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ABSTRACT. We describe a weak tracial analog of approximate representability
under the name “weak tracial approximate representability” for finite group
actions. We then investigate the dual actions on the crossed products by this
class of group actions. Namely, let G be a finite abelian group, let A be an
infinite-dimensional simple unital C∗-algebra, and let α : G → Aut(A) be an
action of G on A which is pointwise outer. Then α has the weak tracial Rokhlin
property if and only if the dual action α̂ of the Pontryagin dual Ĝ on the
crossed product C∗(G, A, α) is weakly tracially approximately representable,
and α is weakly tracially approximately representable if and only if the dual
action α̂ has the weak tracial Rokhlin property. This generalizes the results of
Izumi in 2004 and Phillips in 2011 on the dual actions of finite abelian groups
on unital simple C∗-algebras.

KEYWORDS: Weak tracial approximate representability, duality, simple C∗-algebras,
crossed product.
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INTRODUCTION

Let A be any C∗-algebra, let G be a locally compact abelian group, let α : G →
Aut(A) be an action, and let Ĝ be the Pontryagin dual of G. For every ω ∈
Ĝ, there is an automorphism α̂ω of the crossed product C∗(G, A, α) given on
Cc(G, A, α) by α̂ω(a)(g) = ω(g)a(g) for a ∈ Cc(G, A, α) and g ∈ G. Moreover,
α̂ : Ĝ → Aut(C∗(G, A, α)) is a continuous action of Ĝ on C∗(G, A, α) which is
called the dual action. (One can also use ω(g) in place of ω(g).) In this regard,
discovering structures and properties of the dual action α̂ on the crossed product
from structures and properties of the underlying action α or the other way around
is always an important problem, given the fact that ̂̂α is essentially as same as α
by the Takai duality.
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The notion of approximate representability for finite group actions on C∗-
algebras was introduced by Izumi in [16]. He proved that an action α : G →
Aut(A) of a finite abelian group on a unital separable C∗-algebra has the Rokhlin
property if and only if the dual action α̂ is approximately representable, and α is
approximately representable if and only if the dual action α̂ has the Rokhlin prop-
erty. This theorem is usually called the duality theorem for finite group actions
with the Rokhlin property.

In the setting of finite quantum group actions, Kodaka–Teruya studied the
Rokhlin property and approximate representability in [18]. Further, an appro-
priate notion of the Rokhlin property under the name “spatial Rokhlin prop-
erty” and appropriate version of approximate representability under the name
“spatial approximate representability” were introduced in the setting of compact
quantum groups by Gardella, Kalantar, and Lupini in [12]. The work of Izumi
(the duality theorem for finite group actions) was generalized to these classes of
quantum groups as well. Further, a version of the duality theorem for Rokhlin
dimension, introduced by Hirshberg, Winter, and Zacharias in [15], was obtained
in [10] by Gardella, Hirshberg, and Santiago in the setting of representability di-
mensions and Rokhlin dimensions.

Even though a version of the tracial Rokhlin property for actions of non-
finite compact groups has been recently defined in [21], the right version of the
tracial approximate representability has not been known yet for this class of group
actions. In the setting of finite groups, Phillips in [23] defined the tracial ana-
log of approximate representability under the name “tracial approximate repre-
sentability” and proved that if α : G → Aut(A) is an action of a finite abelian
group G on an infinite-dimensional simple separable unital C∗-algebra A such
that C∗(G, A, α) is simple, then α has the tracial Rokhlin property if and only if
its dual α̂ is tracially approximately representable, and vice versa. Nevertheless,
the existence of projections may create an obstruction. Namely, so many inter-
esting C∗-algebras are projectionless and, therefore, group actions on this class of
C∗-algebras with the Rokhlin property or even the tracial Rokhlin property are
rare. The need for filling this void has led to have a weaker version of the tracial
Rokhlin property under the name “weak tracial Rokhlin property”. The idea is
to replace Rokhlin projections by positive contractions. This idea was introduced
by Archey in [2] and Hirshberg and Orovitz in [14] with different names. Further,
the interconnections among strong outerness, the weak tracial Rokhlin property,
and finite Rokhlin have been thoroughly studied in [11]. In particular, it has been
established that for classifiable C∗-algebras with compact trace space, the weak
tracial Rokhlin property is equivalent to strong outerness. This can be seen as a
C∗-algebraic counterpart of Jones’ theorem concerning outer actions on the hy-
perfinite II1-factor and greatly contributes to the significance and importance of
the weak tracial Rokhlin property and its dual. Also, the existence of group ac-
tions with the weak tracial property (see [14]) and the question of discovering
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an appropriate definition of a “weak tracial” analog of the approximate repre-
sentability for finite group actions, asked by Phillips, are part of our motivation
to think of this class of the group actions and their duals.

In this paper, we define a “weak tracial” analog of the approximate repre-
sentability for finite group actions (see Definition 2.1) and show in Theorem 2.8
that an outer action of a finite abelian group on an infinite-dimensional simple
unital C∗-algebra has the weak tracial Rokhlin property if and only if its dual is
weakly tracially approximately representable, and vice versa. This is in fact a
general duality result for finite group actions and generalizes the results of Izumi
[16] in the setting of simple C∗-algebras and the results of Phillips [22] on the dual
actions. Also, we give examples of finite group actions which are weakly tra-
cially approximately representable but not tracially approximately representable
(see the discussion after Theorem 2.8 and Example 2.10) and also some other
examples with or without being weakly tracially approximately representable.
(See Example 2.9, Example 2.11, and Example 2.12.)

After this work was posted on arXiv, the definition of the weak tracial ap-
proximate representability (Definition 2.1) has been generalized to non-finite dis-
crete groups and separable C∗-algebras in [19]. However, the main result of [19],
Theorem 3.21, is identical to Theorem 2.8 in this paper, with somewhat different
methods.

1. PRELIMINARIES

In this section, we begin by fixing some notation. We then collect briefly
some information on the Cuntz semigroup, and group actions with the weak
tracial Rokhlin property for easy reference and the convenience of the reader.

NOTATION 1.1. Throughout, if A is a C∗-algebra, or if A = M∞(B) for a
C∗-algebra B, we write A+ for the set of positive elements of A. For a ∈ A+, we
denote by (a − ε)+ the element of C∗(a) corresponding to the function max(0, t −
ε) on the spectrum of a. Also, we denote by K the algebra of compact operators
on a separable and infinite-dimensional Hilbert space. For a Hilbert space H,
we denote by L(H) the set of all bounded operators on H. For an action α of a
finite group G on a unital C∗-algebra A, we denote by Aα the fixed point algebra,
given by

Aα = {a ∈ A : αg(a) = a for all g ∈ G}.

The following definition is originally from [7].

DEFINITION 1.2. Let A be a C∗-algebra. For any a, b ∈ A+, we say that a is
Cuntz subequivalent to b in A, written a ≾A b, if there is a sequence (yn)∞

n=1 in A
such that

lim
n→∞

ynby∗n = a.
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If a ≾A b and b ≾A a, we say that a and b are Cuntz equivalent in A and write
a ∼A b. This relation is an equivalence relation.

Part (i) of the following lemma is known as Rørdam’s Lemma. It is Proposi-
tion 2.4 of [24] or Theorem 2.7 of [13]. Part (iia) is Lemma 2.5 of [13] and part (iib)
follows immediately from (iia) because ∥(a − λ)− (b − λ)∥ < ε.

LEMMA 1.3. Let A be a C∗-algebra.
(i) Let a, b ∈ A+. Then the following are equivalent:

(a) a ≾A b;
(b) (a − η)+ ≾A b for all η > 0;
(c) for every η > 0, there is δ > 0 such that (a − η)+ ≾A (b − δ)+.

(ii) Let a, b ∈ A+ and let ε > 0. If ∥a − b∥ < ε, then:
(a) (a − ε)+ ≾A b;
(b) for any λ > 0, we have (a − λ − ε)+ ≾A (b − λ)+.

The following is Lemma 2.6 of [6].

LEMMA 1.4. Let A be a unital C∗-algebra, let a, g ∈ A satisfy 0 ⩽ a, g ⩽ 1, and
let ε1, ε2 ⩾ 0. Then

(a − (ε1 + ε2))+ ≾A ((1 − g)a(1 − g)− ε1)+ ⊕
(

g − ε2

2

)
+

.

LEMMA 1.5. Let A be a unital C∗-algebra, let a ∈ A+ with ∥a∥ ⩽ 1, and let
ε ∈ (0, 1). Let gε : [0, 1] → [0, 1] be the continuous function

gε(λ) =

{
1

1−ε t t ⩽ 1 − ε,
1 t ⩾ 1 − ε.

Then (1 − a − ε)+ ∼A 1 − gε(a).

Proof. It can be easily seen by a functional calculus argument.

We need several approximation lemmas which will be needed in the follow-
ing sections.

LEMMA 1.6. Let M ∈ (0, ∞) and let f : [0, M] → C be a continuous function.
Then for every ε > 0 there exists δ > 0 such that whenever A is a C∗-algebra and
x, z ∈ A satisfy 0 ⩽ x ⩽ M, ∥z∥ ⩽ M, and ∥xz− zx∥ < δ, then ∥ f (x)z− z f (x)∥ < ε.

Proof. The proof is the same as the proof of Lemma 2.5 of [3], except we
allow here to use M. This change makes no difference.

LEMMA 1.7. Let M ∈ (0, ∞) and let f : [0, M] → C be a continuous function.
Then for every ε > 0 there exists δ > 0 such that whenever A is a C∗-algebra and
x, y ∈ A+ satisfying ∥x∥, ∥y∥ ⩽ M and ∥x − y∥ < δ, then ∥ f (x)− f (y)∥ < ε.

Proof. The case M = 1 is Lemma VI.11 in [2]. The proof of this version is the
same.



WEAK TRACIALLY APPROXIMATELY REPRESENTABBLE ACTIONS 7

The following lemma is a preparation for Lemma 1.9.

LEMMA 1.8. Let H be a Hilbert space, let a ∈ L(H) satisfy 0 ⩽ a ⩽ 1, and let
ξ ∈ H satisfy ∥ξ∥ = 1. Then ∥aξ − ξ∥ ⩽

√
1 − ∥aξ∥2.

Proof. We have ∥a1/2ξ∥ ⩾ ∥a1/2a1/2ξ∥ = ∥aξ∥. So ⟨aξ, ξ⟩ ⩾ ∥aξ∥2. Now we
have

∥aξ − ξ∥2 = ∥aξ∥2 − 2⟨aξ, ξ⟩+ ∥ξ∥2 ⩽ ∥aξ∥2 − 2∥aξ∥2 + 1 = 1 − ∥aξ∥2.

The result follows.

LEMMA 1.9. Let f : [0, 1] → C be a continuous function such that f (1) = 1.
Then for every ε > 0 there is δ > 0 such that whenever A is a C∗-algebra, a, x ∈ A+

satisfy ∥a∥ ⩽ 1, ∥x∥ ⩽ 1, and ∥axa∥ > 1 − δ, then ∥ f (a)x f (a)∥ > 1 − ε.

Proof. Let ε > 0. Without loss of generality, ε < 1. Set M = sup
λ∈[0,1]

| f (λ)|.

Then M ⩾ 1. Choose a polynomial function g such that g(1) = 1 and for λ ∈ [0, 1]
we have

|g(λ)− f (λ)| < ε

3(2M + 1)
.

Write g(λ) =
n
∑

k=0
αkλk with α0, α1, . . . , αn ∈ C. Then

n

∑
k=0

αk = 1 and sup
λ∈[0,1]

|g(λ)| ⩽ M + 1.

Set R =
n
∑

k=0
k|αk|. Choose δ > 0 so small that

2(M + 2)Rδ1/2 + 3(M + 1)δ1/4 <
ε

3
.

In particular, δ < 1.
Let A, a, and x be as in the hypotheses, with this choice of δ. We can assume

A ⊂ L(H) for some Hilbert space H, and if A is unital, we can assume its identity
is the identity operator on H.

Since ∥axa∥ > 1 − δ, there is ξ ∈ H such that ∥ξ∥ = 1 and ∥axaξ∥ > 1 − δ.
Clearly ∥aξ∥ > 1 − δ, so Lemma 1.8 implies

∥aξ − ξ∥ <
√

1 − (1 − δ)2 =
√

2δ − δ2 < 2δ1/2.

Similarly ∥axaξ∥ ⩽ ∥xaξ∥, so

∥xξ∥ ⩾ ∥xaξ∥ − ∥x∥∥aξ − ξ∥ > 1 − δ − 2δ1/2 > 1 − 3δ1/2,

and Lemma 1.8 implies

∥xξ − ξ∥ <
√

1 − (1 − 3δ1/2)2 =
√

6δ1/2 − 9δ < 3δ1/4.
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For k ∈ Z⩾0, we have

∥ξ − akξ∥ ⩽ ∥ξ − aξ∥+ ∥a∥ · ∥ξ − aξ∥+ · · ·+ ∥ak−1∥ · ∥ξ − aξ∥ ⩽ 2kδ1/2.

Therefore, using
n
∑

k=0
αk = 1,

∥ξ − g(a)ξ∥ ⩽
n

∑
k=0

|αk|∥ξ − akξ∥ ⩽
n

∑
k=0

2kδ1/2|αk| = 2Rδ1/2.

Now, using this, we get

∥g(a)xg(a)ξ − ξ∥ ⩽ ∥g(a)∥ · ∥x∥ · ∥g(a)ξ − ξ∥+ ∥g(a)∥ · ∥xξ − ξ∥+ ∥g(a)ξ − ξ∥

< (M + 1) · 2Rδ1/2 + (M + 1) · 3δ1/4 + 2Rδ1/2 <
ε

3
.

It follows that ∥g(a)xg(a)ξ∥ > 1 − ε
3 , so ∥g(a)xg(a)∥ > 1 − ε

3 .
The choice of g implies that

∥g(a)− f (a)∥ ⩽
ε

3(2M + 1)
,

so we now have
∥ f (a)x f (a)∥ > ∥g(a)xg(a)∥ − ∥g(a)− f (a)∥ · ∥x∥ · ∥g(a)∥

− ∥ f (a)∥ · ∥x∥ · ∥g(a)− f (a)∥

> 1 − ε

3
− ε(M + 1)

3(2M + 1)
− εM

3(2M + 1)
⩾ 1 − ε.

This completes the proof.

Now, we recall the definition of the weak tracial Rokhlin property and prove
some equivalent conditions for it.

DEFINITION 1.10. Let G be a finite group, let A be a simple unital C∗-algebra,
and let α : G → Aut(A) be an action of G on A. We say that α has the weak tracial
Rokhlin property if for every ε > 0, every finite set F ⊂ A, and every positive ele-
ment x ∈ A with ∥x∥ = 1, there exist orthogonal positive contractions fg ∈ A for
g ∈ G such that, with f = ∑

g∈G
fg, the following hold:

(i) ∥a fg − fga∥ < ε for all g ∈ G and all a ∈ F;
(ii) ∥αg( fh)− fgh∥ < ε for all g, h ∈ G;

(iii) 1 − f ≾A x;
(iv) ∥ f x f ∥ > 1 − ε.

In the following lemma, we show that orthogonality of the contractions fg
for g ∈ G in Definition 1.10 can be replaced by approximate orthogonality. Fur-
ther, we show that f in Definition 1.10 can be chosen in the fixed point algebra
Aα, at the cost of replacing orthogonality by approximate orthogonality of the
contractions fg for g ∈ G. This will be useful in the proofs of Proposition 2.5 and
Proposition 2.7.
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LEMMA 1.11. Let G be a finite group, let A be an infinite-dimensional simple
unital C∗-algebra, and let α : G → Aut(A) be an action of G on A. Then the following
are equivalent:

(i) α has the weak tracial Rokhlin property.
(ii) For every ε > 0, every finite set F ⊂ A, and every positive element x ∈ A with

∥x∥ = 1, there exist positive contractions fg ∈ A for g ∈ G such that, with f = ∑
g∈G

fg,

the following hold:
(a) ∥ fg fh∥ < ε for all g, h ∈ G;
(b) ∥a fg − fga∥ < ε for all g ∈ G and all a ∈ F;
(c) ∥αg( fh)− fgh∥ < ε for all g, h ∈ G;
(d) (1 − f − ε)+ ≾A x;
(e) ∥ f x f ∥ > 1 − ε.

(iii) For every ε > 0, every finite set F ⊂ A, and every positive element x ∈ A with
∥x∥ = 1, there exist positive contractions fg ∈ A for g ∈ G such that, with f = ∑

g∈G
fg,

the following hold:
(a) ∥ fg fh∥ < ε for all g, h ∈ G;
(b) ∥a fg − fga∥ < ε for all g ∈ G and all a ∈ F;
(c) αg( fh) = fgh for all g, h ∈ G;
(d) (1 − f − ε)+ ≾A x;
(e) ∥ f x f ∥ > 1 − ε;
(f) f ∈ Aα and ∥ f ∥ = 1.

Proof. It follows from Lemma 3.3 of [6] that (i) implies (iii). Also, (iii) clearly
implies (ii). So it suffices to prove that (ii) implies (i). To prove it, let ε ∈ (0, 1),
let F be a finite set in A, let x ∈ A+ with ∥x∥ = 1, and let gε be as in Lemma 1.5.
Assume card(G) = n for some n ∈ Z>0 and set M = max(1, max{∥a∥ : a ∈ F}).
Using Lemma 2.5.12 of [20], Lemma 1.6, Lemma 1.7, and Lemma 1.9, we can
choose δ1, δ2 > 0 such that the following hold:

(iv) δ1 < δ2 < ε;
(v) if a1, . . . , an ∈ A+ with ∥aj∥ ⩽ 1 for j = 1, . . . , n such that ∥ajak∥ < δ1 when

j ̸= k, then there are b1, . . . , bn ∈ A+ such that bjbk = 0 when j ̸= k, ∥bj∥ ⩽ 1, and
∥aj − bj∥ < δ2

12n2 M for j = 1, . . . , n;
(vi) if x, z ∈ A satisfy 0 ⩽ x ⩽ 1, ∥z∥ ⩽ M, and ∥xz − zx∥ < δ2, then

∥gε(x)z − zgε(x)∥ < ε;

(vii) if x, z ∈ A+ with ∥x∥, ∥z∥ ⩽ 1 and ∥x − z∥ < δ2, then

∥gε(x)− gε(z)∥ < ε;

(viii) if x, z ∈ A+ satisfy ∥x∥ ⩽ 1, ∥z∥ ⩽ 1, and ∥xzx∥ > 1 − δ2, then

∥gε(x)zgε(x)∥ > 1 − ε.



10 M. ALI ASADI-VASFI

Set ε′ = δ1
6M2n . Using the conditions in part (ii) of the lemma with ε′ in place

of ε, F, and x ∈ A+ as given, we can find positive contractions fg ∈ G in A for
g ∈ G such that, with f = ∑

g∈G
fg, the following hold:

(ix) ∥ fg fh∥ < ε′ for all g, h ∈ G;
(x) ∥a fg − fga∥ < ε′ for all g ∈ G and all a ∈ F;

(xi) ∥αg( fh)− fgh∥ < ε′ for all g, h ∈ G;
(xii) (1 − f − ε′)+ ≾A x;

(xiii) ∥ f x f ∥ > 1 − ε′.

By (v), there are contractions bg ∈ A+ for g ∈ G such that:

(xiv) bgbh = 0 for all g, h ∈ G with g ̸= h;
(xv) ∥ fg − bg∥ < δ2

12n2 M for g ∈ G.

Now, for every g ∈ G, set

b = ∑
g∈G

bg, dg = gε(bg), and d = gε(b).

By Lemma VI.10 of [2], it is clear that d = ∑
g∈G

dg. Now, we claim that the follow-

ing hold:

(xvi) dg for g ∈ G are mutually orthogonal positive contractions;
(xvii) ∥adg − dga∥ < ε for all g ∈ G and all a ∈ F;

(xviii) ∥αg(dh)− dgh∥ < ε for all g, h ∈ G;
(xix) 1 − d ≾A x;
(xx) ∥dxd∥ > 1 − ε.

Since bg for g ∈ G are mutually orthogonal positive contractions, part (xvi)
is immediate.

To prove (xvii), we use (xv) and (x) at the second step to get

∥bga− abg∥ ⩽ ∥bg − fg∥ · ∥a∥+ ∥ fga− a fg∥+ ∥a∥ · ∥ fg − bg∥ <
δ2

3
+ ε′ +

δ2

3
< δ2.

Then, by (vi), we have ∥dga − adg∥ < ε.
To prove (xviii), we use (xi) and (xii) at the second step to get

∥αg(bh)− bgh∥ ⩽ ∥αg(bh)− αg( fh)∥+ ∥αg( fh)− fgh∥+ ∥ fgh − bgh∥

<
δ2

3
+ ε′ +

δ2

3
< δ2.

Then, by (vii), we have ∥αg(dh)− dgh∥ < ε.
To prove (xix), we use (xv) at the third step to get

(1.1) ∥(1 − f )− (1 − b)∥ = ∥ f − b∥ ⩽ ∑
g∈G

∥ fg − bg∥ <
δ2

4n
<

δ2

2
.
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Using Lemma 1.5 with b in place of a at the second step, using Lemma 1.3(iib)
and (1.1) at the fourth step, and using (xii) at the last step, we get

1 − d = 1 − gε(b) ∼A (1 − b − ε)+ ≾A (1 − b − δ2)+ ≾A

(
1 − f − δ2

2

)
+

≾A (1 − f − ε′)+ ≾A x.

To prove (xx), we use (1.1) and the fact that ∥ f ∥ ⩽ n at the second step to get

∥ f x f − bxb∥ ⩽ ∥ f − b∥ · ∥x f ∥+ ∥bx∥ · ∥ f − b∥ <
δ2

4
+

δ2

4
=

δ2

2
.

Now, using this at the first step and using (xiii) at the second step, we get

∥bxb∥ > ∥ f x f ∥ − δ2

2
> 1 − ε′ − δ2

2
> 1 − δ2.

Then, by (viii), we have ∥dxd∥ > 1 − ε. This completes the proof.

2. THE DUAL OF WEAKLY TRACIALLY APPROXIMATELY REPRESENTABLE ACTIONS

In this section, we first give the definition of weakly tracially approximately
representable actions. We then give a general duality theorem for a finite abelian
group action when the action has the weak tracial Rokhlin property or is weakly
tracially approximately representable. Further, we exhibit some examples to show
that our theorems are not empty.

The following is a “weak tracial” analog of approximate representability for
finite group actions on infinite-dimensional simple unital C∗-algebras.

DEFINITION 2.1. Let A be an infinite-dimensional simple unital C∗-algebra.
An action α : G → Aut(A) of a finite group G on A is weakly tracially approximately
representable if for every finite set F ⊂ A, every ε > 0, and every positive element
x ∈ A with ∥x∥ = 1, there are c ∈ (Aα)+ with ∥c∥ ⩽ 1 and contractive elements
sg ∈ cAc for g ∈ G such that:

(i) ∥s1 − c∥ < ε and ∥s∗g − sg−1∥ < ε for all g ∈ G;
(ii) ∥sgsh − csgh∥ < ε for all g, h ∈ G;

(iii) ∥ca − ac∥ < ε for all a ∈ F ∪ {sg : g ∈ G};
(iv) ∥αg(cac)− sgas∗g∥ < ε for all a ∈ F and all g ∈ G;
(v) ∥αg(sh)− sghg−1∥ < ε for all g, h ∈ G;

(vi) (1 − c − ε)+ ≾A x;
(vii) ∥cxc∥ > 1 − ε.

It is clear that condition (v) reduces to ∥αg(sh)− sh∥ < ε if G is an abelian
group. We refer to Definition 4.1 of [5] for a tracial version of Definition 2.1 in
the setting of nonabelian finite groups and Definition 3.2 of [23] in the setting of
abelian finite groups and separable C∗-algebras.
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In the following lemma, we show that in the category of pointwise outer
actions of countable discrete groups on simple C∗-algebras, for every positive el-
ement of norm one, say a, in the crossed product, there is a positive contraction in
the crossed product, say z, such that zaz∗ ∈ A+ \ {0} and its norm is bounded be-
low. This lemma may be known and can be considered as a standard application
of Kishimoto’s lemma. We include a proof as we need to know some information
on the norm of z and zaz∗ when it is used in the proofs of Proposition 2.5 and
Proposition 2.7.

LEMMA 2.2. Let α : G → Aut(A) be an action of a countable discrete group G on
a unital simple C∗-algebra A which is pointwise outer. Identify A with a subalgebra of
C∗

r (G, A, α) in the usual way. Let a ∈ C∗
r (G, A, α)+ satisfy ∥a∥ = 1. Then for every

ε > 0 there is z ∈ C∗
r (G, A, α) such that:

(i) zaz∗ ∈ A+;
(ii) ∥z∥ ⩽ 1;

(iii) ∥zaz∗∥ > 1 − ε.

Proof. Let ε ∈ (0, 1). Choose λ such that 1 − ε < λ < 1. Set b = (a − λ)+.
We use Lemma 4.2 of [9] to get c ∈ A+ \ {0} such that c ≾C∗

r (G,A,α) b. Note that
separability of the C∗-algebra in Lemma 4.2 of [9] is not needed. We may assume
∥c∥ = 1. Now, we choose δ ∈ (0, 1) such that (1− δ)λ > 1− ε. We use Lemma 2.7
of [6] to get w0 ∈ C∗

r (G, A, α) such that

(2.1) ∥w0aw∗
0 − c∥ < δ and ∥w0∥ ⩽ λ−1/2.

Using Lemma 2.2 of [17], we get a contraction d ∈ C∗
r (G, A, α) such that

(2.2) dw0aw∗
0d∗ = (c − δ)+.

Now, set z = 1
∥w0∥

· dw0. It is clear that ∥z∥ ⩽ 1 and zaz∗ ∈ A+. Now, using (2.2) at
the first step and using the second part of (2.1) and the fact that ∥(c− δ)+∥ ⩾ 1− δ
at the second step, we get

∥zbz∗∥ =
1

∥w0∥2 · ∥(c − δ)+∥ > λ(1 − δ) > 1 − ε.

This completes the proof.

If a finite group action on a simple unital C∗-algebra has the weak tracial
Rokhlin property, it follows from Proposition 3.2 of [8] that α is pointwise outer
and, therefore, Lemma 2.2 can be applied.

NOTATION 2.3. Let A be a unital C∗-algebra and let α : G → Aut(A) be an
action of a finite group G on A. For g ∈ G, we let ug be the element of Cc(G, A, α)
which takes the value 1 at g and 0 at the other elements of G. We use the same
notation for its image in C∗(G, A, α). Also, for each g ∈ G, we define the map
Eg : C∗(G, A, α) → A by Eg(a) = ag, where a = ∑

g∈G
agug.
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REMARK 2.4. Let G be an abelian finite group. Then:

(i) For every χ ∈ Ĝ, we have ∑
g∈G

χ(g) =

{
card(G) χ = 1,
0 χ ̸= 1.

(ii) ∑
χ∈Ĝ

χ(g) =

{
card(G) g = 1,
0 g ̸= 1.

PROPOSITION 2.5. Let A be an infinite-dimensional simple unital C∗-algebra and
let G be a finite abelian group. Let α : G → Aut(A) be an action of G on A which has the
weak tracial Rokhlin property. Then α̂ is weakly tracially approximately representable.

Proof. Let ε ∈ (0, 1), let x ∈ C∗(G, A, α)+ with ∥x∥ = 1, and let F ⊂
C∗(G, A, α) be a finite set. We use Lemma 2.2 with x in place of a to choose
z ∈ C∗(G, A, α) such that

(2.3) zxz∗ ∈ A+, ∥z∥ ⩽ 1, and ∥zxz∗∥ > 1 − ε

8
.

Without loss of generality, F = F0 ∪ {ug : g ∈ G} for some finite subset
F0 ⊂ A such that ∥a∥ ⩽ 1 for all a ∈ F0. Set

F1 = F0 ∪ {Eg(z), Eg(z∗) : g ∈ G},

y =
1

∥zxz∗∥ · zxz∗, and ε′ =
ε

48(1 + ε
8 )card(G)2 .

Applying Lemma 1.11 with F1 and y as given and ε′ in place of ε, we get positive
contractions fg ∈ A for g ∈ G such that, with f = ∑

g∈G
fg, the following hold:

(i) ∥ fg fh∥ < ε′ for all g, h ∈ G;
(ii) ∥a fg − fga∥ < ε′ for all g ∈ G and all a ∈ F1;

(iii) αg( fh) = fgh for all g, h ∈ G;
(iv) (1 − f − ε′)+ ≾A y;
(v) ∥ f y f ∥ > 1 − ε′;

(vi) f ∈ Aα and ∥ f ∥ = 1.

Now for every τ ∈ Ĝ, define

sτ = ∑
g∈G

τ(g) fg, tτ =
1

1 + ε
8
· sτ , and c =

1
1 + ε

8
· f .

We claim that:

(vii) tτ ∈ cAc for all τ ∈ Ĝ;
(viii) ∥tτ∥ ⩽ 1 for all τ ∈ Ĝ and c ∈ Aα \ {0} with ∥c∥ ⩽ 1;

(ix) t1 = c and t∗τ = tτ−1 for all τ ∈ Ĝ;
(x) ∥tτtσ − ctτσ∥ < ε for all τ, σ ∈ Ĝ;

(xi) ∥ctτ − tτc∥ < ε for all τ ∈ Ĝ;
(xii) ∥cv − vc∥ < ε for all v ∈ F;

(xiii) α̂τ(tσ) = tσ for all τ, σ ∈ Ĝ;
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(xiv) ∥α̂τ(cvc)− tτvt∗τ∥ < ε for all τ ∈ Ĝ and v ∈ F;
(xv) (1 − c − ε)+ ≾C∗(G,A,α) x;

(xvi) ∥cxc∥ > 1 − ε.

Since fg ∈ f A f , it follows that sτ ∈ f A f for all τ ∈ Ĝ and, therefore, (vii) is
immediate.

To prove (viii), it suffices to estimate ∥sτ∥ for τ ∈ Ĝ. Set S = {(g, g) : g ∈
G} ⊆ G2 and use (i) at the third step to get

(2.4)
∥∥∥ f 2 − ∑

g∈G
f 2
g

∥∥∥ =
∥∥∥ ∑

g,h∈G
fg fh − ∑

g∈G
f 2
g

∥∥∥ ⩽
∥∥∥ ∑

g,h/∈S
fg fh

∥∥∥ ⩽ card(G)2ε′.

Now, using (2.4), (i), and the fact that |τ(g)| = 1 for all g ∈ G at the second step,
we estimate

∥sτs∗τ − f 2∥ ⩽
∥∥∥ ∑

g,h/∈S
τ(g)τ(h) fg fh

∥∥∥+ ∥∥∥ ∑
g∈G

|τ(g)|2 f 2
g − f 2

∥∥∥
< card(G)2ε′ + card(G)2ε′ <

ε

8
.

Therefore, using this at the second step and the second part of (vi) at the third
step,

∥sτ∥2 = ∥sτs∗τ∥ < ∥ f ∥2 +
ε

8
= 1 +

ε

8
.

This relation implies that ∥sτ∥ < 1 + ε
8 .

Part (ix) is easy to check.
To prove (x), we use (i) at the second step to estimate

∥sτsσ − f sτσ∥ ⩽
∥∥∥ ∑

g,h/∈S
τ(g)σ(h) fg fh

∥∥∥+ ∥∥∥ ∑
g∈G

τσ(g) f 2
g − ∑

g,h∈G
τσ(g) fh fg

∥∥∥
< card(G)2ε′ + card(G)2ε′ = 2card(G)2ε′.

This relation implies that ∥tτtσ − ctτσ∥ < ε.
To prove (xi), we use (i) at the second step to get

∥ f sτ − sτ f ∥ ⩽
∥∥∥ ∑

g,h/∈S
τ(g) fh fg

∥∥∥+ ∥∥∥ ∑
g∈G

τ(g) f 2
g − ∑

g,h∈G
τ(h) fh fg

∥∥∥
< card(G)2ε′ + card(G)2ε′ = 2card(G)2ε′.

This relation implies that ∥ctτ − tτc∥ < ε.
We prove (xii). Since c ∈ Aα, it follows that ugc = cug for all g ∈ G. For

a ∈ F1, we use (ii) at the second step to get

(2.5) ∥a f − f a∥ ⩽ ∑
g∈G

∥a fg − fga∥ < card(G)ε′.

This relation implies that ∥ac − ca∥ < card(G)
1+ ε

8
ε′ < ε and, therefore, (xii) now

follows.
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To prove (xiii), for all τ, σ ∈ Ĝ, we have

α̂τ(tσ) =
1

1 + ε
8
· ∑

g∈G
σ(g)α̂τ( fg) =

1
1 + ε

8
∑

g∈G
σ(g) fg = tσ.

We prove (xiv). For all a ∈ F1, we use (i) and (ii) at the second step to estimate∥∥∥ f a f − ∑
g∈G

fga fg

∥∥∥ ⩽
∥∥∥ ∑

g,h∈G
fga fh − ∑

g,h∈G
fg fha

∥∥∥
+

∥∥∥ ∑
g,h∈S

fg fha
∥∥∥+ ∥∥∥ ∑

g∈G
f 2
g a − ∑

g∈G
fga fg

∥∥∥
< card(G)ε′ + card(G)2ε′ + card(G)ε′ < 3card(G)2ε′.

Therefore, using this, (ii), and the fact that α̂τ( f a f ) = f a f for a ∈ F1 at the sec-
ond step,

∥sτas∗τ − α̂τ( f a f )∥ ⩽
∥∥∥ ∑

g,h∈G
τ(g)τ(h) fga fh − ∑

g,h∈G
τ(g)τ(h) fg fha

∥∥∥
+

∥∥∥ ∑
g,h/∈S

τ(g)τ(h) fg fha
∥∥∥+ ∥∥∥ ∑

g∈G
|τ(g)|2 f 2

g a − ∑
g∈G

fga fg

∥∥∥
+

∥∥∥ ∑
g∈G

fga fg − f a f
∥∥∥

< card(G)2ε′ + card(G)2ε′ + card(G)ε′ + 3card(G)2ε′

⩽ 6card(G)2ε′.

This relation implies that, for all a ∈ F1,

(2.6) ∥tτat∗τ − α̂τ(cac)∥ <
6card(G)2ε′

(1 + ε
8 )

2 < ε.

Now, we use (iii) at the second step to get

sτugs∗τ = ∑
h,t∈G

τ(h)τ(t) fhαg( ft)ug = ∑
h,t∈G

τ(h)τ(g−1t) fh ftug,(2.7)

and use (vi) to get

(2.8) α̂τ( f ug f ) = τ(g) f ug f = τ(g) f 2ug.

Therefore, using (2.7) and (2.8) at the first step, and using (i) and (2.4) at the sec-
ond step,

∥sτugs∗τ−α̂τ( f ug f )∥⩽
∥∥∥sτugs∗τ−∑

h,t∈G
τ(h)τ(g−1t) fh ftug

∥∥∥+∥∥∥ ∑
h,t/∈S

τ(h)τ(g−1t) fh ftug

∥∥∥
+

∥∥∥ ∑
h∈G

τ(g−1) f 2
h ug − τ(g) f 2ug

∥∥∥
< 2card(G)2ε′ + card(G)ε′ < 3card(G)2ε′.
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This relation implies that

(2.9) ∥tτugt∗τ − α̂τ(cugc)∥ <
3card(G)2ε′

(1 + ε
8 )

2 < ε.

Part (xiv) now follows from (2.6) and (2.9).
To prove (xv), we use (vi) at the third step to estimate

∥(1 − c)− (1 − f − ε′)+∥ < ∥(1 − c) + (1 − f )∥+ ∥(1 − f )− (1 − f − ε′)+∥

⩽ ∥c − f ∥+ ε′ ⩽
∣∣∣ 1
1 + ε

8
− 1

∣∣∣ · ∥ f ∥+ ε′ <
ε

2
+

ε

2
= ε.

Using this and Lemma 1.3(iib) at the first step, and using (iv) at the second step,
we get

(1 − c − ε)+ ≾A (1 − f − ε′)+ ≾A y ∼A zxz∗.

Since the above relation also holds in C∗(G, A, α), it follows that

(1 − c − ε)+ ≾C∗(G,A,α) zxz∗ ≾C∗(G,A,α) x.

To prove (xvi), we use the fact that ∥c∥ ⩽ 1
1+ ε

8
at the second step, and use

the second part of (2.3) and (2.5) at the third step to estimate

∥czxz∗c − zcxcz∗∥ ⩽ ∥cz − zc∥ · ∥xz∗c∥+ ∥zcx∥ · ∥z∗c − cz∗∥

< ∑
g∈G

∥ f Eg(z)− Eg(z) f ∥ · ∥xz∗c∥ · 1
1 + ε

8

+
1

1 + ε
8
· ∥zcx∥ · ∑

g∈G
∥Eg(z∗) f − f Eg(z∗)∥

< card(G)2ε′ + card(G)2ε′ <
ε

2
.

This relation implies that

(2.10) ∥zcxcz∗∥ > ∥czxz∗c∥ − ε

2
.

Now, using the first part of (2.3) at the first step, using (2.10) at the second step,
using (v) at the fourth step, and using the third part of (2.3) at the fifth step, we get

∥cxc∥⩾∥zcxcz∗∥>∥czxz∗c∥− ε

2
=

1
(1+ ε

8 )
2 · ∥ f zxz∗ f ∥− ε

2
>

1−ε′

(1+ ε
8 )

2 · ∥zxz∗∥− ε

2

>
(1 − ε

8 )
2

(1 + ε
8 )

2 − ε

2
> 1 − ε

2
− ε

2
= 1 − ε.

This completes the proof.

LEMMA 2.6. Let A be a unital C∗-algebra and let ε > 0. Let a ∈ A+ with
∥a∥ ⩽ 1 and let n ∈ Z>0. Then (1 − an − ε)+ ≾A (1 − a − ε

n )+.
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Proof. We apply functional calculus to a. So we have an isomorphism de-
fined by φ : C(sp(a)) → C∗(1, a). Then we can check that

{x ∈ sp(a) : 1 − xn − ε > 0} ⊆
{

x ∈ sp(a) : 1 − x − ε

n
> 0

}
.

This completes the proof.

PROPOSITION 2.7. Let A be an infinite-dimensional simple unital C∗-algebra and
let G be a finite abelian group. Let α : G → Aut(A) be an action of G on A which is
pointwise outer. If α is weakly tracially approximately representable, then α̂ has the weak
tracial Rokhlin property.

Proof. Let ε ∈ (0, 1), let x ∈ C∗(G, A, α)+ with ∥x∥ = 1, and let F ⊂
C∗(G, A, α) be a finite set. Without loss of generality, F = F0 ∪ {ug : g ∈ G}
for some finite subset F0 ⊂ A such that ∥a∥ ⩽ 1 for all a ∈ F0. By Lemma 1.9, we
choose δ ∈ (0, ε) such that:

(i) if a, b ∈ A+ satisfy ∥a∥ ⩽ 1, ∥b∥ ⩽ 1, and ∥aba∥ > 1 − δ, then

∥a4ba4∥ > 1 − ε

8
.

Since α is pointwise outer, it follows from Lemma 2.2 that there is an element
z ∈ C∗(G, A, α) \ {0} such that:

(2.11) zxz∗ ∈ A+, ∥z∥ ⩽ 1, and ∥zxz∗∥ > 1 − ε

8
.

Set

F0 = {Eg(a), Eg(a)∗ : a ∈ F ∪ {z, x}, g ∈ G},

y =
1

∥zxz∗∥ · zxz∗, and ε′ =
δ

640card(G)
.

Using Definition 2.1 with F0, y, and ε′ as given, there are c ∈ (Aα)+ with ∥c∥ ⩽ 1
and contractive elements sg ∈ cAc for g ∈ G such that:

(ii) ∥ca − ac∥ < ε′ for all a ∈ F0 ∪ {sg : g ∈ G};
(iii) ∥αg(cac)− sgas∗g∥ < ε′ for all a ∈ F0 and all g ∈ G;
(iv) ∥sgsh − csgh∥ < ε′ for all g, h ∈ G;
(v) ∥s1 − c∥ < ε′ and ∥s∗g − sg−1∥ < ε′ for all g ∈ G;

(vi) ∥αg(sh)− sh∥ < ε′ for all g, h ∈ G;
(vii) (1 − c − ε′)+ ≾A y;

(viii) ∥cyc∥ > 1 − ε′.
We use (viii) and (i) to get

(2.12) ∥c4yc4∥ > 1 − ε

8
,

and use (vi) at the second step to get, for all g, h ∈ G,

(2.13) ∥ugsh − shug∥ ⩽ ∥αg(sh)− sh∥ · ∥ug∥ < ε′.
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Using the fact that s∗hg = s∗gh at the first step, and using (iv) and (2.13) at the
second step, we estimate

∥ugs∗guhs∗h − ughs∗ghc∥
⩽ ∥ug∥ · ∥s∗guh − uhs∗g∥ · ∥s∗h∥+ ∥ugh∥ · ∥s∗gs∗h − s∗ghc∥ < ε′ + ε′ = 2ε′.(2.14)

For every τ ∈ Ĝ, we define

pτ =
1

card(G) ∑
g∈G

τ(g)ugs∗g, fτ = cp∗τ pτc, and f = ∑
τ∈Ĝ

fτ .

Now, we claim that:

(ix) fτ for τ ∈ Ĝ are positive contractions;
(x) ∥ fτ fσ∥ < ε for all τ, σ ∈ Ĝ with τ ̸= σ;

(xi) ∥a fτ − fτa∥ < ε for all τ ∈ Ĝ and all a ∈ F;
(xii) ∥ατ( fσ)− fτσ∥ < ε for all τ, σ ∈ Ĝ;

(xiii) (1 − f − ε)+ ≾C∗(G,A,α) x;
(xiv) ∥ f x f ∥ > 1 − ε.

Part (ix) is immediate.
We prove (x). We use (2.13) at the last step to estimate

∥pτc−cpτ∥⩽
1

card(G) ∑
g∈G

|τ(g)| · ∥ugs∗gc − cugs∗g∥

⩽
1

card(G) ∑
g∈G

(∥ug∥ · ∥s∗gc−cs∗g∥+∥c∥ · ∥ugs∗g−s∗gug∥)<2ε′.(2.15)

Using (2.15), short computations show that

(2.16) ∥pτc2−c2 pτ∥<4ε′, ∥p∗τ pτc−cp∗τ pτ∥<4ε′, and ∥pτc3−c3 pτ∥<6ε′.

We use (2.13) at the last step to get

∥p∗τ − pτ∥ ⩽
1

card(G) ∑
g∈G

|τ(g)| · ∥sg−1 ug − ugs∗g∥

⩽
1

card(G) ∑
g∈G

(∥sg−1 ug − s∗gug∥+ ∥s∗gug − ugs∗g∥) < ε′ + ε′ = 2ε′.(2.17)

A short computation together with Remark 2.4 shows that

(2.18) ∑
g,h∈G

σ(g)τ(h)ughs∗gh =

{
0 σ ̸= τ,
card(G)pτ σ = τ.
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Then, by (2.14),∥∥∥pσ pτ −
1

card(G)2 ∑
g,h∈G

σ(g)τ(h)ughs∗ghc
∥∥∥

⩽
1

card(G)2 ∑
g,h∈G

|σ(g)τ(h)| · ∥ugs∗guhs∗h − ughs∗ghc∥ < 2ε′.(2.19)

Using (2.18) and (2.19), we get, for all τ, σ ∈ Ĝ with τ ̸= σ,

(2.20) ∥pτ pσ∥ < 2ε′,

and, for all τ, σ ∈ Ĝ,

(2.21) ∥p2
τ − pτc∥ < 2ε′.

Therefore, for all τ, σ ∈ Ĝ with τ ̸= σ, using the first part of (2.16), (2.17), and
(2.20) at the last step,

∥ fτ fσ∥ = ∥cp∗τ pτc2 p∗σ pσc∥ ⩽ ∥cp∗τ∥ · ∥pτc2 − c2 pτ∥ · ∥p∗σ pσc∥
+ ∥cp∗τc2 pτ∥ · ∥p∗σ − pσ∥ · ∥pσc∥
+ ∥cp∗τc2∥ · ∥pτ pσ∥ · ∥pσc∥

< 4ε′ + 2ε′ + 2ε′ = 8ε′.(2.22)

We prove (xi). For all v ∈ F ∪ {z, x}, by (ii), we have

(2.23) ∥cv − vc∥ ⩽ ∑
g∈G

∥cEg(v)− Eg(v)c∥ < card(G)ε′.

For all a ∈ F0, we use (2.13), (ii), (iii), (iv), and (vi) at the last step to get:

∥cac(u∗
gsg)−(u∗

gsg)cac∥⩽∥cac∥·∥u∗
gsg−sgu∗

g∥+∥u∗
g∥·∥αg(cac)−sgas∗g∥·∥αg(sg)∥

+∥u∗
gsgas∗g∥·∥αg(sg)−sg∥+∥u∗

gsga∥·∥s∗g − sg−1∥·∥sg∥
+∥u∗

gsga∥ · ∥sg−1 sg − cs1∥
+∥u∗

gsgac∥ · ∥s1 − c∥+ ∥u∗
gsg∥ · ∥ac − ca∥ · ∥c∥

<7ε′.

This relation implies that ∥cacpτ − pτcac∥ < 7ε′ for all a ∈ F0. Using this and the
fact that ∥pτ∥ ⩽ 1, we get

(2.24) ∥cacp∗τ pτ−p∗τ pτcac∥⩽∥cacp∗τ−p∗τcac∥·∥pτ∥+∥p∗τ∥·∥cacpτ−pτcac∥<14ε′.

For all h ∈ G and all τ ∈ Ĝ, we use (2.13) to get

∥uh pτ − pτuh∥ ⩽
1

card(G) ∑
g∈G

|τ(g)| · ∥uhugs∗g − ugs∗guh∥ < ε′.(2.25)
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For all a ∈ F0, we use (2.24) and the second part of (2.16) at the last step to get

∥a fτ − fτa∥ ⩽ ∥ac − ca∥ · ∥p∗τ pτc∥+ ∥ca∥ · ∥p∗τ pτc − cp∗τ pτ∥
+ ∥cacp∗τ pτ − p∗τ pτcac∥+ ∥p∗τ pτc − cp∗τ pτ∥ · ∥ac∥
+ ∥cp∗τ pτ∥ · ∥ac − ca∥

< ε′ + 4ε′ + 14ε′ + 4ε′ + ε′ = 24ε′.(2.26)

For all h ∈ G, by (2.25), we have

∥uh fτ − fτuh∥ ⩽ ∥c∥ · ∥uh p∗τ − p∗τuh∥ · ∥pτc∥+ ∥cp∗τ∥ · ∥pτuh − uh pτ∥ · ∥c∥
< 2ε′.(2.27)

Now putting (2.26) and (2.27) together, we get, for all v ∈ F ∪ {x, z},

(2.28) ∥v fτ − v fτ∥ < 26card(G)ε′ < ε.

We prove (xii). We use (2.13) at the last step to estimate

∥α̂σ(ugs∗g)− σ(g)ugs∗g∥ ⩽ ∥α̂σ∥ · ∥ugs∗g − s∗gug∥+ |σ(g)| · ∥s∗gug − ugs∗g∥
< ε′ + ε′ = 2ε′.(2.29)

Now, using (2.29) at the last step, we get

∥α̂σ(pτ)− pστ∥ =
1

card(G) ∑
g∈G

|τ(g)| · ∥α̂σ(ugs∗g)− σ(g)ugs∗g∥ < 2ε′.(2.30)

Therefore, using (2.30) at the last step,

∥α̂τ( fσ)− fτσ∥⩽∥c∥ · ∥α̂τ(p∗σ)−p∗τσ∥ · ∥α̂τ(pσ)c∥+∥cp∗τσ∥ · ∥α̂τ(pσ)−pτσ∥ · ∥c∥
< 2ε′ + 2ε′ < ε.

We prove (xiii). We use Remark 2.4 at the first step and use (v) at the second
step to get

(2.31)
∥∥∥ ∑

τ∈Ĝ

pτ − c
∥∥∥ = ∥u1s∗1 − c∥ < ε′.

Using (2.17), (2.21), and (2.31) at the second step, we get

∥ f − c4∥ ⩽ ∑
τ∈Ĝ

∥cpτ∥ · ∥p∗τ − pτ∥ · ∥c∥+ ∑
τ∈Ĝ

∥c∥ · ∥p2
τ − pτc∥ · ∥c∥

+ ∥c∥ ·
∥∥∥ ∑

τ∈Ĝ

pτ − c
∥∥∥ · ∥c2∥

< 2card(G)ε′ + 2card(G)ε′ + ε′ ⩽ 5card(G)ε′.

Using this at the second step, we get

(2.32) ∥(1 − f )− (1 − c4)∥ = ∥ f − c4∥ < 5card(G)ε′ <
δ

2
.
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Using (2.32) and Lemma 1.3(iib) at the second step, using Lemma 2.6 at the third
step, and using (vii) at fifth step, we get

(1 − f − ε)+ ≾C∗(G,A,α)

(
1 − f −

( δ

2
+

δ

2

))
+
≾C∗(G,A,α)

(
1 − c4 − δ

2

))
+

≾C∗(G,A,α)

(
1 − c − δ

8

)
+
≾C∗(G,A,α) (1 − c − ε′)+

≾C∗(G,A,α) y ≾C∗(G,A,α) x.

To prove (xiv), we use the third part of (2.16), (2.17), (2.21), and (2.15) at the
last step to estimate

∥cpτ p∗τc2 pτ p∗τc − c4 pτc3∥
⩽ ∥cpτ∥ · ∥p∗τ − pτ∥ · ∥c2 pτ p∗τc∥+ ∥c∥ · ∥p2

τ − pτc∥ · ∥c2 pτ p∗τc∥

+ ∥c∥ · ∥pτc3 − c3 pτ∥ · ∥pτ p∗τc∥+ ∥c4∥ · ∥p2
τ − pτc∥ · ∥p∗τc∥

+ ∥c4∥ · ∥p2
τ − pτc∥ · ∥p∗τc∥+ ∥c4 pτ∥ · ∥cp∗τ − p∗τc∥ · ∥c∥

+ ∥c4 pτ∥ · ∥p∗τ − pτ∥ · ∥c2∥+ ∥c4∥ · ∥p2
τ − pτc∥ · ∥c2∥

< 2ε′ + 2ε′ + 6ε′ + 2ε′ + 2ε′ + 2ε′ + 2ε′ + 2ε′ = 20ε′.(2.33)

Using (2.23), (2.31), and (2.33) at the last step, we get∥∥∥ ∑
τ∈Ĝ

f 2
τ x − c4xc4

∥∥∥ ⩽
∥∥∥ ∑

τ∈Ĝ

cpτ p∗τc2 pτ p∗τcx − ∑
τ∈Ĝ

c4 pτc3x
∥∥∥

+ ∥c4∥ ·
∥∥∥ ∑

τ∈Ĝ

pτ − c
∥∥∥ · ∥c3x∥+ ∥c8x − c4xc4∥

< 20card(G)ε′ + ε′ + 4card(G)ε′ ⩽ 25card(G)ε′.

Now, using this, (2.28), and (2.22) at the second step, we get

∥ f x f−c4xc4∥⩽
∥∥∥ ∑

τ,σ∈Ĝ

fτx fσ− ∑
τ,σ∈Ĝ

fτ fσx
∥∥∥+∥∥∥ ∑

τ ̸=σ

fτ fσx
∥∥∥+∥∥∥ ∑

τ,σ∈Ĝ

f 2
τ x−c4xc4

∥∥∥
< 26card(G)3ε′ + 8card(G)2ε′ + 25card(G)ε′ <

ε

4
.(2.34)

We further use (2.23) and the second part of (2.11) to get

∥zc4xc4z∗ − c4zxz∗c4∥ < ∥zc4 − c4z∥ · ∥xc4z∗∥+ ∥c4zx∥ · ∥c4z∗ − z∗c4∥

< 4card(G)ε′ + 4card(G)ε′ <
ε

8
.(2.35)

Now, using (2.34) at the first step, using the second part of (2.11) at the second
step, using (2.35) at the third step, using (2.12) at the fourth step, and using the
third part of (2.11) at the fifth step, we get

∥ f x f ∥ ⩾ ∥c4xc4∥ − ε

8
⩾ ∥zc4xc4z∗∥ − ε

8
> ∥c4zxz∗c4∥ − ε

8
− ε

8
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> ∥zxz∗∥ ·
(

1 − ε

8

)
− ε

4
>

(
1 − ε

8

)2
− ε

4
> 1 − ε.

This completes the proof of the claim and the result follows from the claim and
Lemma 1.11.

Now, putting Proposition 2.5 and Proposition 2.7 together, we get the fol-
lowing theorem.

THEOREM 2.8. Let A be an infinite-dimensional simple unital C∗-algebra and let
G be a finite abelian group. Let α : G → Aut(A) be an action of G on A which is
pointwise outer. Then:

(i) α has the weak tracial Rokhlin property if and only if α̂ is weakly tracially approx-
imately representable.

(ii) α is weakly tracially approximately representable if and only if α̂ has the weak
tracial Rokhlin property.

It is an important question whether there exists a finite group action which
is weakly tracially approximately representable but not tracially approximately
representable. To obtain such examples, it suffices to find an action of a finite
abelian group which has the weak tracial Rokhlin property but not the tracial
Rokhlin property by considering the duality theorems for tracial Rokhlin actions
and weak tracial Rokhlin actions (Theorem 3.11 of [23] and Theorem 2.8). One
such example was constructed in Example 5.10 of [14]. Furthermore, by tensor-
ing this action with the trivial action of G on A and using Theorem 2.8, we can
produce many more examples of group actions which are weakly tracially ap-
proximately representable but not tracially approximately representable.

Here is an example of a finite non-abelian group action on a unital simple
Z-stable C∗-algebra which simultaneously is weakly tracially approximately rep-
resentable and has the weak tracial Rokhlin property.

EXAMPLE 2.9. Let A be the 2∞ UHF algebra, let m ∈ Z>0, and let Sm denote
the group of all permutation of {1, 2, . . . , m}. Let α : Sm → Aut(A⊗m) given by

ασ(a1 ⊗ a2 ⊗ · · · ⊗ am) = aσ−1(1) ⊗ aσ−1(2) ⊗ · · · ⊗ aσ−1(m)

for σ ∈ Sm and a1, a2, . . . , am ∈ A. It follows from Lemma 3.13 of [5] that α is
approximately representable and therefore it is weakly tracially approximately
representable. It follows from Theorem 3.10 of [1] that α has the weak tracial
Rokhlin property.

Here is an example of a finite abelian group action on a unital simple Z-
stable C∗-algebra which simultaneously is weakly tracially approximately repre-
sentable and has the weak tracial Rokhlin property, but is neither tracially ap-
proximately representable nor has the tracial Rokhlin property.
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EXAMPLE 2.10. Let Z be the Jiang–Su algebra. Let α : Z/2Z → Aut(Z ⊗Z)
be the flip action. Because α has the weak tracial Rokklin property (see exam-
ple Example 5.10 of [14]), C∗(Z/2Z,Z ⊗ Z , α) is simple and has a unique trace.
Since the crossed product von Neumann algebra is a factor, it follows that the
dual action α̂ is strongly outer in the sense of Definition 2.5 of [11]. Then, by
Corollary 8.6 of [11], α̂ has the weak tracial Rokhlin property and therefore α is
weakly tracially approximately representable by Theorem 2.8 and it is obviously
not tracially approximately representable.

Here is an example of a finite non-abelian group action on a unital simple
non-Z-stable C∗-algebra which is weakly tracially approximately representable,
but does not have the weak tracial Rokhlin property.

EXAMPLE 2.11. Let G be a finite group, let A be the unital simple separable
non-Z-stable AH algebra with stable rank one as in Construction 5.8 of [5], and
let α : G → Aut(A) be the action as in Construction 5.8 of [5]. It follows from
Corollary 5.21 of [5] that α is an approximately representable but pointwise outer
action. So α is also weakly tracially approximately representable. Moreover, nei-
ther α nor α ⊗ idZ has the weak tracial Rokhlin property.

Here is an example of a finite abelian group action on a unital simple non-
Z-stable C∗-algebra with the weak tracial Rokhlin property, but it is not weakly
tracially approximately representable.

EXAMPLE 2.12. Let α : Z/2Z → Aut(A) be the action as in Construction 6.1
of [6]. Then, by Lemma 6.4 of [6], α has the Rokhlin property. It follows from
Proposition 4.13 of [5] and Theorem 6.15 of [6] that α is not weakly tracially ap-
proximately representable.
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