak be a C∗-subalgebra. If J ∈ Ideal(A),
then the following map is a ∗-monomorphism and thus an isometry:

(3.3) φk
J : a + J ∩Ak ∈ Ak/(J ∩Ak) 7−→ a + J ∈ A/J.

Proof of claim. Assume that a, b ∈ Ak such that a + J ∩ Ak = b + J ∩ Ak,
which implies that a − b ∈ J ∩ Ak ⊆ J ⇒ a + J = b + J, and thus φk

J is well-
defined. Next, assume that a, b ∈ Ak such that a + J = b + J, which implies that
a− b ∈ J. But, we have a− b ∈ Ak ⇒ a− b ∈ J ∩Ak and a + J ∩Ak = b + J ∩Ak,
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which provides injectivity. Thus, for each k ∈ N, we have φk
J is a well-defined

injective ∗-homomorphism since J is an ideal. Hence, the map φk
J is an isometry

for any J ∈ Ideal(A), which proves the claim.

To continue with continuity, let (Jµ)µ∈Π ⊆ Ideal(B) be a net that converges
to J ∈ Ideal(B) with respect to the Fell topology. Fix a ∈ A and µ ∈ Π, then since
π is injective, isometric, and surjects onto Jµ ∩ π(A):

‖a + πi(Jµ)‖A/πi(Jµ) = ‖a + π−1(Jµ ∩ π(A))‖A/πi(Jµ) = inf
a′∈π−1(Jµ∩π(A))

‖a− a′‖A

= inf
π(a′)∈Jµ∩π(A)

‖π(a)− π(a′)‖B = inf
b∈Jµ∩π(A)

‖π(a)− b‖B

= ‖π(a) + (Jµ ∩ π(A))‖π(A)/(Jµ∩π(A)) = ‖π(a) + Jµ‖B/Jµ
,

where we used Claim 3.9 in the last equality. Thus, by Lemma 3.6, we have that
(πi(Jµ))µ∈Π ⊆ Ideal(A) converges to πi(J) ∈ Ideal(A) in the Fell topology, which
concludes the proof.

We now present a construction which will be applied later on to inductive
limits to obtain our new topology. Following [43], we define the inverse limit
sequence of topological spaces and its limit.

DEFINITION 3.10. A family (Xn, τn, fn+1)n∈N is an inverse limit sequence of
topological spaces if (Xn, τn)n∈N is a family of topological spaces and ( fn+1)n∈N
is a family of continuous functions such that fn+1 : Xn+1 → Xn for all n ∈ N. The
inverse limit space of (Xn, τn, fn+1)n∈N, denoted by (X∞, τ∞), is the subset X∞ of
∏

n∈N
Xn defined by:

X∞ =
{
(xn)n∈N ∈ ∏

n∈N
Xn : fn+1(xn+1) = xn for all n ∈ N

}
,

where τ∞ is the topology on X∞ given by the relative topology induced by the
product topology on ∏

n∈N
Xn with respect to the given topologies τn on Xn for all

n ∈ N.

Our topology on the ideal space will be induced by an initial topology by
the following map once our inverse limit is established.

PROPOSITION 3.11. Let A be a C∗-algebra with a non-decreasing sequence of C∗-

subalgebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A . The following map is a well-

defined injection:

i(·,U ) : I ∈ Ideal(A) 7−→ (I ∩An)n∈N ∈ ∏
n∈N

Ideal(An).

Proof. Since I ∈ Ideal(A) and An is a C∗-subalgebra for all n ∈ N, we have
that I ∩An ∈ Ideal(An) for all n ∈ N. Thus, the map i(·,U ) is well-defined.
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Next, for injectivity, assume that I, J ∈ Ideal(A) such that i(I,U ) = i(J,U ).
Hence, I ∩An = J ∩An for all n ∈ N, which implies

⋃
n∈N

(I ∩An) =
⋃

n∈N
(J ∩An).

Therefore,
⋃

n∈N
(I ∩An)

‖·‖A
=

⋃
n∈N

(J ∩An)
‖·‖A . But, by Lemma III.4.1 in [12], we

conclude that I = J.

The following produces the remaining ingredients for our topology.

LEMMA 3.12. Let A be a C∗-algebra with a non-decreasing sequence of C∗-sub-

algebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A . For each n ∈ N, we denote ιn+1 :

J ∈ Ideal(An+1) → J ∩An ∈ Ideal(An). Then the family (Ideal(An), Fell, ιn+1)n∈N
is an inverse limit sequence with non-empty compact Hausdorff inverse limit space

Ideal(A)∞ =
{
(Jn)n∈N ∈ ∏

n∈N
Ideal(An) : Jn+1 ∩An = Jn for all n ∈ N

}
equipped with the topology Fell∞ of Definition 3.10, and thus, using notation from
Proposition 3.11

i(Ideal(A),U ) ⊆ Ideal(A)∞.

Proof. The conclusions follow immediately from Lemma 3.8, Definition 3.10,
and Proposition 3.11. The non-empty compact Hausdorff conclusion follows
from Theorem 29.11 in [43] and the fact that Ideal(An) equipped with the Fell
topology, is a non-empty compact Hausdorff space for each n ∈ N.

DEFINITION 3.13. Let A be a C∗-algebra with a non-decreasing sequence of

C∗-subalgebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A . By Lemma 3.12, the

initial topology induced by i(·,U ) and the topological space (Ideal(A)∞, Fell∞)
on Ideal(A) exists and is Hausdorff (by injectivity of i(·,U )), which we denote it
by Felli(U ).

We will now provide some sufficient conditions for when Felli(U ) agrees
with Fell. We first show that it is always the case that Fell ⊆ Felli(U ).

PROPOSITION 3.14. If A is a C∗-algebra with a non-decreasing sequence of C∗-

subalgebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A , then the Fell topology on Ideal(A)

is contained in the topology Felli(U ) of Definition 3.13.

Proof. Let (Jµ)µ∈Π ⊆ Ideal(A) be a net that converges to J ∈ Ideal(A)
with respect to Felli(U ). Hence, the net (i(Jµ,U ))µ∈Π ⊆ Ideal(A)∞ converges
to i(J,U ) ∈ Ideal(A)∞ with respect to Fell∞ by definition. Again, by definition,
the net (i(Jµ,U ))µ∈Π ⊆ Ideal(A)∞ converges to i(J,U ) ∈ Ideal(A)∞ with respect
to the product topology on ∏

n∈N
Ideal(An), where each Ideal(An) is equipped with

topology Fell.
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First, fix a ∈ ⋃
n∈N

An. So, there exists N ∈ N such that a ∈ AN . Let µ ∈ Π.

Thus, by Claim 3.9,

‖a + Jµ‖A/Jµ
= ‖a + Jµ ∩AN‖AN /(Jµ∩AN).

Since the projection maps are continuous for the product topology, we conclude
that the net (‖a + Jµ ∩ AN‖AN /(Jµ∩AN))µ∈Π converges to ‖a + J ∩ AN‖AN /(J∩AN)

in the usual topology on R.
Hence, the net (‖a+ Jµ‖A/Jµ

)µ∈Π converges to ‖a+ J‖A/J in the usual topol-
ogy on R for all a ∈ ⋃

n∈N
An. Now, let a ∈ A. Let ε > 0. There exists N ∈ N and

aN ∈ AN ⊆
⋃

n∈N
An such that ‖a− aN‖A < ε/3. Thus, there exists µ0 ∈ Π such

that for all µ > µ0, we have:

|‖aN + Jµ‖A/Jµ
− ‖aN + J‖A/J | <

ε

3
.

Hence, if µ > µ0, then:

|‖a + Jµ‖A/Jµ
− ‖a + J‖A/J |
6 |‖a + Jµ‖A/Jµ

− ‖aN + Jµ‖A/Jµ
|

+|‖aN+ Jµ‖A/Jµ
−‖aN+ J‖A/J |+|‖aN+ J‖A/J−‖a+ J‖A/J |

< ‖a− aN+ Jµ‖A/Jµ
+

ε

3
+‖aN−a+ J‖A/J 62‖a−aN‖A+

ε

3
< ε,

which completes the proof by Lemma 3.6.

Thus, by this proposition and Lemma 3.12, if it is also the case that the
topology Felli(U ) is compact, it must agree with the topology Fell by maximal
compactness of Hausdorff spaces. An obvious way that this would be true is if
the map i(·,U ) surjected onto Ideal(A)∞. It turns out that this is the case for all
AF-algebras, and we provide a characterization of this scenario by a condition on
the algebraic ideals of a C∗-algebra motivated by Bratteli’s work in [7]. This is the
next lemma that follows after the following notation.

NOTATION 3.15. Let A be a C∗-algebra with a non-decreasing sequence of

C∗-subalgebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A . Let algIdeal(

⋃
n∈N An)

denote the set of two-sided ideals of
⋃

n∈N
An that are not necessarily closed in A.

Denote:

algIdeal
(⋃

n∈NAn

)
prod

=
{

J∈algIdeal
(⋃

n∈NAn

)
: J∩An∈ Ideal(An) for all n∈N

}
.
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LEMMA 3.16. If A is a C∗-algebra with a non-decreasing sequence of C∗-sub-

algebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A , then using notation from Propo-

sition 3.11 and Lemma 3.12 and Notation 3.15, the map

J ∈ algIdeal
(⋃

n∈N An

)
prod
7→ J‖·‖A ∈ Ideal(A)

is a well-defined surjection onto Ideal(A).
Furthermore, the following two statements are equivalent:

(i) the function J ∈ algIdeal(
⋃

n∈N An)prod 7→ J‖·‖A ∈ Ideal(A) is injective, and
thus a bijection onto Ideal(A);

(ii) the function i(·,U ) is surjective onto Ideal(A)∞, and thus a bijection onto
Ideal(A)∞.

In particular, if A is AF and U is chosen to be a family of finite-dimensional C∗-
algebras, then the map i(·,U ) surjects onto Ideal(A)∞.

Proof. We first show that the map J ∈ algIdeal(
⋃

n∈N An)prod 7→ J‖·‖A ∈
Ideal(A) is a well-defined surjection onto Ideal(A). This map is clearly well-
defined. For surjectivity, let J ∈ Ideal(A). Then, we have that J ∩An ∈ Ideal(An)
and thus, if we define I =

⋃
n∈N

(J ∩ An), then I ∈ algIdeal(
⋃

n∈N An)prod and

I‖·‖A =
⋃

n∈N
(J ∩An)

‖·‖A
= J by Lemma III.4.1 in [12].

Assume (i). The map i(·,U ) is already a well-defined injection by Proposi-
tion 3.11 and Proposition 3.12. For surjectivity, let (Jn)n∈N ∈ Ideal(A)∞. Thus
Jn ∈ Ideal(An) and Jn ⊆ Jn+1 for all n ∈ N, and so if we let J =

⋃
n∈N

Jn, then

J ∈ algIdeal(
⋃

n∈N An)prod. Thus J‖·‖A ∈ Ideal(A). We claim that i(J‖·‖A ,U ) =

(Jn)n∈N. Indeed, define In = J‖·‖A ∩An for each n ∈ N. We have In ∈ Ideal(An)
and In ⊆ In+1 for all n ∈ N. Again, if we let I =

⋃
n∈N

In, then we have I ∈

algIdeal(
⋃

n∈N An)prod and I‖·‖A ∈ Ideal(A). However:

I‖·‖A =
⋃

n∈N
In
‖·‖A

=
⋃

n∈N
(J‖·‖A ∩An)

‖·‖A
= J‖·‖A

by Lemma III.4.1 in [12]. Hence
⋃

n∈N
In = I = J =

⋃
n∈N

Jn by the assumption that

the map of (1) is injective, which implies that J‖·‖A ∩An = In = Jn for all n ∈ N.

Thus i(J‖·‖A ,U ) = (In)n∈N = (Jn)n∈N, which completes this direction.
Next, assume (ii). Let I, J ∈ algIdeal(

⋃
n∈N An)prod such that I 6= J. Thus

there exists N ∈ N such that I ∩AN 6= J ∩AN . Hence (I ∩An)n∈N 6= (J ∩An)n∈N
where (I ∩ An)n∈N, (J ∩ An)n∈N ∈ Ideal(A)∞. By the assumption that the map
of (ii) is a surjection, there exist KI , KJ ∈ Ideal(A) with KI 6= KJ and i(KI ,U ) =
(I ∩ An)n∈N and i(KJ ,U ) = (J ∩ An)n∈N since i(·,U ) is well-defined. However,
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this implies that KI ∩An = I ∩An and KJ ∩An = J ∩An for all n ∈ N. But, then:

KI =
⋃

n∈N
(KI ∩An)

‖·‖A
=

⋃
n∈N

(I ∩An)
‖·‖A

= I‖·‖A

by Lemma III.4.1 in [12]. Similarly, we have KJ = J‖·‖A , and therefore I‖·‖A 6=
J‖·‖A , which completes the proof of the equivalence between (i) and (ii).

Finally, assume A is AF and U is a family of finite-dimensional C∗-algebras.
If J ∈ algIdeal(

⋃
n∈N An), then J ∩An is finite-dimensional and thus closed for all

n ∈ N. Hence J ∩ An ∈ Ideal(An) for all n ∈ N. Therefore algIdeal(
⋃

n∈N An) =

algIdeal(
⋃

n∈N An)prod. However, the map J ∈ algIdeal(
⋃

n∈N An) 7→ J‖·‖A ∈
Ideal(A) is a bijection onto Ideal(A) by Theorem 3.3 in [7], which completes the
proof by the established equivalence of (i) and (ii).

We will now see that Lemma 3.16 produces natural sufficient conditions for
our topology to agree with the Fell topology.

THEOREM 3.17. Let A be a C∗-algebra with a non-decreasing sequence of C∗-

subalgebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A . Using Notation 3.15, if the

function J ∈ algIdeal(
⋃

n∈N An)prod 7→ J‖·‖A ∈ Ideal(A) is injective, and thus a
bijection onto Ideal(A), then the topology Felli(U ) of Definition 3.13 agrees with the
topology Fell on Ideal(A).

In particular, if A is AF and U is chosen to be a family of finite-dimensional C∗-
algebras, then the topology Felli(U ) agrees with the topology Fell on Ideal(A).

Proof. By Lemma 3.16, the map i(·,U ) is a bijection onto Ideal(A)∞. Hence,
since the topological space (Ideal(A)∞, Fell∞) is compact Hausdorff by Lem-
ma 3.12, Felli(U ) is compact Hausdorff on Ideal(A) since it is the initial topology
induced by a bijection onto a compact Hausdorff space. However, by Propo-
sition 3.14 and maximal compactness of Hausdorff spaces, the proof is com-
plete.

We are going to define a metric on Ideal(A) using our maps to and from
∏

n∈N
Ideal(An). As per our work so far, this metric will metrize the Fell topology

on the ideal space of AF-algebras. While it is known that the Fell topology is
metrizable when the C∗- algebra is separable (we state this fact in Lemma 3.18),
our particular choice of metric will be adapted to our current problem.

LEMMA 3.18. If A is a separable C∗-algebra, then the Fell topology on Ideal(A)
is compact metrizable.

Proof. The Fell topology on Ideal(A) is already compact Hausdorff (Defi-
nition 3.5). Since A is separable, the Jacobson topology on Prim(A) is second
countable by Corollary 4.3.4 in [33]. However, by (III) pg. 474 in [17], the Fell
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topology has a countable basis. Thus, the Fell topology is second countable com-
pact Hausdorff, which completes the proof by Urysohn’s metrization theorem
(Theorem 23.1 in [43]).

PROPOSITION 3.19. If A is a separable C∗-algebra with a non-decreasing sequence

of C∗-subalgebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A , then for each n ∈ N, the

Fell topology on Ideal(An) is metrized by a metric dn with diameter at most 1, and the
[0, ∞)-valued map on ∏

n∈N
Ideal(An)× ∏

n∈N
Ideal(An) defined by:

d((In)n∈N, (Jn)n∈N) =
∞

∑
n=0

dn(In, Jn)

2n

is a compact metric on the product topology of ∏
n∈N

Ideal(An) with respect to the Fell

topology on each Ideal(An) and induces a totally bounded metric on Ideal(A) defined by:

m∏(Fell),U (I, J) =
∞

∑
n=0

dn(I ∩An, J ∩An)

2n ,

which metrizes the topology Felli(U ) on Ideal(A) of Definition 3.13.

Proof. Since A is separable, the subspace An is separable for all n ∈ N. Thus,
by Lemma 3.18, the Fell topology of each Ideal(An) is metrized by some metric
dn. If dn has diameter more than 1, then simply use the metric dn/(1 + dn) in-
stead, which metrizes the same topology and has diameter at most 1, and thus the
metric d defined in the statement of the proposition metrizes the product topol-
ogy. The fact that m∏(Fell),U is a totally bounded metric follows from the fact that
m∏(Fell),U = d ◦ (i(·,U )× i(·,U )) and i(·,U ) is an injection by Proposition 3.11.
The fact that m∏(Fell),U metrizes Felli(U ) follows by construction.

In Theorem 3.21, we will show that the metric m∏(Fell),U above metrizes the
Fell topology when A is AF and the inductive sequence U contains only finite-
dimensional C∗-algebras. The next corollary shows that we can simplify the met-
ric d and thus m∏(Fell),U , when A is AF.

COROLLARY 3.20. If A is a separable C∗-algebra with a non-decreasing sequence

of C∗-subalgebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A and Ideal(An) is finite for

each n ∈ N, then the compact metric product topology of ∏
n∈N

Ideal(An) with respect to

the Fell topology on each Ideal(An) is metrized by the metric:

di(U )((In)n∈N, (Jn)n∈N) =

{
0 if In = Jn for all n ∈ N,
2−min{m∈N:Im 6=Jm} otherwise,
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and induces a totally bounded metric on Ideal(A) defined by:

mi(U )(I, J) =

{
0 if I ∩An = J ∩An for all n ∈ N,
2−min{m∈N:I∩Am 6=J∩Am} otherwise,

that metrizes the same topology of m∏(Fell),U of Propsition 3.19 on Ideal(A) and the
topology Felli(U ) of Definition 3.13.

Proof. Since the Fell topology is always compact Hausdorff, the topology
on Ideal(An) is discrete as the set is finite, and thus we may take our metrics dn
from the previous proposition to be the discrete metric (that assigns 1 to distinct
points) for all n ∈ N. Finally, the topology given by di(U ) and d of Theorem 3.19
on ∏

n∈N
Ideal(An) agree in this setting as these metrics are equivalent, which com-

pletes the proof by construction of Felli(U ).

Now, we may prove the main result of this section in which the metric of
the previous corrollary does in fact metrize the Fell topology for AF-algebras.

THEOREM 3.21. If A is an AF-algebra then, for any non-decreasing sequence of

finite-dimensional C∗-subalgebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A , the metric

mi(U ) of Corollary 3.20 metrizes the Fell topology on Ideal(A).

For the proof observe that finite-dimensional C∗-algebras have finitely many
ideals and apply Theorem 3.17 to Corollary 3.20.

An immediate consequence of Theorem 3.21 is that, although the metric is
built using a fixed inductive sequence, the metric topology with respect to an
inductive sequence is homeomorphic to the metric topology on the same AF-
algebra with respect to any other inductive sequence. In particular, concerning
continuity or convergence results, Corollary 3.22 provides that one may choose
any inductive sequence to suit the needs of the problem at hand.

COROLLARY 3.22. Let A,B be AF-algebras and fix any non-decreasing sequences
of finite dimensional C∗-subalgebras UA = (An)n∈N,UB = (Bn)n∈N, respectively,

such that A =
⋃

n∈N
An
‖·‖A and B =

⋃
n∈N

Bn
‖·‖B . If A and B are ∗-isomorphic, then the

metric spaces (Ideal(A), mi(UA)) and (Ideal(B), mi(UB)) are homeomorphic.

In particular, if A is AF and A =
⋃

n∈N
A1,n

‖·‖A =
⋃

n∈N
A2,n

‖·‖A , where U1 =

(A1,n)n∈N, U2 = (A2,n)n∈N are any non-decreasing sequences of finite dimensional C∗-
subalgebras of A, then the metric spaces (Ideal(A), mi(U1)

) and (Ideal(A), mi(U2)
) are

homeomorphic.

Proof. By construction of the Fell and the Jacobson topologies Definition 3.5,
if A and B are ∗-isomorphic then the Fell topologies are homeomorphic. Thus,
the conclusion follows by Theorem 3.21.
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In the context of this paper, a main motivation for the metric of Corol-
lary 3.20 is to provide a fusing family of quotients via convergence of ideals. First,

for a fixed ideal of an inductive limit of the form A =
⋃

n∈N
An
‖·‖A , we provide an

inductive limit in the sense of Notation 2.5 that is ∗-isomorphic to the quotient.

The reason for this is that given I ∈ Ideal(A), then A/I =
⋃

n∈N
((An + I)/I)

‖·‖A/I

(see Proposition 3.26), but if two ideals satisfy I ∩ An = J ∩ An for some n ∈ N,
then even though this provides that (An + I)/I is ∗-isomorphic to (An + J)/J
as they are both ∗-isomorphic to (An/(I ∩ An)) (see Proposition 3.26), the two
algebras (An + J)/J and (An + I)/I are not equal in any way if I 6= J, yet, equal-
ity is a requirement for fusing families (see Definition 2.12). Thus, Notation 3.25
will allow us to present, up to ∗-isomorphism, quotients as fusing families from
convergence of ideals in the metric of Corollary 3.20 as we will see in Proposi-
tion 3.26.

Before moving to fusing families of quotients, we show that a fusing family
of ideals is equivalent to convergence in the metric on ideals of Corollary 3.20.

LEMMA 3.23. Let A be AF-algebra and fix any non-decreasing sequence of finite

dimensional C∗-subalgebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A .

If (Ik)k∈N ⊆ Ideal(A), then the following are equivalent:

(i)
{

Ik =
⋃

n∈N
Ik ∩An

‖·‖A : k ∈ N
}

is a fusing family of Definition 2.12;

(ii) (Ik)k∈N converges to I∞ with respect to the metric mi(U ) of Corollary 3.20;
(iii) (Ik)k∈N converges to I∞ in the Fell topology.

Proof. The equivalence between (ii) and (iii) is given by Theorem 3.21. We
begin with showing that (ii) ⇒ (i). Assume (Ik)k∈N ⊆ Ideal(A) converges to
I∞ ∈ Ideal(A) with respect to mi(U ), which is equivalent to convergence in Fell
by Theorem 3.21. Thus, we have lim

k→∞
mi(U )(Ik, I∞) = 0. From this, we construct

an increasing sequence (cn)n∈N ⊆ N \ {0} such that:

mi(U )(Ik, I∞) 6 2−(n+1)

for all k > cn. In particular, fix N ∈ N, if k ∈ N>cN , then Ik ∩ An = I∞ ∩ An for

all n ∈ {0, . . . , N}, which implies that
{

Ik =
⋃

n∈N
Ik ∩An

‖·‖A : k ∈ N
}

is a fusing

family with fusing sequence (cn)n∈N by Definition 2.12.

For (i)⇒ (ii), assume that
{

Ik =
⋃

n∈N
Ik ∩An

‖·‖A : k ∈ N
}

is a fusing family

with fusing sequence (cn)n∈N. Therefore, for all N ∈ N, if k ∈ N>cN , then Ik ∩
An = I∞ ∩ An for all n ∈ {0, . . . , N}. Hence, let ε > 0. There exists N ∈ N such
that 2−N < ε. If k > cN ∈ N, then we have the following which completes the
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proof:
mi(U )(Ik, I∞) 6 2−(N+1) < 2−N < ε.

REMARK 3.24. Clearly, the metric mi(U ) of Corollary 3.20 can be defined on
any C∗-inductive limit even without the assumption of AF or separability. And,
in general, this metric would produce an even finer topology than Felli(U ) as mi(U )
is given by a metric on the product topology induced by the discrete topology
on the ideal space of each An. Furthermore, we note the equivalence between
(i) and (ii) in Lemma 3.23 would still hold for this metric in this more general
setting. This connection with fusing families was another strong motivation for
the pursuit of this metric.

NOTATION 3.25. Let A be a C∗-algebra with a non-decreasing sequence of

C∗-subalgebras U=(An)n∈N such that A=
⋃

n∈N
An
‖·‖A . Let I∈ Ideal(A). For n∈N

γI,n : a + I ∩An ∈ An/(I ∩An) 7−→ a + (I ∩An+1) ∈ An+1/(I ∩An+1),

is a∗-monomorphism by the same argument of Claim 3.9.
Let I(A/I) = (An/(I ∩ An), γI,n)n∈N, and denote its C∗-inductive limit by

lim−→ I(A/I).
If B ⊆ A is a C∗-subalgebra and I ∈ Ideal(A), then denote:

B+ I = {b + c : b ∈ B, c ∈ I}‖·‖A .

PROPOSITION 3.26. Let A be AF and fix any non-decreasing sequence of finite-

dimensional C∗-subalgebras U = (An)n∈N of A such that A =
⋃

n∈N
An
‖·‖A . Using

Notation 3.25, if I ∈ Ideal(A), then there exists a ∗-isomorphism

φI : lim−→ I(A/I)→ A/I

such that for all n ∈ N the following diagram commutes:

An/(I ∩An)
γn

I−→ //

φn
I ''

lim−→ I(A/I)

φI

��
A/I

,

where all maps φn
I : a + (I ∩An) ∈ An/(I ∩An) 7−→ a + I ∈ (An + I)/I ⊆ A/I are

∗-monomorphisms onto (An + I)/I, in which An + I = {a + b ∈ A : a ∈ An, b ∈ I}
is a C∗-subalgebra of A containing I as an ideal and

⋃
n∈N

((An + I)/I) is a dense ∗-

subalgebra of A/I with ((An + I)/I)n∈N non-decreasing.
Furthermore, if (Ik)k∈N ⊆ Ideal(A) converges to I∞ ∈ Ideal(A) with respect

to mi(U ) of Corollary 3.20 or the Fell topology, then using Definition 2.12, we have that{
Ik =

⋃
n∈N

Ik ∩An
‖·‖A : k ∈ N

}
is a fusing family with respect to some fusing sequence
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(cn)n∈N and that {lim−→ I(A/Ik) : k ∈ N} is a fusing family with fusing sequence
(cn)n∈N.

Proof. Let I ∈ Ideal(A). Fix n ∈ N. Note that An + I is a C∗-subalgebra
of A since I ∈ Ideal(A), and furthermore I ∈ Ideal(An + I). Now, we have
An + I = {a + b ∈ A : a ∈ An, b ∈ I} since An and I are both closed in A and
An is finite dimensional. Next, φn

I is an injective ∗-homomorphism by Claim 3.9.
If a ∈ An, then φn

I (a + An/(I ∩ An)) = a + I and the composition φn+1
I (γI,n(a +

(I ∩ An))) = φn+1
I (a + (I ∩ An+1)) = a + I. Hence, for all n ∈ N, the following

diagram commutes:

An/(I ∩An)
γI,n //

φn
I ((

An+1/(I ∩An+1)

φn+1
I
��

A/I

.

Thus, by Theorem 6.1.2 in [32], the definition of inductive limit in Chapter 6.1 in
[32], and the fact that each map in the above diagram is an isometry, there exists
a unique ∗-monomorphism φI : lim−→ I(A/I) → A/I such that for all n ∈ N the
diagram in the statement of this theorem commutes.

Next, fix n ∈ N. Let x ∈ (An + I)/I, and so x = a + b + I, where a ∈ An, b ∈
I. Thus, we have a + b− a = b ∈ I ⇒ x− (a + I) = 0 + I ⇒ x = a + I. But then
φn

I (a + (I ∩An)) = x. Hence, the map φn
I is onto (An + I)/I and thus:

φI

( ⋃
n∈N

γn
I−→
(An/(I ∩An))

)
=

⋃
n∈N

((An + I)/I),

where the right-hand side is a dense ∗-subalgebra of A/I by continuity of the
quotient map and the assumption that

⋃
n∈N

An is dense in A. Hence, since the

normed space lim−→ I(A/I) is complete and φI is a linear isometry on lim−→ I(A/I),
φI surjects onto A/I. Thus φI : lim−→ I(A/I)→ A/I is a ∗-isomorphism.

Next, assume that (Ik)n∈N ⊆ Ideal(A) converges to I∞ ∈ Ideal(A) with
respect to mi(U ), which is equivalent to convergence in Fell by Theorem 3.21. By

Lemma 3.23, the family
{

Ik =
⋃

n∈N
Ik ∩An

‖·‖A : k ∈ N
}

is a fusing family with

fusing sequence (bn)n∈N by Definition 2.12.
Let cn = bn+1 for all n ∈ N. Then, the sequence (cn)n∈N is a fusing sequence

for
{

Ik =
⋃

n∈N
Ik ∩An

‖·‖A : k ∈ N
}

. Fix N ∈ N, n ∈ {0, . . . , N}, and k ∈ N>cN .

Then, the equality Ik ∩An = I∞ ∩An implies that An/(Ik ∩An) = An/(I∞ ∩An).
But, also, we gather γIk ,n = γI∞ ,n since An+1/(Ik ∩ An+1) = An+1/(I∞ ∩ An+1)

as cn = bn+1. Hence, the familiy of inductive limits {lim−→ I(A/Ik) : k ∈ N} is a
fusing family with fusing sequence (cn)n∈N.
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Now that we have this identification with our metric and the Fell topology,
we finish our discussion on the metric topology by considering it in the unital
commutative case of AF-algebras in Corollary 3.31. It will be the case that the
relative metric topology of Corollary 3.20, the relative Fell topology, and the Ja-
cobson topology all agree on the primitive ideals. However, we begin with a more
general scenario, where we only assume that the Jacobson topology is Hausdorff
on a unital C∗-algebra since in this case the relative Fell topology and the Jacob-
son topology all agree on the primitive ideals. First, a remark on restricting to the
unital case.

REMARK 3.27. In the following results of this section, we restrict our atten-
tion to unital C∗-algebras since in this case Prim(A) is a compact subset of the
Fell topology, as seen in Lemma 3.29. However, although the Jacobson topol-
ogy is still locally compact in the non-unital case (see Corollary 3.3.8 in [13])
and one can form the Alexandroff compactification in the Hausdorff case of the
Jacobson topology, the fact that A ∈ Ideal(A) (note that A plays the role of
the point at infinity of the Alexandroff compactification by Definition 3.5 and
Corollary (1) on page 475 in [17]) may not be isolated in the Fell topology in
general diminishes any reasonable expectation that the relative Fell topology on
Prim(A) would agree with the Jacobson topology in this generality. An exam-
ple of when A is not isolated in the Fell topology is when A = C0(Y), where
Y = {1/n ∈ R : n ∈ N \ {0}} ⊂ (0, 1]. Indeed, if we define for all m ∈ N the
ideal Im = {g ∈ A : g({1/(n + 2) ∈ R : n > m}) = 0} ( A, then the sequence
(Im)m∈N ⊂ Ideal(A) \ {A} converges to A in the Fell topology by Lemma 3.6 and
definition of C0(Y).

On the other hand, the element A ∈ Ideal(A) is always isolated in the Fell
topology when A is unital regardless of any separation condition on the Jacobson
topology. Indeed, if J ∈ Ideal(A) \ {A}, then ‖1A + J‖A/J > 1 since the set
{a ∈ A : ‖a + 1A‖A < 1} contains only invertible elements by Corollary VII.2.3
in [11]. Hence, no net of ideals in Ideal(A) \ {A}may converge to A by Lemma 3.6
since ‖1A +A‖A/A = 0.

Before we move to the C∗-algebra setting, we present a fact about the Fell
topology in the context of topological spaces. The following is mentioned in [17],
but we provide a detailed proof here.

LEMMA 3.28. If (X, τ) is a compact Hausdorff space, then the map

s : x ∈ X 7−→ {x} ∈ C l(X)

is a well-defined homeomorphism onto its image with respect to the relative Fell topology
on C l(X) of Defintion 3.3, and moreover the set

s(X) = {{x} ∈ C l(X) : x ∈ X}

is a compact, and thus a closed subset of C l(X) with respect to the Fell topology.
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Proof. Since (X, τ) is compact Hausdorff and the space C l(X) equipped with
the Fell topology is compact Hausdorff by Lemma 3.4, we only have to check that
s is continuous and note that s is well-defined since (X, τ) is Hausdorff.

Let (xλ)λ∈Λ ⊆ X be a net that converges to some x ∈ X with respect to the
topology τ. We claim that ({xλ})λ∈Λ ⊆ C l(X) converges to {x} ∈ C l(X) with
respect to the Fell topology.

Let K ⊆ X be a compact set with respect to τ and let n ∈ N and A0, . . . , An ∈
τ \ {∅} and let F =

n⋃
j=0
{Aj} ⊆ τ. Assume that {x} ∈ U(K, F) = {Y ∈ C l(X) :

Y ∩ K = ∅ and Y ∩ Aj 6= ∅ for all j ∈ {0, . . . , n}}. Thus

x ∈ (X \ K) ∩
( n⋂

j=0

Aj

)
∈ τ

since K is closed as (X, τ) is Hausdorff. Therefore there exists α ∈ Λ such that for
all λ > α, we have that

xλ ∈ (X \ K) ∩
( n⋂

j=0

Aj

)
∈ τ,

giving that {xλ} ∈ U(K, F) for all λ > α, which completes that proof.

LEMMA 3.29. If A is a unital C∗-algebra such that Prim(A) equipped with its Ja-
cobson topology is Hausdorff, then on Prim(A) the relative Fell topology agrees with the
Jacobson topology and Prim(A) is a compact and thus closed subset in the Fell topology.

Proof. By the fact that the Jacobson topology on Prim(A) is compact in the
unital case by Proposition 3.1.8 in [13] and Lemma 3.28, the map

s : P ∈ (Prim(A), Jacobson) 7→ {P} ∈ (C l(Prim(A)), τC l(Prim(A)))

is a well-defined homeomorphism onto its image with respect to the relative
topology such that s(Prim(A)) ⊂ C l(Prim(A) is compact and thus closed in the
topology τC l(Prim(A)), and note that (C l(Prim(A)), τC l(Prim(A))) is also compact.

Next, let P ∈ Prim(A). Since the Jacobson topology is Hausdorff, we have
that {P} is closed in the Jacobson topology. Hence, by Definition 3.5, there exists
a unique ideal I ∈ Ideal(A) such that f ell(I) = {P}. However, Theorem 5.4.3 in
[32] implies that I =

⋂
J∈ f ell(I)

J = P, and thus f ell(P) = {P} for all P ∈ Prim(A).

Hence since f ell is a bijection, we gather that:

f ell−1({{J} ∈ C l(Prim(A)) : J ∈ Prim(A)}) = Prim(A).

Hence, the map

f ell−1 ◦ s : P ∈ (Prim(A), Jacobson) 7→ P ∈ (Prim(A), Fell)
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is a homeomorphism onto Prim(A) since the map f ell is a homeomorphism by
the end of the proof of Lemma 3.6, where (Prim(A), Fell) denotes the relative Fell
topology on Prim(A), which completes the proof.

Before providing the final result of this section, we present a classical re-
sult with proof, in which the Jacobson topology on the primitive ideals of a uni-
tal commutative A is homeomorphic to the maximal ideal space with its weak*
topology. This is true, of course, with non-unital as well and the following proof
is exactly the same in this case, but we only consider the unital case. Of course,
Prim(A) is compact on any unital C∗-algebra, commutative or not (see Propo-
sition 3.1.8 in [13]), so the main purpose of the following theorem is to provide
Hausdorff separation in the commutative case.

THEOREM 3.30. If A is a unital commutative C∗-algebra and MA denotes its
space of non-zero multiplicative linear functionals with its weak* topology, then the map

ϕ ∈ MA 7−→ ker ϕ ∈ Prim(A)

is a homeomorphism onto Prim(A) with its Jacobson topology, and therefore Prim(A)
with its Jacobson topology is a compact Hausdorff space.

Proof. By Theorem 5.4.4 in [32], the set Prim(A) is the set of maximal ideals.
However, for all ϕ ∈ MA, the ideal ker ϕ is maximal. Hence, the map ϕ ∈
MA 7−→ ker ϕ ∈ Prim(A) is a bijection by Theorem I.2.5 in [12]. Furthermore,
by Theorem 5.1.6 in [32], the set of pure states on A is equal to MA. Therefore,
by Proposition 4.3.3 in [33], the map ϕ ∈ MA 7−→ ker ϕ ∈ Prim(A) is a home-
omorphism onto Prim(A) since it is a continuous and open bijection. Since MA

is locally compact Hausdorff by Corollary I.2.6 in [12], the set Prim(A) with its
Jacobson topology is a compact Hausdorff space.

COROLLARY 3.31. Let A be a unital AF-algebra and fix any non-decreasing se-

quence of finite-dimensional C∗-subalgebras U = (An)n∈N such that A =
⋃

n∈N
An
‖·‖A .

Let (Prim(A), mi(U )) denote Prim(A) equipped with the relative topology induced by
the metric topology of mi(U ) of Corollary 3.20.

(i) If the Jacobson topology on Prim(A) is Hausdorff, then (Prim(A), mi(U )) has the
same topology as the Jacobson topology or the relative Fell topology on Prim(A).

(ii) If A is a unital commutative AF-algebra, then (Prim(A), mi(U )) is homeomorphic
to the space of non-zero multiplicative linear functionals on A denoted MA with its weak*
topology, where the homeomorphism is given by:

ϕ ∈ MA 7−→ ker ϕ ∈ Prim(A).

Proof. For (i), combine Theorem 3.21 with Lemma 3.29. For (ii), combine
Theorem 3.21 with Lemma 3.29 and Theorem 3.30.

REMARK 3.32. The metric in Corollary 3.20 can be seen as an explicit presen-
tation of a metric on a metrizable topology on ideals [4]. However, the metrizable
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topology in [4] is presented only in the case of AF-algebras. This topology still
metrizes the Fell topology in the AF case, which we also proved for the metric of
Corollary 3.20 via a different approach in Theorem 3.21 by our inverse limit topol-
ogy. An advantage of our inverse limit topology approach is that it also allowed
us provide a suitable topology for the ideal space of any C∗-algebra formed by an
inductive limit and many other possibilities for future study on its own. Also, we
note that the metric of Corollary 3.20 allows us to explicitly calculate distances
between ideals in Remark 4.22. Therefore, one can make interesting comparisons
with certain classical metrics on irrationals, and this metric also serves the pur-
pose of providing fusing families of quotients in Proposition 3.26.

4. CONVERGENCE OF QUOTIENTS OF AF-ALGEBRAS IN QUANTUM PROPINQUITY

In the case of unital AF-algebras, we provide criteria for when convergence
of ideals in the Fell topology provides convergence of quotients in the quan-
tum propinquity topology, where the quotients are equipped with faithful tracial
states. But, first, as we saw in Proposition 3.26, it seems that an inductive limit
is suitable for describing fusing families with regard to convergence of ideals.
Thus, in order to avoid the notational trouble of too many inductive limits, we
will phrase many results in this section in terms of closure of unions. Now, when
a quotient has a faithful tracial state, it turns out that the ∗-isomorphism provided
in Proposition 3.26 is a quantum isometry (cf. Theorem-Definition 2.3) between
the induced quantum compact metric spaces of Theorem 2.6, which preserves
the finite-dimensional structure as well in Theorem 4.1. The purpose of this is to
apply Theorem 2.14 directly to the quotient spaces. This utilizes our criteria for
quantum isometries between AF-algebras in [1].

THEOREM 4.1. Let A be a unital AF-algebra with unit 1A such that U = (An)n∈N
is an increasing sequence of unital finite dimensional C∗-subalgebras with A0 = C1A
and A =

⋃
n∈N

An
‖·‖A . Let I ∈ Ideal(A) \ {A}. By Proposition 3.26 we have A/I =

⋃
n∈N

((An+ I)/I)
‖·‖A/I . Denote U/I = ((An+ I)/I)n∈N, and note that (A0 + I)/I =

C1A/I .
If A/I is equipped with a faithful tracial state µ and using notation from Proposi-

tion 3.26, the map µ ◦ φI is a faithful tracial state on lim−→I(A/I).
Furthermore, let β : N → (0, ∞) have limit 0 at infinity. Using Theorem 2.6, if

L
β

I(A/I),µ◦φI
is the (2, 0)-quasi-Leibniz Lip norm on lim−→I(A/I) and L

β
U/I,µ is the (2, 0)-

quasi-Leibniz Lip norm on A/I, then:

φ−1
I : (A/I, L

β
U/I,µ)→ (lim−→I(A/I), L

β

I(A/I),µ◦φI
)
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is a quantum isometry of Theorem-Definition 2.3 and

Λ((lim−→I(A/I), L
β

I(A/I),µ◦φI
), (A/I, L

β
U/I,µ)) = 0.

Moreover, for all n ∈ N, we have:

Λ((An/(I ∩An), L
β

I(A/I),µ◦φI
◦ γn

I−→
), ((An + I)/I, L

β
U/I,µ)) = 0.

Proof. Since I 6= A, the AF-algebra A/I is unital and (A0 + I)/I = C1A/I as
A0 = C1A. Since µ is faithful on A/I, µ ◦ φI is faithful on lim−→I(A/I) since φI is a
∗-isomorphism by Proposition 3.26.

By Notation 3.25, define U (A/I) = (γm
I−→
(Am/(I ∩Am)))m∈N. By Chapter 6.1

in [32], the sequence U (A/I) = (γm
I−→
(Am/(I∩Am)))m∈N is an increasing sequence

of unital finite dimensional C∗-subalgebras of lim−→I(A/I) such that

lim−→I(A/I) =
⋃

m∈N
γm

I−→
(Am/(I ∩Am))

‖·‖lim−→I(A/I)

and γ0
I−→
(A0/(I ∩ A0)) = C1lim−→I(A/I). Thus, let L

β

U (A/I),µ◦φI
on lim−→I(A/I) and

L
β
U/I,µ on A/I be given by Theorem 2.6,.

Now, fix m ∈ N. Since φI ◦ γm
I−→
= φm

I by Proposition 3.26 we thus have:

γm
I−→
(Am/(I ∩Am)) = φ−1

I ◦ φm
I (Am/(I ∩Am)) = φ−1

I ((Am + I)/I).

Since the chosen faithful tracial state on lim−→I(A/I) is µ ◦ φI , by Theorem 5.3 in

[1] we have that (γm
I−→
(Am/(I ∩Am)), L

β

U (A/I),µ◦φI
) is quantum isometric to ((Am +

I)/I, L
β
U/I,µ) by the map φ−1

I restricted to (Am + I)/I for all m ∈ N. How-

ever, the quantum metric spaces (γm
I−→
(Am/(I ∩Am)), L

β

U (A/I),µ◦φI
) and ((Am/(I ∩

Am)), L
β

U (A/I),µ◦φI
◦ γm

I−→
) are quantum isometric via the map γm

I−→
. Since quantum

isometry is an equivalence relation, we conclude by Theorem-Definition 2.3

Λ((Am/(I ∩Am), L
β

U (A/I),µ◦φI
◦ γm

I−→
), ((Am + I)/I, L

β
U/I,µ)) = 0.

Moreover, Theorem 5.3 in [1] also implies that

φ−1
I : (A/I, L

β
U/I,µ)→ (lim−→U (A/I), L

β

U (A/I),µ◦φI
)

is a quantum isometry. Next, define L
β

I(A/I),µ◦φI
from Theorem 2.6. By Proposi-

tion 5.2 in [1], we may replace L
β

U (A/I),µ◦φI
with L

β

I(A/I),µ◦φI
, which completes the

proof.
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Thus, the quantum isometry φI in Theorem 4.1 is in some sense the best
one could hope for, since it preserves the finite-dimensional approximations in
the quantum propinquity. Next, we give criteria for when a family of quotients
converge in the quantum propinquity with respect to ideal convergence.

THEOREM 4.2. Let A be a unital AF-algebra with unit 1A such that U = (An)n∈N
is an increasing sequence of unital finite dimensional C∗-subalgebras with A0 = C1A
such that A =

⋃
n∈N

An
‖·‖A . Let (In)n∈N ⊆ Ideal(A) \ {A} such that {µk : A/Ik →

C : k ∈ N} is a family of faithful tracial states. Let Qk : A→ A/Ik denote the quotient
map for all k ∈ N. If:

(i) (In)n∈N ⊆ Ideal(A) converges to I∞ ∈ Ideal(A) with respect to mi(U ) of Corol-
lary 3.20 or the Fell topology (Definition 3.5) with fusing sequence (cn)n∈N for the fusing

family {In =
⋃

k∈N
In ∩Ak

‖·‖A : n ∈ N},

(ii) for each N ∈ N, we have that (µk ◦ Qk)k∈N>cN
converges to µ∞ ◦ Q∞ in the

weak* topology on S (AN), and
(iii) {βk : N → (0, ∞)}k∈N is a family of convergent sequences such that for all

N ∈ N if k ∈ N>cN , then βk(n) = β∞(n) for all n ∈ {0, 1, . . . , N} and there exists
B : N→ (0, ∞) with B(∞) = 0 and βm(l) 6 B(l) for all m, l ∈ N,
then using notation from Theorem 4.1:

lim
n→∞

Λ((A/In, L
βn

U/In ,µn
), (A/I∞, L

β∞

U/I∞ ,µ∞
)) = 0.

Proof. By Lemma 3.23, the assumption that (In)n∈N ⊆ Ideal(A) converges
to I∞ ∈ Ideal(A) with respect to mi(U ) or the Fell topology implies that{

In =
⋃

k∈N
In ∩Ak

‖·‖A
: n ∈ N

}
is a fusing family with some fusing sequence (cn)n∈N where also the family
{lim−→ I(A/In) : n ∈ N} is also a fusing family with fusing sequence (cn)n∈N.

Fix N ∈ N and k ∈ N>cN . Let x ∈ AN , and let Qk
N : AN → AN/(Ik ∩

AN) and Q∞
N : AN → AN/(I∞ ∩ AN) denote the quotient maps, and let φIk :

lim−→ I(A/Ik)→ A/Ik denote the ∗-isomorphism given in Proposition 3.26 and re-

call that I(A/Ik) = (An/(Ik ∩An), γIk ,n)n∈N from Notation 3.25. Now, by Propo-
sition 3.26 and its commuting diagram, we gather:

µk ◦ φIk ◦ γN
Ik
−→
◦Qk

N(x) = µk ◦ φN
Ik ◦Qk

N(x)

= µk ◦ φN
Ik (x + Ik ∩AN) = µk(x + Ik) = µk ◦Qk(x).

Therefore, by hypothesis (ii), (µk ◦ φIk ◦ γN
Ik
−→
◦Qk

N)k∈N>cN
converges to µ∞ ◦ φI∞ ◦

γN
I∞
−→
◦Q∞

N in the weak* topology on AN .
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Hence, the sequence (µk ◦ φIk ◦ γN
Ik
−→

)k∈N>cN
converges to µ∞ ◦ φI∞ ◦ γN

I∞
−→

in

the weak* topology on S (AN/(I∞ ∩ AN)) by Theorem V.2.2 in [11]. Thus, by
hypothesis (iii) and by Theorem 2.14, we have that:

lim
n→∞

Λ((lim−→ I(A/In), L
βn

I(A/In),µn◦φIn
), (lim−→ I(A/I∞), L

β∞

I(A/I∞),µ∞◦φI∞
)) = 0.

But, as φ−1
In is an isometric isomorphism for all n ∈ N by Theorem 4.1, we con-

clude:
lim

n→∞
Λ((A/In, L

βn

U/In ,µn
), (A/I∞, L

β∞

U/I∞ ,µ∞
)) = 0,

which completes the proof.

4.1. THE BOCA–MUNDICI AF-ALGEBRA. The Boca–Mundici AF-algebra F (for
Farey) is constructed from the Farey tessellation and was discovered indepen-
dently in [6] and [31]. In both [6], [31], it was shown that all Effros–Shen AF-
algebras (Notation 2.9) arise as quotients of certain primitive ideals of F. This is
the main motivation for our convergence result in [2]. In both [6], [31], it was
also shown that the center of the AF-algebra F is ∗-isomorphic to C([0,1]), which
provided the framework for Eckhardt to introduce a noncommutative analogue
to the Gauss map in [14].

We present the construction of this algebra as presented in the paper by
Boca [6]. We refer mostly to Boca’s work as his unique results pertaining to the
Jacobson topology (for example Corollary 12 in [6], which is the result that led
us to begin this paper) are more applicable to our work (see Proposition 4.19).
As in [6], we define the AF-algebra F recursively by the following relations (4.1).
We note that the relations presented here are the same as in Section 1 of [6], but
instead of starting at n = 0, these relations begin at n = 1, so that this formulation
of the AF-algebra F as an inductive limit begins with C. For every n ∈ N \ {0}
and k ∈ N define:

(4.1)



q(n, 0)=q(n, 2n−1)=1, p(n, 0)=0, p(n, 2n−1) =1;
q(n + 1, 2k) = q(n, k), p(n + 1, 2k) = p(n, k), 0 6 k 6 2n−1;
q(n+1, 2k+1)=q(n, k)+q(n, k+1), 06k∈62n−1−1;
p(n+1, 2k+1)= p(n, k)+p(n, k+1), 06k∈62n−1−1;

r(n, k) = p(n,k)
q(n,k) , 0 6 k 6 2n−1 − 1.

DEFINITION 4.3. For n ∈ N \ {0}, define the finite dimensional C∗-algebras,

Fn =
2n−1⊕
k=0

M(q(n, k)) and F0 = C,

where M(N) denotes the C∗-algebra of complex N × N-matrices.

Next, we define ∗-homomorphisms to complete the inductive limit recipe.
We utilize partial multiplicity matrices.
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DEFINITION 4.4. For n ∈ N \ {0}, let Fn be the (2n + 1)× (2n−1 + 1) matrix
with entries in {0, 1} determined entry-wise by:

(Fn)h,j =


1 if (h = 2k + 1, k ∈ {0, . . . , 2n−1}, and j = k + 1)

or (h = 2k, k ∈ {1, . . . , 2n−1} and (j = k ∨ j = k + 1));
0 otherwise.

For example,

F1 =

 1 0
1 1
0 1

 , F2 =


1 0 0
1 1 0
0 1 0
0 1 1
0 0 1

 .

We would like these matrices to determine unital ∗-monomorphisms, so that our
inductive limit is a unital C∗-algebra, which motivates the following lemma.

LEMMA 4.5. Using Definition 4.4 and relations (4.1), if n ∈ N \ {0}, then:

Fn


q(n, 0)
q(n, 1)

...
q(n, 2n−1)

 =


q(n + 1, 0)
q(n + 1, 1)

...
q(n + 1, 2n)

 .

Proof. Let n ∈ N \ {0}. Let k ∈ {1, . . . , 2n−1} and consider q(n + 1, 2k− 1).
Now, by Definition 4.4, row 2k− 1 + 1 = 2k of Fn has 1 in entry k and k + 1, and
0 elsewhere. Thus:

((Fn)2k,1, . . . , (Fn)2k,2n−1+1) ·


q(n, 0)
q(n, 1)

...
q(n, 2n−1)

 = q(n, k− 1) + q(n, k− 1 + 1)

= q(n + 1, 2k− 1)

by (4.1). Next, let k ∈ {0, . . . , 2n−1} and consider q(n + 1, 2k). By Definition 4.4,
row 2k + 1 of Fn has 1 in entry k + 1 and 0 elsewhere. Thus, by (4.1):

((Fn)2k+1,1, . . . , (Fn)2k+1,2n−1+1) ·


q(n, 0)
q(n, 1)

...
q(n, 2n−1)

 = q(n, 2k) = q(n + 1, 2k).

Hence, by matrix multiplication, the proof is complete.

DEFINITION 4.6 ([6], [31]). Define ϕ0 : F0 → F1 by ϕ0(a) = a ⊕ a. For
n ∈ N \ {0}, by Lemma III.2.1 in [12] and Lemma 4.5, let ϕn : Fn → Fn+1 be the



498 KONRAD AGUILAR

unital ∗-monomorphism determined by Fn in Definition 4.4. Using Definition 4.3,
we let the unital C∗-inductive limit (Notation 2.5)

F = lim−→(Fn, ϕn)n∈N

denote the Boca–Mundici AF-algebra.
Let Fn = ϕn

−→
(Fn) for all n ∈ N and UF = (Fn)n∈N, which is a non-decreasing

sequence of C∗-subalgebras of F with F0 = C1F and F =
⋃

n∈N
Fn‖·‖F (see Chap-

ter 6.1 in [32]).

We note that in [6], the AF-algebra F is constructed by a Bratteli diagram
displayed as Figure 2 in [6], so in order to utilize the results of [6], we verify that
we have the same Bratteli diagram up to adding one vertex of label 1 at level
n = 0 satisfying the conditions at the beginning of Section 1 in [6]. But, first, we
fix some notation for Bratteli diagrams and state some well-known results that
will prove useful.

DEFINITION 4.7 ([7]). A Bratteli diagram is given by a directed graph D =
(VD , ED) with labelled vertices and multiple edges between two vertices is al-
lowed. The set VD ⊂ N2 is the set of labeled vertices and ED ⊂ N2 ×N2 is the
set of edges, which consist of ordered pairs from VD . For each n ∈ N, let vDn ∈ N.

Define VD =
⋃

n∈N
VDn , where for n ∈ N, we let

VDn = {(n, k) ∈ N×N : k ∈ {0, . . . , vDn }},

and denote the label of the vertices (n, k) ∈ VD by [n, k]D ∈ N \ {0}.
Next, let ED ⊂ VD ×VD . Now, we list some axioms for VD and ED .

(i) For all n ∈ N, if m ∈ N \ {n + 1}, then ((n, k), (m, q)) 6∈ ED for all k ∈
{0, . . . , vDn } and q ∈ {0, . . . , vDm}.

(ii) If (n, k) ∈ VD , then there exists q ∈ {0, . . . , vDn+1} such that ((n, k), (n +

1, q)) ∈ ED .
(iii) If n ∈ N \ {0} and (n, k) ∈ VD , then there exists q ∈ {0, . . . , vDn−1} such

that ((n− 1, q), (n, k)) ∈ ED .

If D satisfies all properties above, then we call D a Bratteli diagram. The set
of all Bratteli diagrams is denoted by BD .

We also introduce the following notation. For each n ∈ N, let:

EDn = (VDn ×VDn+1) ∩ ED .

By axiom (i) we have ED =
⋃

n∈N
EDn . Also, for ((n, k), (n + 1, q)) ∈ EDn , we denote

by [(n, k), (n + 1, q)]D ∈ N \ {0} the number of edges from (n, k) to (n + 1, q). Let
(n, k) ∈ VD , define

RD(n,k) = {(n + 1, q) ∈ VDn+1 : ((n, k), (n + 1, q)) ∈ ED},
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which is non-empty by axiom (ii). We refer to VDn , EDn , and (VDn , EDn ) as the ver-
tices at level n, edges at level n, and diagram at level n, respectively.

REMARK 4.8. It is easy to see that this definition coincides with Bratteli’s of
Section 1.8 in [7], in that we simply trade his arrow notation with that of edges
and number of edges. That is, given a Bratteli diagram D, the correspondence
is: (n, k) ↘p (n + 1, q) if and only if ((n, k), (n + 1, q)) ∈ ED and [(n, k), (n +
1, q)]D = p.

DEFINITION 4.9 ([7]). Let I = (An, αn)n∈N be an inductive sequence of fi-
nite dimensional C∗-algebras with C∗-inductive limit A, where αn is injective for
all n ∈ N. Thus, A is an AF-algebra by Chapter 6.1 in [32]. LetDb(A) be a diagram
associated to A constructed as follows.

Fix n ∈ N. Since An is finite dimensional, An ∼=
an⊕

k=0
M(n(k)) such that

an ∈ N and n(k) ∈ N \ {0} for k ∈ {0, . . . , an}. Define

vDb(A)
n = an, VDb(A)

n = {(n, k) ∈ N2 : k ∈ {0, . . . , vDb(A)
n }},

and label [n, k]Db(A) =
√

dim(M(n(k))) for k ∈ {0, . . . , vDb(A)
n }.

Let An be the (an+1 + 1)× (an + 1)-partial multiplicity matrix associated to
αn : An → An+1 with entries (An)i,j ∈ N, i ∈ {1, . . . , an+1 + 1}, j ∈ {1, . . . , an + 1}
given by Lemma III.2.2 in [12]. Define

EDb(A)
n = {((n, k), (n + 1, q)) ∈ N2 ×N2 : (An)q+1,k+1 6= 0},

and if ((n, k), (n + 1, q)) ∈ EDb(A)
n , then let the number of edges be [(n, k), (n +

1, q)]Db(A) = (An)q+1,k+1.

Let VDb(A) =
⋃

n∈N
VDb(A)

n , EDb(A) =
⋃

n∈N
EDb(A)

n , and denote Db(A) =

(VDb(A), EDb(A)). By Section 1.8 in [7], we conclude Db(A) ∈ BD is a Bratteli
diagram as in Definition 4.7.

If A is an AF-algebra of the form A =
⋃

n∈N
An
‖·‖A where U = (An)n∈N is a

non-decreasing sequence of finite dimensional C∗-subalgebras of A, then the dia-
gram Db(A) has the same vertices as the one above, and the edges are formed by
the partial multiplicity matrix built from the partial multiplicities of the inclusion
mappings ιn : An → An+1 for all n ∈ N.

REMARK 4.10. We note that the converse of Definition 4.9 is true in the sense
that given a Bratteli diagram, one may construct an AF-algebra associated to it.
The process is described in Section 1.8 in [7], and in particular, one may construct
partial multiplicity matrices from the edge set, which then provide injective ∗-
homomorphisms to build an inductive limit.

As an example, which will be used in Proposition 4.23, we display the Brat-
teli diagram for the Effros–Shen AF-algebras of Notation 2.9.
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EXAMPLE 4.11. Fix θ ∈ (0, 1) \ Q with continued fraction expansion θ =
[aj]j∈N using (2.1) with convergents (pθ

n/qθ
n)n∈N given by (2.2). Let AFθ be the

Effros–Shen AF-algebra from Notation 2.9. Thus, vDb(AFθ)
0 = 0 and VDb(AFθ)

0 =

{(0, 0)} with [0, 0]Db(AFθ)
= 1. For n ∈ N \ {0}, we have vDb(AFθ)

n = 1 and

VDb(AFθ)
n = {(n, 0), (n, 1)} with [n, 0]Db(AFθ)

= qθ
n, [n, 1]Db(AFθ)

= qθ
n−1. The

partial multiplicity matrices are

A0 =

(
a1
1

)
and An =

(
an+1 1

1 0

)
for n ∈ N \ {0}

by Notation 2.9 and Lemma III.2.1 in [12], which determines the edges. We now
provide the diagram as a graph. The label in the edges denotes the number of
edges and the top row contains the vertices (n, 1) with their labels with n increas-
ing from left to right, and the bottom row having vertices (n, 0) with their labels
with n increasing from left to right:

qθ
0

1

��

qθ
1

1

!!

qθ
2 · · ·

1

##

qθ
n−1

1

##

qθ
n · · ·

1 a1 //

1

AA

qθ
1

a2 //
1

@@

qθ
2

a3 //
1

==

qθ
3 · · · an //

1

;;

qθ
n an+1 //

1

;;

qθ
n+1 · · ·

Returning to the diagram setting, we define what an ideal of a diagram is.

DEFINITION 4.12. Let D = (VD , ED) be a Bratteli diagram. We call D(I) =
(V I , EI) an ideal diagram of D if V I ⊆ VD , EI ⊆ ED and:

(i) (directed) if (n, k) ∈ V I and ((n, k), (n + 1, q)) ∈ ED , then (n + 1, q) ∈ V I ;
(ii) (hereditary) if (n, k) ∈ VD and RD(n,k) ⊆ V I , then (n, k) ∈ V I ;

(iii) (edges) if (n, k), (n + 1, q) ∈ V I such that ((n, k), (n + 1, q)) ∈ ED , then
((n, k), (n + 1, q)) ∈ EI .
Furthermore, if (n, k) ∈ VD ∩ V I , then [n, k]D = [n, k]D(I). And, if ((n, k), (n +

1, q)) ∈ ED ∩ EI , then [(n, k), (n + 1, q)]D = [(n, k), (n + 1, q)]D(I).
Also, for n ∈ N, denote V I

n = VDn ∩V I and EI
n = EDn ∩ EI with In = (V I

n , EI
n)

to also include all associated labels and number of edges, and refer to V I
n as the

vertices at level n of the diagram. Let Ideal(D) denote the set of ideals of D.

NOTATION 4.13. Let A =
⋃

n∈N
An
‖·‖A be an AF-algebra where U = (An)n∈N

is a non-decreasing sequence of finite dimensional C∗-subalgebras of A. Using
Definition 4.9, let Db(A) be the associated diagram.

Let I ∈ Ideal(A) be a norm closed two-sided ideal of A. Then by Lemma 3.2
in [7], the subset Λ ofDb(A) formed by I is an ideal in the sense of Definition 4.12.
Denote this by Db(A)(I) ∈ Ideal(Db(A)), where Ideal(Db(A)) is the set of ideals
of Db(A) from Definition 4.12.
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PROPOSITION 4.14 (Lemma 3.2 in [7]). Let A =
⋃

n∈N
An
‖·‖A be an AF-algebra,

where U = (An)n∈N is a non-decreasing sequence of finite dimensional C∗-subalgebras
of A and Bratteli diagram Db(A) from Definition 4.9. Using Notation 4.13 and Defini-
tion 4.12, the map

i(·,Db(A)) : I ∈ Ideal(A) 7−→ Db(A)(I) ∈ Ideal(Db(A))

given by Lemma 3.2 in [7] is a well-defined bijection, where the vertices of VDb(A)(I)
n are

uniquely determined by I ∩An for each n ∈ N.

PROPOSITION 4.15. The Bratteli diagram Db(F) = (VDb(F), EDb(F)) of F of
Definition 4.9, satisfies for all n ∈ N \ {0}:

(i) VDb(F)
n = {(n, k) : k ∈ {0, . . . , 2n−1}};

(ii) ((n, k), (n + 1, l)) ∈ EDb(F)
n if and only if |2k− l| 6 1.

Moreover, two such vertices are either connected at exactly one edge or are not connected
at all.

Proof. Property (i) is clear by Definition 4.3. By the definition of Bratteli
diagram in Section III.2 in [12], an edge exists from (n, s) to (n + 1, t) if and only if
its associated entry in the partial multiplicity matrix (Fn)t+1,s+1 is non-zero.

Now, assume that |2s − t| 6 1. First, assume t = 2k + 1 for some k ∈
{0, . . . , 2n−1 − 1}. We thus have |2s− t| 6 1 ⇔ k 6 s 6 k + 1 ⇔ s ∈ {k, k + 1},
since s ∈ N.

Next, assume that t = 2k for some k ∈ {0, . . . , 2n−1}. We thus have

|2s− t| 6 1⇔ −1
2

+ k 6 s 6
1
2
+ k⇔ |s− k| 6 1

2
⇔ s = k

since s ∈ N. But, considering both t odd and even, these equivalences are also
equivalent to the conditions for (Fn)t+1,s+1 to be non-zero by Definition 4.4, which
determine the edges of Db(F). Furthermore, since the non-zero entries of Fn are
all 1, only one edge exists between vertices for which there is an edge.

Next, we describe the ideals of F, whose quotients are ∗-isomorphic to the
Effros–Shen AF-algebras.

DEFINITION 4.16 ([6]). Let θ ∈ (0, 1) \Q. We define the ideal Iθ ∈ Ideal(F)
diagrammatically. By the proof of Proposition 4.i in [6], for each n ∈ N\ {0}, there
exists a unique jn(θ) ∈ {0, . . . , 2n−1− 1} such that r(n, jn(θ)) < θ < r(n, jn(θ)+ 1)
of relations (4.1). The set of vertices is defined by:

VDb(F) \ ({(n, jn(θ)), (n, jn(θ) + 1) : n ∈ N \ {0} ∪ {(0, 0)}})

and will be denoted by VD(Iθ). Let ED(Iθ) be the set of edges of Db(F), which are
between the vertices in VD(Iθ) and let D(Iθ) = (VD(Iθ), ED(Iθ)). By Proposition 4.i
in [6], the diagramD(Iθ) ∈ Ideal(Db(F)) is an ideal diagram as in Definition 4.12.
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Using Proposition 4.14, define:

Iθ = i(·,Db(A))
−1(D(Iθ)) ∈ Ideal(A).

By Proposition 4.i in [6], if n ∈ N \ {0, 1} and 1 6 jn(θ) 6 2n−1 − 2, then:

Iθ ∩ Fn = ϕn

−→

(( jn(θ)−1⊕
k=0

M(q(n, k))
)
⊕ {0} ⊕ {0} ⊕

( 2n−1⊕
k=jn(θ)+2

M(q(n, k))
))

.

If jn(θ) = 0, then:

Iθ ∩ Fn = ϕn

−→

(
{0} ⊕ {0} ⊕

( 2n−1⊕
k=jn(θ)+2

M(q(n, k))
))

.

If jn(θ) = 2n−1 − 1, then

Iθ ∩ Fn = ϕn

−→

(( jn(θ)−1⊕
k=0

M(q(n, k))
)
⊕ {0} ⊕ {0}

)
,

and if n ∈ {0, 1}, then Iθ ∩Fn = {0}. We note that Iθ ∈ Prim(F) by Proposition 4.i
in [6].

Before moving to describing the quantum metric structure of quotients of
the ideals of Definition 4.16, the following lemma captures more properties of the
structure of the ideals introduced in Definition 4.16; its proof is omitted as it is
elementary and follows basic ingredients from [6].

LEMMA 4.17. Using notation from Definition 4.16, if n ∈ N \ {0}, θ ∈ (0, 1) \
Q, then jn+1(θ) ∈ {2jn(θ), 2jn(θ) + 1}.

DEFINITION 4.18 ([30]). The Baire space N is the set (N \ {0})N endowed
with the metric d defined, for any two (x(n))n∈N, (y(n))n∈N in N , by:

d((x(n))n∈N, (y(n))n∈N) =

{
0 x(n) = y(n) for all n ∈ N,
2−min{n∈N:x(n) 6=y(n)} otherwise.

In the next two results on the subset of ideals of Definition 4.16, we provide
a useful topological result about the metric on ideals of Corollary 3.20, in which
the equivalence of (i) and (iii) is a consequence of Corollary 12 in [6], which is
unique to Boca’s work on the AF-algebra F. Furthermore, it was shown in Re-
mark 8(ii) in [6] that Prim(F) with the Jacobson topology is not T1 and therefore
not Hausdorff. Thus the following proposition does not immediately follow from
Corollary 3.31. However, in the next proposition, a direct advantage of the metric
of Corollary 3.20 is to recover the Jacobson topology from the Fell topology on
the subset of ideals of Definition 4.16.

PROPOSITION 4.19. If (θn)n∈N ⊆ (0, 1) \Q, then using notation from Defini-
tion 4.6 and Definition 4.16, the following are equivalent:

(i) (θn)n∈N converges to θ∞ with respect to the usual topology on R;
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(ii) (cf(θn))n∈N converges to cf(θ∞) with respect to the Baire space, N and its metric
from Definition 4.18, where cf denotes the unique continued fraction expansion of an
irrational;

(iii) (Iθn)n∈N converges to Iθ∞ with respect to the Jacobson topology (Definition 3.1)
on Prim(F);

(iv) (Iθn)n∈N converges to Iθ∞ with respect to the metric topology of mi(UF) of Corol-
lary 3.21 or the Fell topology of Definition 3.5.

Proof. The equivalence between (i) and (ii) is a classic result, for which a
proof can be found in Proposition 5.10 in [2]. The equivalence between (i) and
(iii) is immediate from Corollary 12 in [6]. And, therefore, (ii) is equivalent to (iii).
Thus, it remains to prove that (iii) is equivalent to (iv).

(iv) implies (iii) is an immediate consequence of Proposition 3.7 and The-
orem 3.21 as the Fell topology is stronger. Hence, assume (iii). Then, since we
have already established (iii) implies (ii), we may assume (ii). For each n ∈ N, let
cf(θn) = [an

j ]j∈N. By assumption, the coordinates an
0 = 0 for all n ∈ N. Now,

assume that there exists N ∈ N \ {0} such that an
j = a∞

j for all n ∈ N and
j ∈ {0, . . . , N}. Assume without loss of generality that N is odd. Thus, using
Figure 5 in [6], we have that

(4.2) Lan
1−1 ◦ Ran

2
◦ · · · ◦ Lan

N
= La∞

1 −1 ◦ Ra∞
2
◦ · · · ◦ La∞

N

for all n ∈ N. But, equation (4.2) determines the vertices for the diagram of
the quotient F/Iθn for all n ∈ N by the proof of Proposition 4.i in [6] and the
vertices of the diagram of the quotient F/Iθn are simply the complement of the
vertices of the diagram of Iθn by Theorem III.4.4 in [12]. Now, primitive ideals
must have the same vertices at level 0 of the diagram since they cannot equal A
by Definition 3.1 and are thus non-unital. But, for any η ∈ (0, 1) \Q, the ideals
Iη must always have the same vertices at level 1 of the diagram as well since the
only two vertices are (1, 0), (1, 1) and r(1, 0) = 0 < θ < 1 = r(1, 1) by relations
(4.1) for all θ ∈ (0, 1) \Q. Thus, by (4.2) we gather that Iθn ∩ Fj = Iθ∞ ∩ Fj for all
n ∈ N and

j ∈
{

0, . . . , max
{

1, a∞
1 − 1 +

( N

∑
k=2

aN
k

)}}
,

where max
{

1, a∞
1 − 1 +

( N
∑

k=2
aN

k

)}
> N as the terms of the continued fraction

expansion are all positive integers for coordinates greater than 0. Thus, by the
definition of the metric on the Baire space and the metric mi(UF), we conclude
that convergence in the Baire space metric of (cf(θn))n∈N to cf(θ∞) implies con-
vergence of (Iθn)n∈N to Iθ∞ with respect to the metric mi(UF) or the Fell topology
by Theorem 3.21.

Although the next result follows from Proposition 4.19 and the proofs of
Proposition 4.i and Lemma 11 in [6], we provide a proof here.
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PROPOSITION 4.20. The map:

θ ∈ (0, 1) \Q 7−→ Iθ ∈ Prim(A)

is a homeomorphism onto its image when (0, 1) \Q is equipped with the topology induced
by the usual topology on R and Prim(A) is equipped with either the Jacobson topology,
Fell topology, or the metric topology of mi(UF) of Corollary 3.21.

Proof. By Proposition 4.19, the fact that the Jacobson topology of a sepa-
rable C∗-algebra is second countable (see Corollary 4.3.4 in [33]), and the Fell
topology of an AF-algebra being metrizable (see Theorem 3.21 or more generally
Lemma 3.18), sequential continuity suffices. Thus we only need to verify that the
map defined in this proposition is a well-defined bijection onto its image. How-
ever, it is well-defined by Definition 4.16. Thus, injectivity remains, which will
follow from the next claim.

CLAIM 4.21. If θ ∈ (0, 1) \Q, then

lim
n→∞

r(n, jn(θ)) = θ,

where the quantity r(n, jn(θ)) is defined in (4.1) and in Definition 4.16.

Proof of claim. Fix θ ∈ (0, 1) \ Q. Let (pθ
n/qθ

n)n∈N denote convergents of θ.
Now, the proofs of Proposition 4.i and Lemma 11 in [6] show the existence of an
increasing sequence (kn)n∈N ⊆ N \ {0} such that for all n ∈ N \ {0}:

(4.3) (r(kn, jkn(θ)), r(kn, jkn(θ) + 1)) ∈
{( pθ

n
qθ

n
,

pθ
n−1

qθ
n−1

)
,
( pθ

n−1

qθ
n−1

,
pθ

n
qθ

n

)}
.

Next, fix n ∈ N \ {0}. Consider r(n, jn(θ)). By Lemma 4.17, first assume that
jn+1(θ) = 2jn(θ). Then, by (4.1) we have:

r(n + 1, jn+1(θ)) =
p(n + 1, 2jn(θ))
q(n + 1, 2jn(θ))

= r(n, jn(θ)).

Also, we have

r(n + 1, jn+1(θ) + 1) =
p(n + 1, 2jn(θ) + 1)
q(n + 1, 2jn(θ) + 1)

=
p(n, jn(θ)) + p(n, jn(θ) + 1)
p(n, jn(θ)) + p(n, jn(θ) + 1)

6 r(n, jn(θ) + 1)

by (4.1) and the fact that

p(n, jn(θ) + 1)q(n, jn(θ))− p(n, jn(θ))q(n, jn(θ) + 1) = 1 > 0

from Section 1 in [6]. For the case jn+1(θ) = 2jn(θ) + 1, a similar argument shows
that r(n + 1, jn+1(θ)) > r(n, jn(θ)) and r(n + 1, jn+1(θ) + 1) = r(n, jn(θ) + 1).
Hence, for all n ∈ N \ {0}, we gather that:

(4.4) r(n + 1, jn+1(θ) + 1)− r(n + 1, jn+1(θ)) 6 r(n, jn(θ) + 1)− r(n, jn(θ)).
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For all n ∈ N \ {0} such that n > k1, define Nn = max{km : km 6 n}. Note
that since (kn)n∈N is increasing, we have that (Nn)n>k1 is non-decreasing and
lim

n→∞
Nn = ∞. Now, fix n ∈ N \ {0} such that n > k1, combining expressions (4.3)

and (4.4) we have by Definition 4.16,

0 < θ − r(n, jn(θ)) < r(n, jn(θ) + 1)− r(n, jn(θ))

6 r(Nn, jNn(θ) + 1)− r(Nn, jNn(θ)) =
∣∣∣ pθ

Nn

qθ
Nn

−
pθ

Nn−1

qθ
Nn−1

∣∣∣,
and therefore lim

n→∞
r(n, jn(θ)) = θ since lim

n→∞
(pθ

n/qθ
n) = θ and (Nn)n>k1 is non-

decreasing with lim
n→∞

Nn = ∞.

Next, let θ, η ∈ (0, 1) \ Q. Assume that Iθ = Iη and thus their diagrams
agree ( Theorem 3.3 in [7]). Hence, we have that jn(θ) = jn(η) for all n ∈ N, and
thus r(n, jn(θ)) = r(n, jn(η)) for all n ∈ N \ {0}. Therefore, by the claim we have

θ = lim
n→∞

r(n, jn(θ)) = lim
n→∞

r(n, jn(η)) = η,

which completes the proof.

REMARK 4.22. An immediate consequence of Proposition 4.20 is that if:
(0, 1) \ Q is equipped with its relative topology from the usual topology on R,
the set {Iθ ∈ Prim(A) : θ ∈ (0, 1) \ Q} is equipped with its relative topology
induced by the Jacobson topology, and the set {Iθ ∈ Prim(A) : θ ∈ (0, 1) \ Q}
is equipped with its relative topology induced by the metric topology of mi(UF)
of Corollary 3.20 or the Fell topology of Definition 3.5, then all these spaces
are homeomorphic to the Baire space N with its metric topology from Defini-
tion 4.18. In particular, the totally bounded metric mi(UF) topology on the set of
ideals {Iθ ∈ Prim(A) : θ ∈ (0, 1) \Q} is homeomorphic to (0, 1) \Q with its to-
tally bounded metric topology inherited from the usual topology on R. Hence,
in some sense, the metric mi(UF) topology shares more metric information with
(0, 1) \Q and its metric than the Baire space metric topology as the Baire space is
complete and not totally bounded (see Theorem 6.5 in [2]) (since the Baire space
is complete, if it were totally bounded, then it would be compact, which would
therefore contradict the fact that it is homeomorphic to the irrationals). This can
also be displayed in metric calculations.

Indeed, consider θ, µ ∈ (0, 1) \ Q with continued fraction expansions θ =
[aj]j∈N and µ = [bj]j∈N, in which a0 = 0, a1 = 1000, aj = 1, ∀j > 2 and b0, b1 =
1, bj = 1 ∀j > 2, and thus θ ≈ 0.001, µ ≈ 0.618, |θ− µ| ≈ 0.617. In the Baire metric
d(cf(θ), cf(µ)) = 0.5, and in the ideal metric mi(UF)(Iθ , Iµ) = 0.25 since at level
n = 1 the diagram for F/Iθ begins with L999 and for F/Iµ begins with Rb2 by
Proposition 4.i in [6], so the ideal diagrams differ first at n = 2. Now, assume that
for µ we have instead b1 = 999, bj = 1 ∀j > 2, and thus |θ− µ| ≈ 0.000000998, but
in the Baire metric we still have that d(cf(θ), cf(µ)) = 0.5, while mi(UF)(Iθ , Iµ) =
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2−1000 since at level n = 1 the diagram for F/Iθ begins with L999 and for F/Iµ

begins with L998 and then transitions to Rb2 by Proposition 4.i in [6], so the ideal
diagrams differ first at n = 1000. In conclusion, in this example, the absolute
value metric | · | behaves much more like the metric mi(UF) than the Baire metric.

Fix θ ∈ (0, 1) \Q. We present a ∗-isomorphism from F/Iθ to AFθ as a propo-
sition to highlight a useful property for our purposes. Of course, Proposition 4.i
in [6] already established that F/Iθ and AFθ are ∗-isomorphic, but here we simply
provide an explicit example of such a ∗-isomorphism, which will serve us in the
results pertaining to tracial states in Lemma 4.29.

PROPOSITION 4.23. If θ ∈ (0, 1) \ Q with continued fraction expansion θ =
[aj]j∈N as in (2.1), then using Notation 2.9 and Definition 4.16, there exists a ∗-iso-
morphism afθ : F/Iθ → AFθ such that if x = x0 ⊕ · · · ⊕ x2a1−1 ∈ Fa1 , then:

afθ(ϕa1

−→
(x) + Iθ) = α1

θ−→
(xja1 (θ)+1 ⊕ xja1 (θ)

) ∈ α1
θ−→
(AFθ,1).

Proof. By the proof of Proposition 4.i in [6], the Bratteli diagram of F/Iθ

begins with the diagram La1−1 of Figure 5 in [6] at level n = 1. Now, the diagram
Ca ◦ Cb of Figure 6 in [6] is a section of the diagram of Example 4.11, in which
the left column of Ca1−1 ◦ Ca2 is the bottom row of the first two levels from left to
right after level n = 0 of Example 4.11. Therefore, by the placement of ~ at level
a1 in Figure 6 in [6], define a map f : (Fa1 + Iθ)/Iθ → α1

θ−→
(AFθ,1) by:

f : (ϕa1

−→
(x) + Iθ) 7→ α1

θ−→
(xja1 (θ)+1 ⊕ xja1 (θ)

),

where x = x0 ⊕ · · · ⊕ x2a1−1 ∈ Fa1 . We show that f is a ∗-isomorphism from
(Fa1 + Iθ)/Iθ onto α1

θ−→
(AFθ,1).

We first show that f is well-defined. Let c, e ∈ (Fa1 + Iθ)/Iθ such that c = e.
Now, we have c = ϕa1

−→
(c′) + Iθ , e = ϕa1

−→
(e′) + Iθ where c′ = c′0 ⊕ · · · ⊕ c′

2a1−1 ∈ Fa1

and e′ = e′0 ⊕ · · · ⊕ e′
2a1−1 ∈ Fa1 . But, the assumption c = e implies that ϕa1

−→
(c′ −

e′) ∈ Iθ ∩ Fa1 . Thus, by Definition 4.16 of Iθ , we have that c′ja1 (θ)+1 ⊕ c′ja1 (θ)
=

e′ja1 (θ)+1 ⊕ e′ja1 (θ)
, and since ja1(θ) = qθ

0 and ja1(θ) + 1 = qθ
1 by Proposition 4.i in

[6] and the discussion at the start of the proof, we gather that f is a well-defined
∗-homomorphism since the canonical maps α1

θ−→
and ϕa1

−→
are ∗-homomorphisms.

For surjectivity of f , let x = α1
θ−→
(xqθ

1
⊕ xqθ

0
), where xqθ

1
⊕ xqθ

0
∈ AFθ,1. Define

y = y0⊕ · · · y2a1−1 ∈ Fa1 such that yja1 (θ)
= xqθ

0
and yja1 (θ)+1 = xqθ

1
with yk = 0 for

all k ∈ {0, . . . , 2a1−1} \ {ja1(θ), ja1(θ) + 1}. Hence f (ϕa1

−→
(y) + Iθ) = x.

For injectivity of f , let x = x0⊕ · · ·⊕ x2a1−1 ∈ Fa1 and y = y0⊕ · · ·⊕ y2a1−1 ∈
Fa1 such that f (ϕa1

−→
(x) + Iθ) = f (ϕa1

−→
(y) + Iθ). Thus, since α1

θ−→
is injective, we have

that xja1 (θ)+1 ⊕ xja1 (θ)
= yja1 (θ)+1 ⊕ yja1 (θ)

. But, this then implies that ϕa1

−→
(x− y) ∈
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Iθ ∩Fa1 ⊆ Iθ by Definition 4.16, and therefore, the terms ϕa1

−→
(x)+ Iθ = ϕa1

−→
(y)+ Iθ ,

which completes the argument that f is a ∗-isomorphism from (Fa1 + Iθ)/Iθ onto
α1

θ−→
(AFθ,1).

Lastly, using Definition 4.9, consider the Bratteli diagram of F/Iθ given by

the sequence of unital C∗-subalgebras ((Fxj+1 + Iθ)/Iθ)j∈N, where xj+1 =
j+1
∑

k=1
ak

for all j ∈ N. Hence, the proof of Proposition 4.i in [6] and Figure 6 in [6] provide
that this diagram of F/Iθ is equivalent to the Bratteli diagram of AFθ beginning
at AFθ,1 given by Example 4.11, where this equivalence of Bratteli diagrams is
given by Section 23.3 and Theorem 23.3.7 in [5]. Therefore, combining the equiv-
alence relation of Section 23.3 and Theorem 23.3.7 in [5] and the construction of
the ∗-isomorphism in Proposition III.2.7 in [12], we conclude that there exists a
∗-isomorphism afθ : F/Iθ → AFθ such that afθ(z) = f (z) for all z ∈ (Fa1 + Iθ)/Iθ ,
which completes the proof.

From the ∗-isomorphism of Proposition 4.23, we may provide a faithful tra-
cial state for the quotient F/Iθ from the unique faithful tracial state of AFθ .

NOTATION 4.24. Fix θ ∈ (0, 1) \Q. There is a unique faithful tracial state on
AFθ denoted σθ (see Lemma 5.3 and Lemma 5.5 in [2]). Thus,

τθ = σθ ◦ afθ
is the unique faithful tracial state on F/Iθ with afθ from Proposition 4.23.

Let Qθ : F→ F/Iθ denote the quotient map. Thus, by Theorem V.2.2 in [11],
there exists a unique linear functional on F denoted ρθ such that ker ρθ ⊇ Iθ and
τθ ◦Qθ(x) = ρθ(x) for all x ∈ F. Since τθ is a tracial state and

τθ ◦Qθ(x) = ρθ(x)

for all x ∈ F, we conclude that ρθ is also a tracial state that vanishes on Iθ . Fur-
thermore, ρθ is faithful on F \ Iθ since τθ is faithful on F/Iθ .

One more ingredient remains before we define the quantum metric struc-
ture for the quotient spaces F/Iθ .

LEMMA 4.25. Let θ ∈ (0, 1) \Q. Using notation from Definition 4.6 and Defini-
tion 4.16, if we define

βθ : n ∈ N 7−→ 1
dim((Fn + Iθ)/Iθ)

∈ (0, ∞),

then βθ(n) = 1/(q(n, jn(θ))2 + q(n, jn(θ) + 1)2) 6 1/n2 for all n ∈ N \ {0} and
βθ(0) = 1.

Proof. First, (F0 + Iθ)/Iθ = C1F/Iθ
, hence, βθ(0) = 1. Fix n ∈ N \ {0}. Since

(Fn + Iθ)/Iθ is ∗-isomorphic to Fn/(Iθ ∩ Fn) (see Proposition 3.26), we have that

dim((Fn + Iθ)/Iθ) = dim(Fn/(Iθ ∩ Fn)) = q(n, jn(θ))2 + q(n, jn(θ) + 1)2
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by Definition 4.16 and the dimension of the quotient is the difference in dimen-
sions of Fn and Iθ ∩ Fn . Therefore, βθ(n) = 1/(q(n, jn(θ))2 + q(n, jn(θ) + 1)2).

To prove the inequality of the lemma, we claim that for all n ∈ N \ {0}, we
have q(n, jn(θ)) > n or q(n, jn(θ) + 1) > n. We proceed by induction. If n = 1,
then q(1, j1(θ)) = 1 and q(1, j1(θ) + 1) = 1 by relations (4.1). Next assume the
statement of the claim is true for n = m. Thus, we have that q(m, jm(θ)) > m
or q(m, jm(θ) + 1) > m. First, assume that q(m, jm(θ)) > m. By Lemma 4.17,
assume that jm+1(θ) = 2jm(θ). Thus, we gather q(m + 1, jm+1(θ) + 1) = q(m +
1, 2jm(θ) + 1) = q(m, jm(θ)) + q(m, jm(θ) + 1) > m+ 1 by relations (4.1) and since
q(m, jm(θ) + 1) ∈ N \ {0}. The case jm+1(θ) = 2jm(θ) + 1 follows similarly as
well as the case q(m, jm(θ) + 1) > m, which completes the induction argument .

In particular, we have q(n, jn(θ)) > n or q(n, jn(θ) + 1) > n, which implies
that q(n, jn(θ))2 > n2 or q(n, jn(θ) + 1)2 > n2. And thus, for all n ∈ N \ {0},

1
q(n, jn(θ))2 + q(n, jn(θ) + 1)2 6

1
n2 ,

which completes the proof.

Hence, we have all the ingredients to define the quotient quantum metric
spaces of the ideals of Definition 4.16.

NOTATION 4.26. Fix θ ∈ (0, 1) \ Q. Using Definition 4.6, Definition 4.16,
Notation 4.24, and Lemma 4.25, let

(F/Iθ , L
βθ

UF/Iθ ,τθ
)

denote the (2, 0)-quasi-Leibniz quantum compact metric space given by Theo-
rem 4.1 associated to the ideal Iθ , faithful tracial state τθ , and βθ : N → (0, ∞)
having limit 0 at infinity by Lemma 4.25.

REMARK 4.27. Fix θ ∈ (0, 1) \Q. Although F/Iθ and AFθ are ∗-isomorphic,

it is unlikely that (F/Iθ , L
βθ

UF/Iθ ,τθ
) is quantum isometric to (AFθ , L

βθ
Iθ ,σθ

) of Theo-
rem 2.10 based on the Lip-norm constructions. Thus, one could not simply apply
Proposition 4.19 to Theorem 2.10 to achieve Theorem 4.30.

To provide our continuity results, we describe the faithful tracial states on
the quotients in sufficient detail through Lemma 4.28 and Lemma 4.29.

LEMMA 4.28. Fix θ ∈ (0, 1) \ Q. Let trd be the unique tracial state of M(d).
Using notation from Definition 4.6 and Definition 4.16 and from Notation 4.24, if n ∈
N \ {0}, then there exists c(n, θ) ∈ (0, 1) such that

ρθ ◦ ϕn

−→
(a) = c(n, θ)trq(n,jn(θ))(ajn(θ)) + (1− c(n, θ))trq(n,jn(θ)+1)(ajn(θ)+1),

for all a = a0 ⊕ · · · ⊕ a2n−1 ∈ Fn, and ρθ ◦ ϕ0
−→

(a) = a for all a ∈ F0.



FELL TOPOLOGIES FOR AF-ALGEBRAS AND THE QUANTUM PROPINQUITY 509

Furthermore, for all n ∈ N \ {0}, we have:

c(n + 1, θ) =


(q(n,jn(θ))+q(n,jn(θ)+1))c(n,θ)−q(n,jn(θ))

q(n,jn(θ)+1) if jn+1(θ) = 2jn(θ),

(1 + q(n,jn(θ)+1)
q(n,jn(θ))

)c(n, θ) if jn+1(θ) = 2jn(θ) + 1.

Proof. Fix θ ∈ (0, 1) \ Q. Let n ∈ N. If n = 0, then ρθ ◦ ϕ0
−→

(a) = a for all

a ∈ F0 since F0 = C. Next, let n ∈ N \ {0} and a = a0 ⊕ · · · ⊕ a2n−1 ∈ Fn. By
Example IV.5.4 in [12], we have

ρθ ◦ ϕn

−→
(a) =

2n−1

∑
k=0

c(n, k)trq(n,k)(ak),

for some c(n, k) ∈ [0, 1] for k ∈ {0, . . . , 2n−1} such that
2n−1

∑
k=0

c(n, k) = 1. Now, if

k = jn(θ), then we denote c(n, θ) = c(n, jn(θ)).
Now, denoting by τθ the unique tracial state on F/Iθ (see Notation 4.24) and

by e(n,k) the mimimal projection in {0} ⊕ · · · ⊕M(q(n, k))⊕ {0} ⊕ · · · ⊕ {0} we
have c(n, k) = q(n, k)τθ(e(n,k)) for k ∈ {0, . . . , 2n−1} and clearly c(n, k) = 0 unless
k ∈ {jn(θ), jn(θ) + 1}. Clearly:

(4.5) c(n, jn(θ)) + c(n, jn(θ) + 1) = 1.

There are two cases to consider: (i) jn+1(θ) = 2jn(θ) and (ii) jn+1(θ) = 2jn(θ) + 1.
In case (i), c(n, θ) = c(n, jn(θ)) and c(n+ 1, θ) = c(n+ 1, 2jn(θ)). From well-

known considerations about traces on AF-algebras (see, e.g., Proposition 2.5.1 in
[18]) we have:

c(n + 1, jn+1(θ))

2q(n, jn(θ)) + 1
=

c(n, jn(θ) + 1)
q(n, jn(θ) + 1)

c(n, jn(θ))
q(n, jn(θ))

=
c(n + 1, 2jn(θ))

q(n, jn(θ))
+

c(n + 1, 2jn(θ) + 1)
q(n, jn(θ)) + q(n, jn(θ) + 1)

.
(4.6)

The second equality in (4.6) and (4.5) lead to:

c(n + 1, θ) = c(n + 1, 2jn(θ))

=
(q(n, jn(θ)) + q(n, jn(θ) + 1))c(n, jn(θ))− q(n, jn(θ))

q(n, jn(θ) + 1)
.

In case (ii), c(n, θ) = c(n, jn(θ)) and c(n + 1, θ) = c(n + 1, 2jn(θ) + 1). In this
case we have:

c(n + 1, 2jn(θ) + 1)
q(n, jn(θ)) + q(n, jn(θ) + 1)

=
c(n, jn(θ))
q(n, jn(θ))

c(n, jn(θ) + 1)
q(n, jn(θ) + 1)

=
c(n + 1, 2jn(θ) + 2)

q(n, jn(θ) + 1)
+

c(n + 1, 2jn(θ) + 1)
q(n + 1, 2jn(θ) + 1)

.
(4.7)
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The first equality in (4.7) gives:

c(n + 1, θ) = c(n + 1, 2jn(θ) + 1) =
q(n, jn(θ)) + q(n, jn(θ) + 1)

q(n, jn(θ))
c(n, jn(θ)).

LEMMA 4.29. Using notation from Lemma 4.28, if θ ∈ (0, 1) \Q, then:

c(1, θ) = 1− θ.

Moreover, using notation from Definition 4.16, if θ, µ ∈ (0, 1) \Q such that there exists
N ∈ N \ {0} with Iθ ∩ FN = Iµ ∩ FN , then there exists a, b ∈ R, a 6= 0 such that:

c(N, θ) = aθ + b, c(N, µ) = aµ + b.

Proof. Let θ ∈ (0, 1) \ Q, and denote its continued fraction expansion by
θ = [aj]j∈N. Let (pθ

n/qθ
n)n∈N denote convergents of θ. Now, the unique trace

on the Effros–Shen AF-algebra AFθ = lim−→(M(qθ
n) ⊕M(qθ

n−1), αθ,n)n∈N assigns
the values (−1)nqθ

n(pθ
n−1 − qθ

n−1θ) ∈ (0, 1) and 1 − (−1)nqθ
n(pθ

n−1 − qθ
n−1θ) =

(−1)n+1qθ
n−1(pθ

n − qθ
nθ) ∈ (0, 1) to 1M(qθ

n)
⊕ 0 and 0⊕ 1M(qθ

n−1)
, respectively (see

Lemma 5.5 in [2]). Using notation from Lemma 4.28, we have

c(a1 + · · ·+ an, θ) = (−1)n+1qθ
n−1(pθ

n − qθ
nθ), ∀n > 1.

and in particular,

c(a1, θ) = 1− a1θ.

By reverse induction, we find c(m, θ) = 1− mθ for m = a1, a1 − 1, . . . , 1, and in
particular c(1, θ) = 1− θ.

Let N ∈ N \ {0, 1}. Assume that Iµ ∩ FN+1 = Iθ ∩ FN+1. Now, since FN ⊆
FN+1, we thus have Iµ ∩ FN = Iθ ∩ FN . Hence, by the induction hypothesis, there
exist a, b ∈ R, a 6= 0 such that c(N, µ) = aµ + b and c(N, θ) = aθ + b. But, as
Iµ ∩ FN+1 = Iθ ∩ FN+1, the vertices at level N + 1 agree in the ideal diagrams by
Proposition 4.14. In particular, by Definition 4.16, we have jN+1(θ) = jN+1(µ),
and similarly, the term jN(θ) = jN(µ) by Iµ ∩ FN = Iθ ∩ FN . The conclusion
follows by Lemma 4.28.

We can now prove the main result of this section.

THEOREM 4.30. Using Definition 4.16 and Notation 4.26, the map

Iθ ∈ (Prim(F), τ) 7−→ (F/Iθ , L
βθ

UF/Iθ ,τθ
) ∈ (QQCMS2,0, Λ)

is continuous to the class of (2, 0)-quasi-Leibniz quantum compact metric spaces metrized
by the quantum propinquity Λ, where τ is either the Jacobson topology, the relative metric
topology of mi(UF) of Corollary 3.20, or the relative Fell topology of Definition 3.5.

Proof. By Proposition 4.19 and Proposition 4.20, we only need to show con-
tinuity with respect to the metric mi(UF) with sequential continuity. Thus, let
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(Iθn)n∈N ⊂ Prim(F) be a sequence such that (Iθn)n∈N converges to Iθ∞ with re-
spect to mi(UF). Therefore, by Lemma 3.23, this implies that{

Iθn =
⋃

k∈N
Iθn ∩ Fk

‖·‖F
: n ∈ N

}
is a fusing family with some fusing sequence (cn)n∈N. Thus, condition (i) of The-
orem 4.2 is satisfied.

For condition (ii) of Theorem 4.2, let N ∈ N, then by definition of fusing
sequences, if k ∈ N>cN , then Iθk ∩ FN = Iθ∞ ∩ FN . Now, let k ∈ N>cN . Consider
ρθk on FN . By Lemma 4.29, there exist a, b ∈ R, a 6= 0, such that c(N, θk) = aθk + b
for all k ∈ N>cN . But, by Proposition 4.19, (θn)n∈N converges to θ∞ with respect
to the usual topology on R. Hence, the sequence (c(N, θk))k∈N>cN

converges to
c(N, θ∞) with respect to the usual topology on R and the same applies to (1−
c(N, θk))k∈N>cN

. However, by Lemma 4.28, the coefficient c(N, θk) determines ρθk

for all k ∈ N>cN . Hence, Lemma 3.3 in [1] provides that (ρθk )k∈N>cN
converges to

ρθ∞ in the weak* topology on S (FN).
Condition (iii) of Theorem 4.2 follows a similar argument as in the proof

of condition (ii) since the sequences βθ of Lemma 4.25 are determined by the
terms jn(θ). Also, all βθ are uniformly bounded by the sequence (1/n2)n∈N which
converges to 0. Therefore, the proof is complete.

As an aside to Remark 4.27, we obtain the following analogue to Theo-
rem 2.10 in terms of quotients.

COROLLARY 4.31. Using Notation 4.26, the map

θ ∈ ((0, 1) \Q, | · |) 7−→ (F/Iθ , L
βθ

UF/Iθ ,τθ
) ∈ (QQCMS2,0, Λ)

is continuous from (0, 1) \ Q, with its topology as a subset of R to the class of (2, 0)-
quasi-Leibniz quantum compact metric spaces metrized by the quantum propinquity Λ.

For the proof apply Proposition 4.20 to Theorem 4.30.
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