Journal of Operator Theory
Volume 33, Issue 1, Winter 1995 pp. 105-116.
Dual properties and joint spectra for solvable Lie algebras of operatorsAuthors: Enrico Boasso
Author institution:Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, 1428 Nuñez, Buenos Aires, Republica Argentina
Summary: If $L$ is a solvable Lie algebra of operators acting on a Banach space $E$, we study the action of the opposite algebra of $L$, $L'$, on $E*$. Moreover, we extend Slodkowski joint spectra $\sigma_{\delta,k}$, $\sigma_{\pi,k}$ and study its usual spectral properties.
Keywords: Lie algebra, ideals of Lie algebra, $n$-tuple of commuting operators, joint spectrum, Slodkowski joint spectrum.
Contents Full-Text PDF